Open Economy Model

I am trying to run USG 2003 model in JIE, the one JPfeiffer has coded, but with cobb-douglas preferences instead of GHH. It is not working. Any tips?

// Standard Open Economy DSGE Model
// Based on Uribe and Schmitt-Grohé chapter 4
// by Carlos Goncalves

var c, w, u_c, k, d, h, r, A, y, ca, i, tb, tb_y, ca_y;
varexo eps_A;

parameters beta, alpha, delta, sigma, phi, rstar, psi, rho_A, sigma_A, d_bar, gama;

// Parameter values
beta  = 0.99;    // Discount factor
alpha = 0.32;    // Capital share
gama = 0.35;
delta = 0.025;     // Depreciation rate
sigma = 2;       // Risk aversion
phi   = 0;     // Capital adjustment cost parameter
rstar = (1/beta)-1;    // International interest rate
psi   = 0.01;   // Debt elasticity parameter
rho_A = 0.4;    // Productivity persistence
sigma_A = 0.01;  // Productivity shock std
d_bar = 0.1;     // Steady state debt level

model;

// MgU of consumption = shadow price 
u_c=gama*(c^(-1))*((c^gama)*(1-h)^(1-gama))^((1-sigma*(1-sigma))/(1-sigma));

// Choosing debt gives Euler
u_c = beta*(1+r(+1))*u_c(+1);

// But you can also save in capital, choosing K 
u_c = beta*u_c(+1)*(alpha*A(+1)*k(0)^(alpha-1)*h(+1)^(1-alpha));

// Investment including 
i = k - (1-delta)*k(-1);

// MgDisutility of labor = MbBenefit earning more and thus consume

w = (c/(1-h))*(1-gama)/gama;

// demand for labor from firms

w= (1-alpha)*A*(k(-1)^alpha)*h^(-alpha);

// Production function

y = A*(k(-1)^alpha)*(h^(1-alpha));

// Budget constraint : to increase capital by i, you have to spend i+adj.costs

d = c + (i) + (1+r)*d(-1) - y;

// interest rate (debt-elastic around d_bar)
r(+1) = rstar + psi*(exp(d-d_bar) - 1);

// current account and trade balance-- definition

ca=-d+d(-1);

tb-r*d = ca;

tb_y=tb/y;

ca_y = ca/y;

// Productivity process
log(A) = rho_A*log(A(-1)) + eps_A;

end;

initval;
A = 1;
h = .3;
k = 10;
y = 1.2;
i = 0.3;
d = d_bar;
r = rstar;
c = .85;
ca=0; 
tb=0.025;
end;

steady;  

shocks;
var eps_A; stderr sigma_A;
end;

stoch_simul(order=1,irf=10, periods=2000);

I can only give you the standard advice: compute the steady state analytically. That should be feasible for this model.