# How can I solve this problem

``````var y inv k lab r w c;
predetermined_variables k;
varexo z;
parameters cbeta cdelta calpha ca;
cbeta = .99;
cdelta = .025;
calpha = .33;
ca = 1;
model;
1/c = cbeta * 1/c(+1) * (1 + r(+1) - cdelta);
ca / (1-lab) = w/c;
c = w*lab + (1 - r-cdelta)*k - k(+1);
r = exp(z) * (lab/k)^(1-calpha);
w = exp(z) * (k/lab)^calpha;
y = exp(z) * k^calpha * lab^(1-calpha);
inv = y - c;
end;
initval;
k = 9;
c = 0.7;
lab = 0.3;
w = 2;
r = 0;
z = 0;
end;
shocks;
var z;
periods 1:9;
values 0.1;
end;
simul(periods=2000);
``````
``````dynare model
Starting Dynare (version 5.4).
Calling Dynare with arguments: none
Starting preprocessing of the model file ...
WARNING: model.mod:39.1-20: The 'simul' statement is deprecated. Please use 'perfect_foresight_setup' and 'perfect_foresight_solver' instead.
Found 7 equation(s).
Evaluating expressions...done
Computing static model derivatives (order 1).
Computing dynamic model derivatives (order 1).
Processing outputs ...
done
Preprocessing completed.

Residuals of the static equations:

Equation number 1 : 0.0063262 : 1
Equation number 2 : 0.0014634 : 2
Equation number 3 : 0.007382 : c
Equation number 4 : -0.024788 : r
Equation number 5 : 0.017565 : w
Equation number 6 : -3.9929 : y
Equation number 7 : 0.01073 : inv

Impossible to find the steady state (the sum of square residuals of the static equations is 15.9443). Either the model doesn't have a steady state, there are an
infinity of steady states, or the guess values are too far from the solution

print_info(info,options_.noprint, options_);

``````c = w*lab + (1 -cdelta)*k - k(+1);