I have tried to solve my model in dynare and apparently i have found the steady state of the model, but the problem is that there are 6 eginvalues larger than 1 in modulus for 7 forward-looking variables.
The Blanchard & Kahn conditions are not satisifed.
This is my code:
//----------------------------------------------------------------
// MODELO DE TESIS: DSGE-SOE
//----------------------------------------------------------------
//----------------------------------------------------------------
// 1. VARIABLE DECLARATION
//----------------------------------------------------------------
var
pih // Domestic inflation
x // Output gap
y // Output
ynat // Natural output
rnat // Natural real interest rate
r // Nominal interest rate
s // Terms of trade
pi // CPI Inflation
exch_rate // Nominal exchange rate
ystar // World output
pistar // World inflation
a // Domestic productivity shock
r_l_hat // Lending interest rate
mu_r_hat // Credit spread
xi_hat // Bank competition shock
s_hat // Stock of "deep habits"
l_hat // Loans
x_hat // Loan composite
mc_hat // Real marginal cost
;
varexo
eps_a // Domestic productivity shock
eps_star // World output shock
e_xi // Spread shock (bank competition)
;
//----------------------------------------------------------------
// 2. STRUCTURAL PARAMETER DECLARATION
//----------------------------------------------------------------
parameters
sigma phi epsilon theta beta rhoa alpha eta gamma rhoy phi_pi
aalpha ttheta rrho_s rrho_xi mmu_r_ss;
//----------------------------------------------------------------
// 3. STRUCTURAL PARAMETER CALIBRATION
//----------------------------------------------------------------
sigma = 1; eta = 1; gamma = 1; phi = 3; epsilon = 6;
theta = 0.75; beta = 0.99; alpha = 0.4; phi_pi = 2.5;
rhoa = 0.9; rhoy = 0.86; aalpha = 1; ttheta = 0.5;
rrho_s = 0; rrho_xi = 0.9; mmu_r_ss = 1 + (0.02/4);
//----------------------------------------------------------------
// 4. MODEL BLOCK (LOG-LINEARIZED)
//----------------------------------------------------------------
model(linear);
// --- 4.1 COMPOSITE PARAMETER CALCULATION ---
#rho = beta^(-1)-1;
#omega_GM = sigma\*gamma+(1-alpha)\*(sigma\*eta-1);
#sigma_a = sigma/((1-alpha)+alpha\*omega_GM);
#Theta_GM = (sigma\*gamma-1)+(1-alpha)\*(sigma\*eta-1);
#lambda_GM = (1-beta\*theta)\*(1-theta)/theta;
#Gamma = (1+phi)/(sigma_a+phi);
#Psi = -Theta_GM\*sigma_a/(sigma_a+phi);
#eeta = (aalpha\*mmu_r_ss)/((1-aalpha)\*beta + aalpha\*mmu_r_ss);
#xxi = (mmu_r_ss\*(1-ttheta\*beta\*(1-rrho_s)))/(mmu_r_ss\*(1-ttheta)-(1-ttheta));
#oomega = (1-beta\*ttheta\*(1-rrho_s))/(xxi\*(1-ttheta));
// --- 4.2 MODEL EQUATIONS ---
x = x(+1) - (1/sigma_a)\*(r - pih(+1) - rnat);
rnat = -sigma_a\*Gamma\*(1-rhoa)\*a + alpha\*sigma_a\*(Theta_GM+Psi)\*(ystar(+1)-ystar);
ynat = Gamma\*a + alpha\*Psi\*ystar;
x = y - ynat;
(1 - oomega/(1-beta\*ttheta\*(1-rrho_s)))\*mu_r_hat =
((1-ttheta)^(-1)\*ttheta\*oomega/(1-beta\*ttheta\*(1-rrho_s))) \* (beta\*ttheta\*(1-rrho_s)\*(l_hat(+1)-s_hat) - (l_hat-s_hat(-1)))
- (ttheta\*beta\*oomega\*(1-rrho_s)/(1-beta\*ttheta\*(1-rrho_s))) \* (r(+1) - r)
- (ttheta\*beta\*oomega\*(1-rrho_s)/(1-beta\*ttheta\*(1-rrho_s))) \* mu_r_hat(+1)
+ (ttheta\*beta\*oomega\*(1-rrho_s)/(1-beta\*ttheta\*(1-rrho_s))) \* (r - pih(+1))
- oomega\*xi_hat;
l_hat = ttheta\*s_hat(-1) + (1-ttheta)\*x_hat;
x_hat = (1+sigma+phi)\*y - (1+phi)\*a; // Corrected: uses sigma
s_hat = (rrho_s + (1-rrho_s)\*ttheta)\*s_hat(-1) + (1-rrho_s)\*(1-ttheta)\*x_hat;
mu_r_hat = r_l_hat - r;
mc_hat = (sigma_a+phi)\*x + eeta\*r_l_hat;
pih = beta\*pih(+1) + lambda_GM\*mc_hat;
r = phi_pi\*pih;
pi = pih + alpha\*(s - s(-1));
s = s(-1) + exch_rate - exch_rate(-1) + pistar - pih;
pistar = 0;
r = exch_rate(+1) - exch_rate;
a = rhoa\*a(-1) + eps_a;
ystar = rhoy\*ystar(-1) + eps_star;
xi_hat = rrho_xi\*xi_hat(-1) + e_xi;
end;
//----------------------------------------------------------------
// 5. STEADY STATE AND SIMULATION
//----------------------------------------------------------------
steady;
check;
shocks;
var eps_a; stderr 0.0071;
var eps_star; stderr 0.0078;
var e_xi; stderr 0.01;
end;
stoch_simul(order=1, irf=40) y x pih pi s exch_rate r r_l_hat mu_r_hat l_hat mc_hat;
Please, i would like someone to help me