Hi,
I’m trying to run this standard NK model for a small open economy.
Dynare answers the BK’s rank condition is not satisfied:
"There are 23 eigenvalue(s) larger than 1 in modulus
for 25 forward-looking variable(s)The rank condition ISN’T verified!"
Can someone help me?
parameters thetah thetaf sigma n beta alphah alphaf tauh tauf ah af phih phif eta gammahpcp gammafpcp ibar pibar ahR ahPI afR afPI delta b rhoC rhoCstar rhoS;
var Yh Yf C Cstar L Lstar Ch Chstar Cf Cfstar Q bf bfstar i istar
ph pf phpcp phlcp pflcp pfstar phstar pfpcpstar phlcpstar pflcpstar
pih pihpcp pihlcp pihlcpstar pifstar pifpcpstar piflcpstar piflcp w wstar pi pistar mkp
x1pcp x2pcp x1lcp x1lcpstar x2lcp x2lcpstar x1fpcp x2fpcp x1flcp x1flcpstar x2flcp x2flcpstar
gammaC gammaCstar gammaS EPSILONS;
varexo epsilonC epsilonCstar epsilonS gammaI gammaIstar;
n = 0.05;
beta = 0.99;
delta = 0.01;
b = 117.486685;
op = 0.3;
ah = 0.715; //1-(1-n)*op
af = 0.715; //1-(1-n)*op
eta = 2;
sigma = 1.1;
alphah = 0.6;
alphaf = 0.6;
thetah = 7;
thetaf = 7;
tauh = 1/(1-thetah);
tauf = 1/(1-thetaf);
phih = 0.75;
phif = 0.75;
gammahpcp = 0.4;
gammafpcp = 0.4;
ahR = 0.7;
ahPI = 1.5;
afR = 0.7;
afPI = 1.5;
ibar = 0.010101;
pibar = 1;
rhoC = 0.9;
rhoCstar = 0.9;
rhoS = 0.9;
initval;
Yh = 0.991727466;
Yf = 0.991727466;
C = 2.166593153;
Cstar = 0.20442523;
L = 0.991727466;
Lstar = 0.991727466;
Ch = 0.828855014;
Chstar = 0.008572234;
Cf = 8.424094644;
Cfstar = 0.548354064;
Q = 0.178824091;
bf = 656.9958472;
bfstar = -34.5787288;
i = 0.010101;
istar = 0.010101;
ph = 2.302182697;
pf = 0.030675995;
phpcp = 1;
phlcp = 1;
pflcp = 1;
pfstar = 0.171542852;
phstar = 12.87400757;
pfpcpstar = 1;
phlcpstar = 1;
pflcpstar = 1;
pi = 1;
pistar = 1;
pih = 1;
pihpcp = 1;
pihlcp = 1;
pihlcpstar = 1;
pifstar = 1;
pifpcpstar = 1;
piflcpstar = 1;
piflcp = 1;
w = 2.302182697;
wstar = 0.171542852;
x1pcp = 2.8028366;
x2pcp = 2.8028366;
x1lcp = 2.342523776;
x2lcp = 2.342523776;
x1lcpstar = 0.024226991;
x2lcpstar = 0.024226991;
x1fpcp = 2.8028366;
x2fpcp = 2.8028366;
x1flcp = 23.80831589;
x2flcp = 23.80831589;
x1flcpstar = 1.549767343;
x2flcpstar = 1.549767343;
mkp = 1;
gammaC = 1;
gammaCstar = 1;
gammaS = 1;
end;
model;
// domestic LCP and PCP firms
x1pcp = (thetah/(thetah-1))*(C^(-sigma))*w*(phpcp^(-thetah))*(Ch+((1-n)/n)*(ph^(-thetah))*(Q^thetah)*(phstar^thetah)*Chstar)+beta*alphah*(pihpcp(+1)^thetah)*x1pcp(+1); //1
x2pcp = (1-tauh)*(C^(-sigma))*ph*(phpcp^(1-thetah))*(Ch+((1-n)/n)*(ph^(-thetah))*(Q^thetah)*(phstar^thetah)*Chstar)+beta*alphah*(pihpcp(+1)^(thetah-1))*x2pcp(+1); //2
((1-alphah*pihpcp^(thetah-1))/(1-alphah))^(1/(1-thetah))=x1pcp/x2pcp; //3
x1lcp = (thetah/(thetah-1))*(C^(-sigma))*w*(phlcp^(-thetah))*Ch+beta*alphah*(pihlcp(+1)^thetah)*x1lcp(+1); //4
x2lcp = (1-tauh)*(C^(-sigma))*ph*(phlcp^(1-thetah))*Ch+beta*alphah*(pihlcp(+1)^(thetah-1))*x2lcp(+1); //5
((1-alphah*pihlcp^(thetah-1))/(1-alphah))^(1/(1-thetah))=x1lcp/x2lcp; //6
x1lcpstar = (thetah/(thetah-1))*(C^(-sigma))*w*(phlcpstar^(-thetah))*Chstar+beta*alphah*(pihlcpstar(+1)^thetah)*x1lcpstar(+1); //7
x2lcpstar = (1-tauh)*(C^(-sigma))*phstar*Q*(phlcpstar^(1-thetah))*Chstar+beta*alphah*(pihlcpstar(+1)^(thetah-1))*x2lcpstar(+1); //8
((1-alphah*pihlcpstar^(thetah-1))/(1-alphah))^(1/(1-thetah))=x1lcpstar/x2lcpstar; //9
// foreign LCP and PCP firms
x1fpcp = (thetaf/(thetaf-1))*(Cstar^(-sigma))*wstar*(pfpcpstar^(-thetaf))*(Cfstar+(n/(1-n))*((Q*pfstar)^(-thetaf))*(pf^thetaf)*Cf)+beta*alphaf*(pifpcpstar(+1)^thetaf)*x1fpcp(+1); //10
x2fpcp = (1-tauf)*pfstar*(Cstar^(-sigma))*(pfpcpstar^(1-thetaf))*(Cfstar+(n/(1-n))*((Q*pfstar)^(-thetaf))*(pf^thetaf)*Cf)+beta*alphaf*(pifpcpstar(+1)^(thetaf-1))*x2fpcp(+1); //11
((1-alphaf*pifpcpstar^(thetaf-1))/(1-alphaf))^(1/(1-thetaf))=x1fpcp/x2fpcp; //12
x1flcpstar = (thetaf/(thetaf-1))*(Cstar^(-sigma))*wstar*(pflcpstar^(-thetaf))*Cfstar+beta*alphaf*(piflcpstar(+1)^thetaf)*x1flcpstar(+1); //13
x2flcpstar = (1-tauf)*(Cstar^(-sigma))*pfstar*(pflcpstar^(1-thetah))*Cfstar+beta*alphaf*(piflcpstar(+1)^(thetaf-1))*x2flcpstar(+1); //14
((1-alphaf*piflcpstar^(thetaf-1))/(1-alphaf))^(1/(1-thetaf))=x1flcpstar/x2flcpstar; //15
x1flcp = (thetaf/(thetaf-1))*(Cstar^(-sigma))*wstar*(pflcp^(-thetaf))*Cf+beta*alphaf*(piflcp(+1)^thetaf)*x1flcp(+1); //16
x2flcp = (1-tauf)*(Cstar^(-sigma))*pf*(pflcp^(1-thetaf))*Cf*Q^(-1)+beta*alphaf*(piflcp(+1)^(thetaf-1))*x2flcp(+1); //17
((1-alphaf*piflcp^(thetaf-1))/(1-alphaf))^(1/(1-thetaf))=x1flcp/x2flcp; //18
// consumption demand
Ch = ah*C*ph^(-phih); //19
Cf = (1-ah)*C*pf^(-phih); //20
Chstar = (1-af)*Cstar*phstar^(-phif); //21
Cfstar = af*Cstar*pfstar^(-phif); //22
// labor supply
(L^eta)*(C^sigma)*gammaC^(-1) = w; //23
(Lstar^eta)*(Cstar^sigma)*gammaCstar^(-1) = wstar; //24
// composition Euler equations
beta*((gammaC(+1)*C(+1)^(-sigma))/(gammaC*C^(-sigma)))*((1+i)/pi(+1))=1; //25
beta*((gammaC(+1)*C(+1)^(-sigma))/(gammaC*C^(-sigma)))*((1+istar)/pistar(+1))*(Q(+1)/Q) = gammaS/(1-delta*(Q*bf - b)); //26
beta*((gammaCstar(+1)*Cstar(+1)^(-sigma))/(gammaCstar*Cstar^(-sigma)))*((1+istar)/pistar(+1))=1; //27
pi = ph(-1)*pih/ph; //28
pistar = pfstar(-1)*pifstar/pfstar; //29
mkp = pf/(Q*wstar); //30
// price indices
1 = ah*ph^(1-phih)+(1-ah)*pf^(1-phih); //31
1 = af*pfstar^(1-phif)+(1-af)*phstar^(1-phif); //32
1 = gammahpcp*phpcp^(1-thetah)+(1-gammahpcp)*phlcp^(1-thetah); //33
1 = gammahpcp*(phpcp*ph*(Q^(-1))*phstar^(-1))^(1-thetah)+(1-gammahpcp)*phlcpstar^(1-thetah); //34
1 = gammafpcp*pfpcpstar^(1-thetaf)+(1-gammafpcp)*pflcpstar^(1-thetaf); //35
1 = gammafpcp*(pfpcpstar*(pfstar*Q/pf))^(1-thetaf)+(1-gammafpcp)*pflcp^(1-thetaf); //36
// inflation rates
pihpcp = phpcp*pih/phpcp(-1); //37
pifpcpstar = pfpcpstar*pifstar/pfpcpstar(-1); //38
pihlcp = phlcp*pih/phlcp(-1); //39
pihlcpstar = (phlcpstar*phstar*pfstar(-1)*pifstar)/(phlcpstar(-1)*phstar(-1)*pfstar); //40
piflcpstar = pflcpstar*pifstar/pflcpstar(-1); //41
piflcp = (pflcp*pf*ph(-1)*pih)/(pflcp(-1)*pf(-1)*ph); //42
// production functions
Yh = L; //43
Yf = Lstar; //44
// resource constraints
C+Q*bf/((1+istar)*(1-delta*(Q*bf - b))) = Yh+(Q*bf(-1)/pistar); // //45
n*bf+(1-n)*bfstar = 0; //46
// monetary policy rules
log(i/ibar) = ahR*log(i(-1)/ibar)+ahPI*log(pi/pibar)+gammaI;
log(istar/ibar) = afR*log(istar(-1)/ibar)+afPI*log(pistar/pibar)+gammaIstar;
EPSILONS = -epsilonS;
// good markets equilibrium
Yh = ah*(ph^(-phih))*C+((1-n)/n)*(1-af)*(ph^(-phih))*(Q^phih)*Cstar; //49
Yf = (n/(1-n))*(1-ah)*(pfstar^(-phif))*(Q^(-phif))*C+af*(pfstar^(-phif))*Cstar; //50
// other shocks
gammaC = 1-rhoC+rhoC*gammaC(-1)+epsilonC; //51
gammaCstar = 1-rhoCstar+rhoCstar*gammaCstar(-1)+epsilonCstar; //52
gammaS = 1-rhoS+rhoS*gammaS(-1)+EPSILONS; //53
end;
model_diagnostics;
resid;
steady;
check;
shocks;
var epsilonC = 1;
var epsilonCstar = 1;
var gammaI = 1;
var gammaIstar = 1;
var epsilonS = 1;
end;
stoch_simul(order=1,irf = 100,nograph,periods=50000);