# RMT chapter 11. Growth

I have a question.
I want to replicate chapter 11.11 Growth RMT RMT4_ch11.pdf (540.8 KB)

So I tried to succeed to making code, but it’s failure.
Could you help me?

%-----------------------------------------------------------------------------------------------
% Experiment : Permenant increase in mu at t=10
% Note:Following the discussion in the text t = 0 is the first period of the new (simulated) path
%-----------------------------------------------------------------------------------------------

// This program replicates figure 11.11.1 from chapter 11 of RMT3 by Ljungqvist and Sargent

// Dynare records the endogenous variables with the following convention.
//Say N is the number of simulations(sample)
//Index 1 : Initial values (steady sate)
//Index 2 to N+1 : N simulated values
//Index N+2 : Terminal Value (Steady State)
// Warning: we align c, k, and the taxes to exploit the dynare syntax.
//In Dynare the timing of the variable reflects the date when the variable is decided.
//For instance the capital stock for time ‘t’ is decided in time ‘t-1’(end of period).
//So a statement like k(t+1) = i(t) + (1-del)*k(t) would translate to
// k(t) = i(t) +(1-del)*k(t-1) in the code.

%-----------------------------------------------------------------------------------------------
% 1. Defining variables
%-----------------------------------------------------------------------------------------------

@#define simulation_periods=100

// Declares the endogenous variables consumption (‘c’) capital stock (‘k’) total factor productivity (‘A’);
var c k A;

// declares the exogenous variables consumption tax (‘tauc’),
// capital tax(‘tauk’), government spending(‘g’), growth rate of productivity (‘mu’)
varexo tauc tauk g mu;

parameters bet gam del alpha;

%-----------------------------------------------------------------------------------------------
% 2. Calibration and alignment convention
%-----------------------------------------------------------------------------------------------

bet=.95; // discount factor
gam=2; // CRRA parameter
del=.2; // depreciation rate
alpha=.33; // capital’s share

// Alignment convention:
// g tauc tauk are now columns of ex_. Because of a bad design decision the date of ex_(1,
// doesn’t necessarily match the date in endogenous variables. Whether they match depends on
// the number of lag periods in endogenous versus exogenous variables.

// These decisions and the timing conventions mean that
// k(1) records the initial steady state, while k(102) records the terminal steady state values.
// For j > 1, k(j) records the variables for j-1th simulation where the capital stock decision
// taken in j-1th simulation i.e stock at the beginning of period j.
// The variable ex_ also follows a different timing convention i.e
// ex_(j, records the value of exogenous variables in the jth simulation.
// The jump in the government policy is reflected in ex_(11,1) for instance.

%-----------------------------------------------------------------------------------------------
% 3. Model
%-----------------------------------------------------------------------------------------------

model;

// equation 11.11.2
A=1*(1+mu)^(@{simulation_periods}+1);

// equation 11.11.4
k=(A*k(-1)^alpha+(1-del)*k(-1)-c-g)/mu;

// equation 11.11.6
c^(-gam)= bet*(c(+1)^(-gam)mu^(-gam))((1+tauc)/(1+tauc(+1)))((1-del) + (1-tauk(+1))alphaAk^(alpha-1));

end;

%-----------------------------------------------------------------------------------------------
% 4. Computation
%-----------------------------------------------------------------------------------------------

initval;
k=1.5;
c=0.6;
g = .2;
tauc = 0;
tauk = 0;
mu=0.02;
A=1*(1+mu)^0;
end;
// put this in if you want to start from the initial steady state,comment it out to start
// from the indicated values

// The following values determine the new steady state after the shocks.
endval;
k=1.5;
c=0.6;
g =.4;
tauc =0;
tauk =0;
mu=0.025;
A=1*(1+mu)^(@{simulation_periods}+1);
end;

// We use ‘steady’ again and the endval provided are initial guesses for dynare to compute the ss.

// The following lines produce a g sequence with a once and for all jump in g
// we use ‘shocks’ to undo that for the first 10 periods (t=0 until t=9)and leave g at
// it’s initial value of 0
// Note : period j refers to the value in the jth simulation

shocks;
var mu;
periods 1:10;
values 0.02;
end;

// now solve the model
simul(periods=100);

// Compute the initial steady state for consumption to later do the plots.
c0=c(1);
k0 = k(1);
// g is in ex_(:,1) since it is stored in alphabetical order
g0 = ex0_(3)
A0=1;

%-----------------------------------------------------------------------------------------------
% 5. Graphs and plots for other endogenous variables
%-----------------------------------------------------------------------------------------------

// Let N be the periods to plot
N=40;

// The following equation compute the other endogenous variables use in the plots below
// Since they are function of capital and consumption, so we can compute them from the solved
// model above.
// These equations were taken from page 371 of RMT3
rbig0=1/bet;
rbig=c(2:101).^(-gam)./(betc(3:102).^(-gam));
nq0=alpha
A0k0^(alpha-1);
nq=alpha
A(1:100).k(1:100).^(alpha-1);
wq0=A0
k0^alpha-k0alphaA0*k0^(alpha-1);
wq=A(1:100).*k(1:100).^alpha-k(1:100).*alpha.*A(1:100).*k(1:100).^(alpha-1);

// Now we plot the responses of the endogenous variables to the shock.
x=0:N-1;
figure(1)

// subplot for capital ‘k’
subplot(2,3,1)
plot(x,[k0*ones(N,1)],’–k’, x,k(1:N),‘k’,‘LineWidth’,1.5)
// note the timing: we lag capital to correct for syntax
title(‘k’,‘Fontsize’,12)
set(gca,‘Fontsize’,12)

// subplot for consumption ‘c’
subplot(2,3,2)
plot(x,[c0*ones(N,1)],’–k’, x,c(2:N+1),‘k’,‘LineWidth’,1.5)
title(‘c’,‘Fontsize’,12)
set(gca,‘Fontsize’,12)

// subplot for cost of capital ‘R_bar’
subplot(2,3,3)
plot(x,[rbig0*ones(N,1)],’–k’, x,rbig(1:N),‘k’,‘LineWidth’,1.5)
title(’\overline{R}’,‘interpreter’, ‘latex’,‘Fontsize’,12)
set(gca,‘Fontsize’,12)

// subplot for rental rate ‘eta’
subplot(2,3,4)
plot(x,[nq0*ones(N,1)],’–k’, x,nq(1:N),‘k’,‘LineWidth’,1.5)
title(’\eta’,‘Fontsize’,12)
set(gca,‘Fontsize’,12)

// subplot for the experiment proposed
subplot(2,3,5)
plot([0:9],1 + oo_.exo_simul(1:10,4),‘k’,‘LineWidth’,1.5);
hold on;
plot([10:N-1],1 + oo_.exo_simul(11:N,4),‘k’,‘LineWidth’,1.5);
hold on;
plot(x,[g0*ones(N,1)],’–k’,‘LineWidth’,1.5)
title(‘mu’,‘Fontsize’,12)
axis([0 N -.1 .5])
set(gca,‘Fontsize’,12)

print -depsc fig_g.eps

prac1.mod (6.4 KB)

I don’t know what to modify.

You need to come up with a sensible terminal condition. Is it on purpose that you do not want to end in a steady state?

But I’m confused.
If I input ‘steady;’, it’s error.
Figv3_1161.mod (6.2 KB)
I just want to put ‘A=1.02^n’ not ‘A=1’ in above .mod file like chapter 11.11 Growth.

If I use matlab, I could enter the code as follows.

N = 40;
A0 = 1;
A_growth = 1.02;

At_evol = A0 * A_growth .^ (0:(N-1));

for i = 1 : N
At = At_evol(i);
end

Then, how to express dynare format?
I thought my format is wrong.

@#define simulation_periods=100
simul(periods=100);

I added the first line as above, but it’s redundant.
How to change from ‘A=1’ to ‘A=1.02^n’

Oh dear professor
I review my code.

With best wishes.

Sorry, but I don’t understand the current state of your problem. You are using a perfect foresight solver. For that, you need to specify an initial condition and a terminal condition. I infer from your above post that you want to provide a path for TFP. The issue above was that while you provided an initial condition for A, you kept the value for k the same. That makes no sense. Now you uploaded some pictures, but you do not describe what the issue is.