# Sir,I want to ask you some question.The following is my Dynare code, but it can not run the result, the problem seems to be in the steady state above, can you ask how to solve it

var K I W C L r Q Yi A Z y Pi P phi RZ D RD tau pi e;

varexo epsilon epsilon2;

parameters delta theta beta mu rho rho_r phi_pi rho_1 rho_phi theta_r Re;

delta = 0.06;

theta = 0.5;

beta = 0.99;

mu = 0.5;

rho = 6;

rho_r = 1.5;

phi_pi = 0.9;

rho_phi = 0.9;

theta_r = 0.1;

rho_1 = 0.68;

Re = 1.004;

model;

K(+1) = I + (1 - delta) * K;

W = ((1-theta) / theta) * C / (1 - L);

r = 1/beta * C(+1)/C;

C = C(-1) * beta * (1 - delta + Q);

Yi = A * K^mu * L^(1-mu);

Z = W * L + I;

L = (1 - mu) * Yi/W;

Q = mu * A * K^(mu-1) * L^(1-mu);

y = (Yi^((rho-1)/rho))^(rho/(rho - 1));

Yi = (Pi/P)^(-rho) * y;

P = (Pi^(1-rho))^(1/(1-rho));

D = (1 - phi) * D(-1);

log(phi) = rho_phi * log(phi(-1)) + epsilon;

RD = theta_r * Re + (1 - theta_r) * (1 - phi) * r;

RZ = r + tau/phi;

log(r) = rho_r * log(r(-1)) + phi_pi * log(pi(-1));

pi = P/P(-1);

y = C + I;

log(A) = rho_1 * log(A(-1)) + epsilon2;

e = 6;

end;

initval;

y = 1;

Yi = 1;

Pi = 1;

C = 0.8;

L = 0.3;

P = 1;

W = 1.5;

r = 1/99;

A = 1;

K = 10/3;

I = 0.2;

Z = W * L + I;

D = 1;

phi = 1; % 提供ln(phi)的初始值

RD = theta_r * Re + (1 - theta_r) * (1 - phi) * r;

RZ = r + tau/phi;

tau = (RZ - r) * phi;

pi = 1; % 提供ln(pi)的初始值

epsilon = 0;

epsilon2 = 0;

end;

check;

shocks;

var epsilon;

periods 1:9;

values 0.05;

end;

check;

model_diagnostics;

stoch_simul(order = 1,irf = 40);

You need to correct your model. For example,

``````log(r) = rho_r * log(r(-1)) + phi_pi * log(pi(-1));

pi = P/P(-1);
``````

are inconsistent with `r=1/beta` from the Euler equation. Also, the last equation implies a unit root in the price level, meaning there are infinitely many steady states.

Sir，I have corrected the last part of the code, but there is a problem in the steady-state solution part, so that the result is still not obtained.In particular, there is a contradiction when manually solving the equilibrium solution, but the same method can be obtained and operated normally from other journals, phi variables and D variables.

``````var K I W C L r Q Yi A Z y Pi P phi RZ D RD tau pi B SLF NA SR;

varexo epsilon epsilon2 epsilonR;

parameters delta theta beta mu rho rho_r phi_pi rho_1 rho_phi theta_r Re rho_s r_ss gamma_R gamma_pi gamma_y pi_ss y_ss SR_ss;

delta = 0.06;

theta = 0.5;

beta = 0.99;

mu = 0.5;

rho = 6;

rho_r = 1.5;

phi_pi = 0.9;

rho_phi = 0.9;

theta_r = 0.1;

rho_1 = 0.68;

Re = 1.004;

gamma_R = 0.8;

gamma_pi = 1.5;

gamma_y = 0.5;

rho_s = 0.9;

r_ss = 0.0315;

pi_ss = 0.9263;

y_ss = 0.0737;

SR_ss = 0.0466;

model;

K(+1) = I + (1 - delta) * K;

W = ((1-theta) / theta) * C / (1 - L);

r = 1/beta * C(+1)/C;

C = C(-1) * beta * (1 - delta + Q);

Yi = A * K^mu * L^(1-mu);

Z = W * L + I;

L = (1 - mu) * Yi/W;

Q = mu * A * K^(mu-1) * L^(1-mu);

y = (Yi^((rho-1)/rho))^(rho/(rho - 1));

Yi = (Pi/P)^(-rho) * y;

P = (Pi^(1-rho))^(1/(1-rho));

B = (1 - theta_r) * D + SLF - Z;

D = (1 - phi) * D(-1);

phi = B/D;

log(phi) = rho_phi * log(phi(-1)) + epsilon;

RD = theta_r * Re + (1 - theta_r) * (1 - phi) * r;

RZ = r + tau/phi;

SLF = B + theta_r * D - NA;

r = r_ss * (r(-1)/r_ss)^(gamma_R) * ((pi/pi_ss)^gamma_pi * (y/y_ss)^gamma_y)^(1-gamma_R) * SR;

log(SR) = (1 - rho_s) * log(SR_ss) + rho_s * log(SR(-1)) + epsilonR;

pi = P/P(-1);

y = C + I + Z * tau/phi;

log(A) = rho_1 * log(A(-1)) + epsilon2;

end;

initval;

y = 1;

Yi = 1;

Pi = 1;

C = 29/62;

P = 1;

Q = 31/100;

W = 25/31;

r = 1.25;

A = 1;

K = 50/31;

I = 3/31;

Z = W * L + I;

D = 1;

phi = 1;

RD = theta_r * Re + (1 - theta_r) * (1 - phi) * r;

RZ = r + tau/phi;

SLF = B + theta_r * D - NA;

tau = (RZ - r) * phi;

pi =1;

epsilon = 0;

epsilon2 = 0;

epsilonR = 0;

end;

check;

shocks;

var epsilon;

periods 1:9;

values 0.05;

end;

check;

model_diagnostics;

stoch_simul(order = 1,irf = 40);
``````

Are you sure that the steady state values you set in the Taylor rule are the correct ones?