The generalized Schur (QZ) decomposition failed. For more information, see the documentation for Lapack function
dgges: info=30, n=16. You can also run model_diagnostics to get more information on what may cause this problem.
how to solve this problem
var
//------core variable---------
c cstar r rstar pi pistar n nstar w wstar lambda lambdastar
mc mcstar y ystar y_p y_pstar y_l y_lstar a astar
pi_h_p pi_fstar_p
pi_h_l pi_hstar_l pi_f_l pi_fstar_l
m mstar s sstar
q
//-----natrue variable--------
cnat Nnat wnat Ynat
cnat_f Nnat_f wnat_f Ynat_f
Qnat phnat pfnat_f
ynat ynatstar
A A_f
;
varexo
epsa ${\varepsilon^A}$
epsa_f ${\varepsilon^A*}$
epsr ${\varepsilon^R}$
epsr_f ${\varepsilon^R*}$
//epstau ${\varepsilon^\tau}$
//epstau_f ${\varepsilon^\tau*}$
;
parameters
delta ${\delta}$ (long_name='lcp和pcp产品之间的替代弹性')
beta ${\beta}$ (long_name='贴现因子')
sigma ${\sigma}$ (long_name='风险厌恶系数')
phi ${\phi}$ (long_name='劳动供给弹性')
eps ${\epsilon}$ (long_name='中间品替代弹性')
theta ${\theta_H}$ (long_name='本国价格黏性参数')
alpha ${\alpha}$ (long_name='贸易开放度')
eta ${\eta}$ (long_name='两国商品替代弹性')
rhor${{\rho}_R}$ (long_name='利率平滑参数')
phiy ${\phi_y}$ (long_name='货币政策规则产出缺口系数')
phipi ${\phi_{\pi}}$ (long_name='货币政策规则通胀系数')
rhoa ${\rho_A}$ (long_name='本国技术冲击持续性参数')
//rhotau_h ${\rho_tau}$ (long_name='本国关税冲击持续性参数')
//rhotau_f ${\rho_{tau}^{*}$ (long_name='外国关税冲击持续性参数')
lambda_ss
lambdastar_ss
rho
;
delta=0; beta=0.99; sigma=2; phi=2; eps=10; theta=0.7; eta=2; alpha=0.39;
rhor=0.18; phiy=1.03; phipi=2.99; rhoa=0.9;
lambda_ss=0.21; lambdastar_ss=0.7; rho=0.8;
//phipi_f=1.69;
//phiy_f=0.125;
//rhor_f=0.96;
model;
//-------------flexible model-----------------------
cnat^sigma*Nnat^phi=wnat;
cnat_f^sigma*Nnat_f^phi=wnat_f;
Ynat=A*Nnat;
Ynat_f=A_f*Nnat_f;
Qnat=cnat_f^(-sigma)/(cnat^(-sigma));
wnat=phnat*A*(eps-1)/eps;
wnat_f=pfnat_f*A_f*(eps-1)/eps;
Ynat=(1-alpha)*phnat^(-eta)*cnat+alpha*Qnat*phnat^(-eta)*cnat_f;
Ynat_f=(1-alpha)*pfnat_f^(-eta)*cnat_f+alpha*Qnat*pfnat_f^(-eta)*cnat;
(1-alpha)*phnat^(1-eta)+alpha*Qnat*pfnat_f^(1-eta)=1;
(1-alpha)*pfnat_f^(1-eta)+alpha*(phnat/Qnat)^(1-eta)=1;
ynat=(Ynat-steady_state(Ynat))/steady_state(Ynat);
ynatstar=(Ynat_f-steady_state(Ynat_f))/steady_state(Ynat_f);
log(A/steady_state(A))=rhoa*log(A(-1)/steady_state(A))+epsa;
log(A_f/steady_state(A_f))=rhoa*log(A_f(-1)/steady_state(A_f))+epsa_f;
//--------------sticky model-------------------------
//consume equation
-sigma*(c(+1)-c)=pi(+1)-r;
-sigma*(cstar(+1)-cstar)=pistar(+1)-rstar;
//labor supply equation
phi*n+sigma*c=w;
phi*nstar+sigma*cstar=wstar;
//moneny
//pcp inflation
pi_h_p=beta*pi_h_p(+1)+((1-theta)*(1-beta*theta)/theta)*mc;
pi_fstar_p=beta*pi_fstar_p(+1)+((1-theta)*(1-beta*theta)/theta)*mcstar;
//lcp inflation
pi_h_l=beta*pi_h_l(+1)+((1-theta)*(1-beta*theta)/theta)*mc;
pi_hstar_l=beta*pi_hstar_l(+1)+((1-theta)*(1-beta*theta)/theta)*(mc-q);
pi_fstar_l=beta*pi_fstar_l(+1)+((1-theta)*(1-beta*theta)/theta)*mcstar;
pi_f_l=beta*pi_f_l(+1)+((1-theta)*(1-beta*theta)/theta)*(mcstar+q);
//marginal cost
mc=w-a;
mcstar=wstar-astar;
//price setting mod
lambda=-rho*q;
lambdastar=rho*q;
//international risk share
sigma*(c-cstar)=m+(1-2*alpha)*s;
//pcp output
y_p=y+alpha*delta*(1-lambda)*m;
y_pstar=ystar-alpha*delta*(1-lambdastar)*mstar;
//lcp output
y_l=y-alpha*delta*lambda*m;
y_lstar=ystar+alpha*delta*lambdastar*mstar;
//total output
y=(1-alpha)*c+alpha*cstar+2*alpha*(1-alpha)*eta*s;
ystar=(1-alpha)*cstar+alpha*c-2*alpha*(1-alpha)*eta*sstar;
//labor demond
y=n+a;
ystar=nstar+astar;
//Taylor Rule
r=rhor*r(-1)+(1-rhor)*(phiy*(y-ynat)+phipi*pi)+epsr;
rstar=rhor*rstar(-1)+(1-rhor)*(phiy*(ystar-ynatstar)+phipi*pistar)+epsr_f;
//productivity
a=rhoa*a(-1)+epsa;
astar=rhoa*a(-1)+epsa_f;
//
pi_h_p=-alpha*(s-s(-1))+pi;
pi_fstar_p=alpha*(s-s(-1))+pistar;
pi_h_l=-alpha*(s-s(-1))+pi;
pi_hstar_l=alpha*(s-s(-1))+pistar;
pi_f_l=-alpha*(s-s(-1))+pi;
pi_fstar_l=alpha*(s-s(-1))+pistar;
end;
steady_state_model;
//-----------flexible model----------------
wnat = (eps-1)/eps;
wnat_f = wnat;
cnat = ((eps-1)/eps)^(1/(sigma+phi));
cnat_f = cnat;
Nnat = ((eps-1)/eps)^(1/(sigma+phi));
Nnat_f = Nnat;
Ynat = ((eps-1)/eps)^(1/(sigma+phi));
Ynat_f = Ynat;
Qnat = 1;
phnat = 1;
pfnat_f = phnat;
ynat=0;
ynatstar=0;
A=1;
A_f=1;
//----------sticky model-------------------
c=0;
cstar=0;
r=0;
rstar=0;
pi=0;
pistar=0;
psi=0;
psistar=0;
n=0;
nstar=0;
w=0;
wstar=0;
m=0;
mstar=0;
lambda=0;
lambdastar=0;
mc=0;
mcstar=0;
y=0;
ystar=0;
y_p=0;
y_pstar=0;
y_l=0;
y_lstar=0;
a=0;
astar=0;
pi_h_p=0;
pi_fstar_p=0;
v_h_p=0;
v_fstar_p=0;
pi_h_l=0;
pi_hstar_l=0;
pi_f_l=0;
pi_fstar_l=0;
q=0;
s=0;
sstar=0;
z=0;
zstar=0;
end;
steady;
shocks;
var epsr_f=0.50;
//var epstau_f=0.1;
end;
stoch_simul(order=1,irf=20,periods=0) y pi pistar;