I am having a lot of problems with my own model and would like to ask your advice

First, because my equations did not match the number of variables, I chose several equations or the same equations to fill in.

Secondly, I calculated the steady state of this model first

Finally, the problem is that there is an error in the generalized Schur (QZ) decomposition of the model. I would like to ask you how to solve it. Thank you very much.

Here are my mistakes：

The generalized Schur (QZ) decomposition failed. For more information, see the documentation for Lapack function dgges: info=30, n=5. You can also run

print_info(info, 0, options);

oo_.dr.eigval = check(M_,options_,oo_);

evalin(‘base’,[fname ‘.driver’]);

``````var W C P L r Y A K Q I Z y YN YF M m M1 phi RB RZ RS pi tau;

varexo epsilon;

parameters theta beta mu delta pai rho theta_r rho_phi Re rho_r phi_pi e;

theta = 0.5;

beta = 0.99;

mu = 0.5;

delta = 0.025;

pai = 0.5;

rho = 4.6;

theta_r = 0.1;

rho_phi = 0.9;

Re = 1.004;

rho_r = 1.5;

phi_pi = 0.9;

e = 6;

model;

W = ((1-theta) / theta) * C * P / (1 - L);

P = W * (1 - L) * theta/(C * (1 - theta));

r = 1/beta * C(+1)/C * P(+1)/P - 1;

Y = A * K^mu * L^(1-mu);

L = (1 - mu) * Y/W;

K = mu * Y/Q;

K(+1) = (1 - delta) * K + I;

Z = W * L + I;

W = (1 - mu) * A * K^mu * L^(-mu);

Q = mu * A * K^(mu-1) * L^(1-mu);

y = (pai^(1-rho) * YN^rho + (1-pai)^(1-rho) * YF^rho)^(1/rho);

YN = (M/m)^(1/(rho-1)) * y * pai;

YF = (e * M1 / m)^(1/(rho-1)) * y * (1-pai);

m = (pai * M^(rho/(rho-1)) + (1-pai) * (e * M1)^(rho/(rho-1)))^((rho-1)/rho);

log(phi) = rho_phi * log(phi(-1)) + epsilon;

RB = theta_r * Re + (1 - theta_r) * (1 - phi) * RS;

RZ = RS + tau/phi;

tau = (RZ - RS) * phi;

rho_r =1.5;

phi_pi = 0.9;

pi = P/P(-1);

y = C + I + tau * Z/phi;

e = 6;

end;

initval;

y = 0.8;

Y = 1;

YN = 0.4;

YF = 0.4;

C = 0.15;

L = 1/3;

P = 20/3;

W = 1.5;

r = 1/99;

A = 1;

K = 3;

I = 0.075;

Z = W * L + I;

Q = 1/6;

M = 1;

m = 1;

M1 = 1/6;

phi = 1; % 提供ln(phi)的初始值

RB = 0.1004;

RZ = 1;

RS = 0;

tau = 1;

pi = 1; % 提供ln(pi)的初始值

epsilon = 0;

end;

check;

shocks;

var epsilon;

stderr 0.1;

end;

stoch_simul(order = 1,periods=100);
``````

You need to find the correct equations. You cannot complete the model by adding parameter declarations.