In ``Deficits and Inflation: HANK meets FTPL,´´ Angeletos,
Lian and Wolf derive a model for inflation (\pi), output
(y), and government debt (d), that has the following structure:
(1) \mathbb{E}_{t}\{d_{t+1}\}=a_{0}(d_{t}+\varepsilon_{t})+a_{1}y_{t}
(2) \mathbb{E}_{t}\{y_{t+1}\}=b_{0}(d_{t}+\varepsilon_{t})+b_{1}y_{t}
(3) \pi_{t}=\kappa y_{t}+\beta\mathbb{E}_{t}\{\pi_{t+1}\}
where \{\varepsilon_{t}\}\sim IID(0,\sigma_{\varepsilon}^{2}) and d_{0}=c\,\pi_{0}.
Notice that government debt has an endogenous initial condition,
d_{0}=c\,\pi_{0}.
My problem is that I don’t know how to introduce the initial condition for d in a Dynare code. Any help would be greatly appreciated.
My initial mod file, which doesn’t deal appropriately with the initial condition, is the following:
// Declare variables
var y pi d;
// Declare exogenous variables
varexo eps;
// Declare parameters
parameters beta sigma omega kappa Dss_Yss tauy taud phi a0 a1 b0 b1 c;
// Calibrate parameters
beta = 0.998;
sigma = 1;
omega = 0.8016;
kappa = 0.1275;
Dss_Yss = 1.79;
tauy = 0.33;
taud = 0;
phi = 0.1;
// Define intermediate parameters (for readability)
a0 = (1 - taud) / beta;
a1 = - (tauy - beta * phi * Dss_Yss) / beta;
b0 = - (1 - beta * omega) * (1 - omega) * (1 - taud) / (beta * omega);
b1 = (1 + sigma * phi + (1 - beta * omega) * (1 - omega) * (tauy - beta * phi * Dss_Yss) / (beta * omega));
c = -Dss_Yss;
// Model equations
model;
d(+1) = a0 * (d + eps) + a1 * y;
y(+1) = b0 * (d + eps) + b1 * y;
pi = kappa * y + beta * pi(+1);
end;
// Initial values for variables
initval;
y = 0;
pi = 0;
d = c * pi;
eps = 0;
end;
// Define shocks
shocks;
var eps; stderr 1;
end;
// Run simulations
stoch_simul(order=1, irf=10) d y pi;
Additional comments
Equation (1) comes from
(1’) d_{t+1}=a_{0}(d_{t}+\varepsilon_{t})+a_{1}y_{t}+a_{2}\left(\pi_{t+1}-\mathbb{E}_{t}\{\pi_{t+1}\}\right)
In my code I used equation (1) instead of (1’) because I’m not sure how to include the latter (if needed).
I know from Proposition 5 in the paper that, under some restrictions
on the parameter values, there is a bounded solution that takes the form
\mathbb{E}_{t}\{d_{t+1}\}=\rho_{d}(d_{t}+\varepsilon_{t})
y_{t}=\chi(d_{t}+\varepsilon_{t})
\pi_{t}=g(d_{t}+\varepsilon_{t})
where d_{0}=v\,\varepsilon_{0}, and the coefficients v, g, \chi>0, and \rho_{d}\in(0,1) can be expressed in closed form. For government debt we get d_{t+1}=\rho_{d}(d_{t}+\varepsilon_{t})+v\,\varepsilon_{t+1}.