Graphs Produced by identification

I execute the ‘identification’ command in my DSGE code

code.m (6.1 KB)
, and get the identification results and graph
identification.fig (44.7 KB)
. However, I cannot know whether it is right. Could you help me? Thanks a lot.
Starting Dynare (version 5.1).
Calling Dynare with arguments: none
Starting preprocessing of the model file …
Found 67 equation(s).
Evaluating expressions…done
Computing static model derivatives (order 2).
Computing static model derivatives w.r.t. parameters (order 2).
Computing dynamic model derivatives (order 2).
Computing dynamic model derivatives w.r.t. parameters (order 2).
Processing outputs …
done
Preprocessing completed.

Residuals of the static equations:

Equation number 1 : 0.38238 : 1
Equation number 2 : 0.12019 : k
Equation number 3 : -0.022897 : 3
Equation number 4 : 8.2033e-07 : 4
Equation number 5 : -0.13811 : c_d
Equation number 6 : 0.2099 : c_f
Equation number 7 : -0.021274 : 7
Equation number 8 : -2.5021e-05 : 8
Equation number 9 : 2.0375e-07 : h_y
Equation number 10 : -7.1857e-07 : m
Equation number 11 : 2.3767e-07 : mc
Equation number 12 : 1e-05 : 12
Equation number 13 : 0.14746 : x1
Equation number 14 : 0.12288 : x2
Equation number 15 : -9.4889e-07 : p_d
Equation number 16 : 5.4069e-06 : s
Equation number 17 : -6.7042e-08 : y
Equation number 18 : 0.025223 : m_d
Equation number 19 : -0.015438 : m_f
Equation number 20 : -0.0016729 : p_m
Equation number 21 : 4.0794e-07 : 21
Equation number 22 : 0 : h_m
Equation number 23 : -3.8562e-06 : 23
Equation number 24 : 2.927e-07 : p_f
Equation number 25 : -6.9222e-07 : p_mf
Equation number 26 : 0.05052 : 26
Equation number 27 : -0.22716 : kf
Equation number 28 : 0.0015053 : 28
Equation number 29 : -4.4101e-07 : 29
Equation number 30 : 0.56156 : cf_d
Equation number 31 : -0.39048 : cf_f
Equation number 32 : -0.029789 : 32
Equation number 33 : -4.8676e-05 : 33
Equation number 34 : 2.5822e-07 : laf_y
Equation number 35 : 1.0512e-07 : mf_d
Equation number 36 : -1.1479e-07 : mcf
Equation number 37 : -1e-05 : 37
Equation number 38 : 4.3692e-05 : x1f
Equation number 39 : 4.4666e-05 : x2f
Equation number 40 : -1.6013e-06 : pf_d
Equation number 41 : 9.949e-06 : sf
Equation number 42 : 1.8767e-06 : yf
Equation number 43 : -1.1763e-07 : mf
Equation number 44 : 0 : laf_m
Equation number 45 : -1e-07 : h
Equation number 46 : 0.19336 : 46
Equation number 47 : 0.22916 : d
Equation number 48 : 7e-08 : laf
Equation number 49 : 2.0069e-06 : 49
Equation number 50 : -3e-07 : 50
Equation number 51 : -5.3255e-06 : 51
Equation number 52 : 6e-06 : GDP
Equation number 53 : 6.7076e-06 : 53
Equation number 54 : 0 : GDPf
Equation number 55 : 0 : 55
Equation number 56 : 0 : 56
Equation number 57 : 0 : 57
Equation number 58 : 0 : log_m_f
Equation number 59 : 0 : log_h_m
Equation number 60 : 0 : log_GDP
Equation number 61 : 0 : log_laf
Equation number 62 : 0 : log_GDPf
Equation number 63 : 0 : m_f_obs
Equation number 64 : 0 : h_m_obs
Equation number 65 : 0 : GDP_obs
Equation number 66 : 0 : laf_obs
Equation number 67 : 0 : GDPf_obs

STEADY-STATE RESULTS:

c 1.24855
c_d 0.63743
c_f 0.805649
p_d 1.2104
p_f 0.592081
la 0.666945
w 1.29084
Q -0.800926
r_k 0.0826316
i 0.142864
k 4.76214
re 0.734637
mc 0.8334
y 1.16412
h_y 0.428553
m 0.264004
p_m 0.0889313
a 1.03492
x1 3.24173
x2 2.70144
pi 1.00015
p_dstar 1.21096
s 1
m_d 0.0956614
m_f 0.18088
p_md 0.0611613
p_mf 0.097454
a_m 1.03492
h_m 0.00169108
GDP 1.39142
cf 3.14213
laf 0.929881
wf 2.81751
kf 63.3575
i_f 1.26715
Qf -0.318256
rf_k 0.030101
pif 1.00004
cf_d 3.06324
pf_d 0.805951
cf_f 0.408657
pf_f 1.64762
mcf 0.833337
yf 5.44113
laf_y 0.926974
mf_d 0.116215
pf_m 0.132656
pf_dstar 0.806049
x1f 6.72477
x2f 5.60398
sf 1
mf 0.297095
laf_m 0.00290672
GDPf 4.40928
h 0.430244
d 0.354844
v 6e-05
GDP_obs 0
h_m_obs 0
m_f_obs 0
GDPf_obs 0
laf_obs 0
log_m_f -1.70992
log_h_m -6.38239
log_GDP 0.330324
log_laf -0.072699
log_GDPf 1.48371

EIGENVALUES:
Modulus Real Imaginary

   4.491e-15       -4.491e-15                0
    1.25e-06        1.036e-07        1.245e-06
    1.25e-06        1.036e-07       -1.245e-06
   6.752e-06        6.752e-06                0
         0.6              0.6                0
      0.6957           0.6957                0
      0.8669           0.8669                0
      0.8837           0.8837                0
      0.9703           0.9703                0
        1.04             1.04                0
       1.203            1.199          0.09125
       1.203            1.199         -0.09125
       1.347            1.347                0
       1.402            1.402                0
       1.453            1.453                0
        4215             4215                0
   6.663e+05        6.663e+05                0
    8.23e+06        -8.23e+06                0
   9.511e+07        9.511e+07                0
    5.93e+15         5.93e+15                0
   1.843e+16        1.843e+16                0
   1.175e+17       -1.175e+17                0
   1.269e+17        1.269e+17                0
   2.948e+17       -2.948e+17                0
   6.493e+17        6.493e+17                0

There are 16 eigenvalue(s) larger than 1 in modulus
for 16 forward-looking variable(s)

The rank condition is verified.

MODEL_DIAGNOSTICS: No obvious problems with this mod-file were detected.

Residuals of the static equations:

Equation number 1 : 0 : 1
Equation number 2 : 0 : k
Equation number 3 : 0 : 3
Equation number 4 : 0 : 4
Equation number 5 : 0 : c_d
Equation number 6 : 0 : c_f
Equation number 7 : 0 : 7
Equation number 8 : 0 : 8
Equation number 9 : 0 : h_y
Equation number 10 : 0 : m
Equation number 11 : 0 : mc
Equation number 12 : 0 : 12
Equation number 13 : -2.7909e-06 : x1
Equation number 14 : -3.2549e-06 : x2
Equation number 15 : 2.3635e-07 : p_d
Equation number 16 : -1.3856e-06 : s
Equation number 17 : 0 : y
Equation number 18 : 0 : m_d
Equation number 19 : 0 : m_f
Equation number 20 : 0 : p_m
Equation number 21 : 0 : 21
Equation number 22 : 0 : h_m
Equation number 23 : 0 : 23
Equation number 24 : 0 : p_f
Equation number 25 : 0 : p_mf
Equation number 26 : 0 : 26
Equation number 27 : 0 : kf
Equation number 28 : 0 : 28
Equation number 29 : 0 : 29
Equation number 30 : 0 : cf_d
Equation number 31 : 0 : cf_f
Equation number 32 : 0 : 32
Equation number 33 : 0 : 33
Equation number 34 : 0 : laf_y
Equation number 35 : 0 : mf_d
Equation number 36 : 0 : mcf
Equation number 37 : 0 : 37
Equation number 38 : -4.5015e-07 : x1f
Equation number 39 : -5.295e-07 : x2f
Equation number 40 : 0 : pf_d
Equation number 41 : -9.7377e-08 : sf
Equation number 42 : 0 : yf
Equation number 43 : 0 : mf
Equation number 44 : 0 : laf_m
Equation number 45 : 0 : h
Equation number 46 : 0 : 46
Equation number 47 : 0 : d
Equation number 48 : 0 : laf
Equation number 49 : 0 : 49
Equation number 50 : 0 : 50
Equation number 51 : 0 : 51
Equation number 52 : 0 : GDP
Equation number 53 : 0 : 53
Equation number 54 : 0 : GDPf
Equation number 55 : -1.6585e-07 : 55
Equation number 56 : -1.6585e-07 : 56
Equation number 57 : 0 : 57
Equation number 58 : 0 : log_m_f
Equation number 59 : 0 : log_h_m
Equation number 60 : 0 : log_GDP
Equation number 61 : 0 : log_laf
Equation number 62 : 0 : log_GDPf
Equation number 63 : 0 : m_f_obs
Equation number 64 : 0 : h_m_obs
Equation number 65 : 0 : GDP_obs
Equation number 66 : 0 : laf_obs
Equation number 67 : 0 : GDPf_obs

======== Identification Analysis ========

There is only one parameter to study for identitification. The advanced option is re-set to 0.
Testing prior mean

Note that differences in the criteria could be due to numerical settings,
numerical errors or the method used to find problematic parameter sets.
Settings:
Derivation mode for Jacobians: Analytic using sylvester equations
Method to find problematic parameters: Nullspace and multicorrelation coefficients
Normalize Jacobians: Yes
Tolerance level for rank computations: robust
Tolerance level for selecting nonzero columns: 1e-08
Tolerance level for selecting nonzero singular values: 1e-03

REDUCED-FORM:
All parameters are identified in the Jacobian of steady state and reduced-form solution matrices (rank(Tau) is full with tol = robust).

MINIMAL SYSTEM (KOMUNJER AND NG, 2011):
All parameters are identified in the Jacobian of steady state and minimal system (rank(Deltabar) is full with tol = robust).

SPECTRUM (QU AND TKACHENKO, 2012):
All parameters are identified in the Jacobian of mean and spectrum (rank(Gbar) is full with tol = robust).

MOMENTS (ISKREV, 2010):
All parameters are identified in the Jacobian of first two moments (rank(J) is full with tol = robust).

==== Identification analysis completed ====

Total computing time : 0h00m06s

I get a different picture when I run your code:

code_ident_strength_prior_mean.fig (49.3 KB)
That being said, there is no identifcation-problem in the model with respect to the parameter you are investigating.

1 Like

Thank you very much. There may be some problems with my software and computer system. I’ll try again.