Saving simulated data in transition periods

Hi,

I want to save simulated data for "Y ,C ,Iit, Iitn ,N ,Kit, Kitn " both in transition periods and steady states . After running the code below I receive error :

Index exceeds matrix dimensions.

Error in dynasave (line 49)
eval([var_list(1,:slight_smile: ‘=oo_.endo_simul(ivar(1),:)’’;’])

Error in my4 (line 248)
dynasave(‘my4data’,var_list_);

Error in dynare (line 180)
evalin(‘base’,fname) ;

My code is :

var Y C Iit Iitn N Kit Kitn psi A V lam1 lam2 lam3 s3 s2 s1;
varexo ea eit ewit ep;

parameters alpha1 alpha2 beta eta a v b gamma deltait deltaitn rhop sea seit sewit sep;
alpha1 = 0.11;
alpha2=0.13;
deltait = 0.315;
deltaitn=0.056;
rhop=0.95;
beta = 0.99;
b = 0.8;
gamma = 0.3;
a = 0.0362;
v=-0.1732;
eta = 1;
sea=.99;
seit=.66;
sewit=0.33;
sep=.0015;

model;

%wrt C
exp(lam1)= (exp©-bexp(C(-1)))^(-1)-betab*(exp(C(+1))-b*exp©)^(-1);

%wrt N
exp(psi)*exp(N)^(1/eta)= exp(lam1)exp(A)exp(Kit(-1))^alpha1exp(Kitn(-1))^alpha2(1-alpha1-alpha2)*exp(N)^(-alpha1-alpha2);

%wrt Kit(t+1)
exp(lam2)=beta*(exp(lam1(+1))exp(A(+1))alpha1(exp(Kit)^(alpha1-1))(exp(Kitn)^alpha2)exp(N(+1))^(1-alpha1-alpha2)+exp(lam2(+1))(1-deltait)((exp(V(+1)))^-1)(exp(A(+1)+alpha1*V(+1))/(1-alpha1-alpha2))^-1);

%wrt Kitn(t+1)
exp(lam3)=beta*(exp(lam1(+1))exp(A(+1))alpha2(exp(Kitn)^(alpha2-1))(exp(Kit)^alpha1)exp(N(+1))^(1-alpha1-alpha2)+exp(lam3(+1))(1-deltaitn)(exp(A(+1)+alpha1V(+1))/(1-alpha1-alpha2))^-1);

%wrt Iit(t)
exp(lam1)= exp(lam2)((exp(A+alpha1V)/(1-alpha1-alpha2))^-1)(1-gamma/2exp(Iit)/exp(Iit(-1))(exp(A+alpha1V)/(1-alpha1-alpha2))^-1)^2 + gamma*(1-gamma/2exp(Iit)/exp(Iit(-1))((exp(A+alpha1V)/(1-alpha1-alpha2))^-1)exp(Iit)/exp(Iit(-1))((exp(A+alpha1V)/(1-alpha1-alpha2))^-1)+betagamma((exp(A(+1)+alpha1V(+1))/(1-alpha1-alpha2))^-1))exp(lam2(+1))(exp(Iit(+1)))/exp(Iit)^2(1-gamma/2exp(Iit(+1))/exp(Iit))((exp(A(+1)+alpha1*V(+1))/(1-alpha1-alpha2))^-1);

%wrt Iitn(t)
exp(lam1)= exp(lam3)((exp(A+alpha1V)/(1-alpha1-alpha2))^-1)(1-gamma/2exp(Iitn)/exp(Iitn(-1))(exp(A+alpha1V)/(1-alpha1-alpha2))^-1)^2 + gamma*(1-gamma/2exp(Iitn)/exp(Iit(-1))((exp(A+alpha1V)/(1-alpha1-alpha2))^-1)exp(Iitn)/exp(Iitn(-1))((exp(A+alpha1V)/(1-alpha1-alpha2))^-1)+betagamma((exp(A(+1)+alpha1V(+1))/(1-alpha1-alpha2))^-1))exp(lam3(+1))(exp(Iitn(+1)))/exp(Iitn)^2(1-gamma/2exp(Iitn(+1))/exp(Iitn))((exp(A(+1)+alpha1*V(+1))/(1-alpha1-alpha2))^-1);

% resource contraint
exp(Y)=exp©+exp(Iit)+exp(Iitn);

%Accumulation equation
exp(Kit)=(1-gamma/2*(exp(Iit)/exp(Iit(-1)))((exp(A+alpha1V)/(1-alpha1-alpha2))^-1))^2exp(Iit)((exp(A+alpha1V))^-1)+(1-deltait)exp(Kit(-1))((exp(A+alpha1V)/(1-alpha1-alpha2))^-1)*(exp(V))^-1;

%Accumulation equation
exp(Kitn)=(1-gamma/2*(exp(Iitn)/exp(Iitn(-1)))((exp(A+alpha1V)/(1-alpha1-alpha2))^-1))^2exp(Iitn)((exp(A+alpha1V)/(1-alpha1-alpha2))^-1)+(1-deltaitn)exp(Kitn(-1))(exp(A+alpha1V)/(1-alpha1-alpha2))^-1;

%production function
exp(Y)= exp(A)exp(Kit(-1))^alpha1exp(Kitn(-1))^alpha2*exp(N)^(1-alpha1-alpha2);

% (11) Preference shock
psi = rhop*psi(-1) + ep;

%neutral technology
A=a+ea;

%news tech
V=v+eit+s3(-1);

s1=ewit;
s2=s1(-1);
s3=s2(-1);

end;

initval;
Kit=log(2);
Kitn=log(2);
C=log(2);
Y=log(3);
N=log(0.5);
Iit=log(0.25);
Iitn=log(.25);
psi=1;
lam1=0;
lam2=0;
lam3=0;

end;

shocks;
var ea=sea^2;
var eit=seit^2;
var ewit=sewit^2;
var ep=sep^2;
end;

steady;
check;

stoch_simul(order=1,irf=20,nograph);

dynasave (my4data);

Thanks

The unstable version says:

To save simulated variables, you need to simulate them first. The is done by setting