TECHNICAL APPENDIX: CAPITAL CONTROLS AND OPTIMAL CHINESE MONETARY POLICY

CHUN CHANG, ZHENG LIU, AND MARK M. SPIEGEL

Abstract

This appendix presents a summary of equilibrium conditions in the model of Chang et al. (2015) (CLS).

Appendix A. Summary of stationary equilibrium conditions

A.1. Stationary equilibrium. We focus on a stationary equilibrium with balanced growth. On a balanced growth path, output, intermediate inputs, consumption, real money balances, current account balances, real domestic debt, real foreign asset holdings, and the real wage rate all grow at a constant rate. In our model, aggregate productivity Z_{t} grows at a constant rate λ_{z}. To obtain balanced growth, we make the stationary transformations

$$
\begin{array}{r}
\tilde{Y}_{t}=\frac{Y_{t}}{Z_{t}}, \quad \tilde{\Gamma}_{h t}=\frac{\Gamma_{h t}}{Z_{t}}, \quad \tilde{\Gamma}_{f t}=\frac{\Gamma_{f t}}{Z_{t}}, \quad \tilde{C}_{t}=\frac{C_{t}}{Z_{t}}, \quad \tilde{c a_{t}}=\frac{c a_{t}}{Z_{t}}, \quad \tilde{w}_{t}=\frac{w_{t}}{Z_{t}}, \\
\tilde{m}_{t}=\frac{M_{t}}{\bar{P}_{t} Z_{t}}, \quad \tilde{b}_{t}=\frac{B_{t}}{P_{t} Z_{t}}, \quad \tilde{b}_{t}^{*}=\frac{B_{t}^{*}}{P_{t}^{*} Z_{t}}, \quad \tilde{b}_{p t}^{*}=\frac{B_{p t}^{*}}{P_{t}^{*} Z_{t}}, \quad \tilde{b}_{g t}^{*}=\frac{B_{g t}^{*}}{P_{t}^{*} Z_{t}}, \quad \tilde{\Lambda}_{t}=\Lambda_{t} Z_{t} .
\end{array}
$$

We summarize the stationary equilibrium conditions below, in the same order as in the dynare code. ${ }^{1}$

$$
\begin{align*}
\frac{\Phi_{l} L_{t}^{\eta}}{\tilde{\Lambda}_{t}} & =\tilde{w}_{t} \tag{A1}\\
\frac{\Phi_{m}}{\tilde{m}_{t} \tilde{\Lambda}_{t}} & =1-\mathrm{E}_{t} \frac{\beta \tilde{\Lambda}_{t+1}}{\tilde{\Lambda}_{t} \lambda_{z}} \frac{1}{\pi_{t+1}}, \tag{A2}\\
\mathrm{E}_{t} \frac{\beta \tilde{\Lambda}_{t+1}}{\tilde{\Lambda}_{t} \lambda_{z}} \frac{R_{t}}{\pi_{t+1}} & =1+\frac{\Omega_{b}}{2}\left(\psi_{t}-\bar{\psi}\right)^{2}+\Omega_{b}\left(\psi_{t}-\bar{\psi}\right)\left(1-\psi_{t}\right), \tag{A3}\\
\Omega_{b}\left(\psi_{t}-\bar{\psi}\right) & =\mathrm{E}_{t} \frac{\beta \tilde{\Lambda}_{t+1}}{\tilde{\Lambda}_{t} \lambda_{z}} \frac{1}{\pi_{t+1}}\left[R_{t}-R_{t}^{*} \frac{e_{t+1}}{e_{t}}\right], \tag{A4}
\end{align*}
$$

Date: April 19, 2016.
${ }^{1}$ In our dynare code, all variables are expressed in terms of log-deviations from steady state. In the equilibrium conditions listed here, however, the variables are expressed in levels. For example, for the level variable X_{t}, the log-deviation from its steady-state value of X is $\hat{x}_{t} \equiv \log \left(X_{t} / X\right)$.

$$
\begin{align*}
& \tilde{\Lambda}_{t}=\frac{1}{\tilde{C}_{t}}, \tag{A5}\\
& \psi_{t}=\frac{\tilde{b}_{t}}{\tilde{b}_{t}+q_{t} \tilde{b}_{p t}^{*}}, \tag{A6}\\
& v_{t}=\tilde{\phi} q_{m t}^{\phi} \tilde{w}_{t}^{1-\phi} \text {, } \tag{A7}\\
& \tilde{w}_{t}=(1-\phi) \frac{v_{t} \tilde{Y}_{t}}{L_{t}}, \tag{A8}\\
& \tilde{\Gamma}_{t}=\tilde{\Gamma}_{h t}^{\alpha} \tilde{\Gamma}_{f t}^{1-\alpha}, \tag{A9}\\
& q_{m t}=\tilde{\alpha} q_{t}^{1-\alpha}, \tag{A10}\\
& q_{t}=\frac{1-\alpha}{\alpha} \frac{\tilde{\Gamma}_{h t}}{\tilde{\Gamma}_{f t}}, \tag{A11}\\
& \frac{q_{t}}{q_{t-1}}=\gamma_{e t} \frac{\pi^{*}}{\pi_{t}}, \tag{A12}\\
& \frac{\theta_{p}-1}{\theta_{p}}=v_{t}-\frac{\Omega_{p}}{\theta_{p}} \frac{\tilde{C}_{t}}{\tilde{Y}_{t}}\left[\left(\frac{\pi_{t}}{\pi}-1\right) \frac{\pi_{t}}{\pi}-\beta \mathrm{E}_{\mathrm{t}}\left(\frac{\pi_{\mathrm{t}+1}}{\pi}-1\right) \frac{\pi_{\mathrm{t}+1}}{\pi}\right] \tag{A13}\\
& \tilde{c a}{ }_{t}=\tilde{X}_{t}-q_{t} \tilde{\Gamma}_{f t}+\frac{q_{t}}{\pi^{*} \lambda_{z}}\left(R_{t-1}^{*}-1\right) \tilde{b}_{t-1}^{*}, \tag{A14}\\
& \tilde{X}_{t}=q_{t}^{\theta} \tilde{X}_{t}^{*}, \tag{A15}\\
& \tilde{c a}_{t}=q_{t}\left[\tilde{b}_{t}^{*}-\frac{\tilde{b}_{t-1}^{*}}{\pi^{*} \lambda_{z}}\right], \tag{A16}\\
& q_{t}\left[\tilde{b}_{g t}^{*}-\frac{\tilde{b}_{g, t-1}^{*} R_{t-1}^{*}}{\pi^{*} \lambda_{z}}\right]=\tilde{b}_{t}-\frac{\tilde{b}_{t-1} R_{t-1}}{\pi_{t} \lambda_{z}}+\tilde{m}_{t}-\frac{\tilde{m}_{t-1}}{\pi_{t} \lambda_{z}}, \tag{A17}\\
& \tilde{Y}_{t}=\tilde{C}_{t}+\tilde{\Gamma}_{h t}+\tilde{X}_{t}+ \\
& \frac{\Omega_{p}}{2}\left(\frac{\pi_{t}}{\pi}-1\right)^{2} \tilde{C}_{t}+\frac{\Omega_{b}}{2}\left(\psi_{t}-\bar{\psi}\right)^{2}\left(\tilde{b}_{t}+q_{t} \tilde{b}_{p t}^{*}\right), \tag{A18}\\
& \tilde{b}_{t}^{*}=\tilde{b}_{p t}^{*}+\tilde{b}_{g t}^{*}, \tag{A19}\\
& \tilde{Y}_{t}=\tilde{\Gamma}_{t}^{\phi} L_{t}^{1-\phi}, \tag{A20}\\
& G \tilde{D} P_{t}=\tilde{C}_{t}+\tilde{X}_{t}-q_{t} \tilde{\Gamma}_{f t}, \tag{A21}\\
& \frac{\tilde{m}_{t}}{\tilde{m}_{t-1}}=\frac{\mu_{t}}{\pi_{t} \lambda_{z}}, \tag{A22}\\
& \gamma_{e t}=\bar{\gamma}_{e}, \tag{A23}
\end{align*}
$$

where the term $\gamma_{e t} \equiv \frac{e_{t}}{e_{t-1}}$ denotes the growth rate of the nominal exchange rate, which is assumed to be constant under a pegged exchange rate regime. The model is closed by assuming that the central bank (or the Ramsey planner) chooses the appropriate policy instrument (in particular, the nominal interest rate R_{t}) to maximize
the representative household's welfare, subject to the equilibrium conditions (A1)(A23) and shocks to the foreign interest rate R_{t}^{*} and export demand \tilde{X}_{t}^{*}.

The foreign interest rate R_{t}^{*} follows the stationary stochastic process

$$
\begin{equation*}
\ln R_{t}^{*}=\left(1-\rho_{r}\right) \ln R^{*}+\rho_{r} \ln R_{t-1}^{*}+\sigma_{r} \varepsilon_{r t} \tag{A24}
\end{equation*}
$$

where $\rho_{r} \in(0,1)$ is a persistence parameter, σ_{r} is the standard deviation of the shock, and $\varepsilon_{r t}$ is an i.i.d. standard normal process.

The export demand shock \tilde{X}_{t}^{*} follows the stochastic process

$$
\begin{equation*}
\ln \tilde{X}_{t}^{*}=\left(1-\rho_{x}\right) \ln \tilde{X}^{*}+\rho_{x} \ln \tilde{X}_{t-1}^{*}+\sigma_{x} \varepsilon_{x t} \tag{A25}
\end{equation*}
$$

where $\rho_{x} \in(0,1)$ is a persistence parameter, σ_{x} is the standard deviation, and $\varepsilon_{x t}$ is an i.i.d. standard normal process.
A.2. The steady state. In the steady state, all shocks are absent and all stationary variables are constant. We solve the steady-state equilibrium recursively with following the steps.
(1) Use the steady-state pricing decision (A13) to obtain the real marginal cost $v=\frac{\theta_{p}-1}{\theta_{p}}=0.9$ (corresponding to a markup of 11 percent)
(2) Target import-GDP ratio of 0.20 and export-GDP ratio of 0.23 . GDP is related to gross output through

$$
\begin{equation*}
G D P=Y-\Gamma_{h}-q \Gamma_{f}=(1-\phi v) Y \tag{S1}
\end{equation*}
$$

Imports are related to gross output through $I M=q \Gamma_{f}=(1-\alpha) q_{m} \Gamma=$ $(1-\alpha) \phi v Y$. Thus, we have

$$
\begin{equation*}
0.2=\frac{I M}{G D P}=\frac{(1-\alpha) \phi v}{1-\phi v} \tag{S2}
\end{equation*}
$$

which gives a steady-state value of α given the values of $\phi=0.5$ and $v=0.9$. The implied value of α is 0.7556 .
(3) Target export-GDP ratio of 0.23 . If we obtain a solution for Y, then we can obtain a solution for X given by

$$
\begin{equation*}
X=0.23 G D P=0.23(1-\phi v) Y \tag{S3}
\end{equation*}
$$

(4) Target steady-state employment of $L=0.4$ (40 percent of total time endowment spent on working). Target the real exchange rate $q=1$, which puts
restrictions on X^{*} through the export demand function $X=q^{\theta} X^{*}$ for given X. We can then solve for Y using the production function:

$$
\begin{equation*}
Y=\Gamma^{\phi} L^{1-\phi}=\left(\frac{\phi v Y}{\tilde{\alpha} q^{1-\alpha}}\right)^{\phi} L^{1-\phi} \tag{S4}
\end{equation*}
$$

where the second equality uses the cost-minimizing condition that $q_{m} \Gamma=\phi v Y$ and that $q_{m}=\tilde{\alpha} q^{1-\alpha}$.
(5) Given Y, we have $G D P=(1-\phi v) Y, I M=0.2 G D P$, and $X=0.23 G D P$. To target $q=1$, we have $X^{*}=X / q^{\theta}=X$.
(6) Since net export is $N X=X-I M=0.03 G D P$, consumption is then $C=$ $G D P-N X=0.97 G D P$.
(7) Given Y and L, the real wage rate is solved:

$$
\begin{equation*}
w=(1-\phi) v Y / L \tag{S5}
\end{equation*}
$$

and the labor supply equation pins down the value of the utility weight parameter $\Phi_{l}=\frac{w}{C L^{\eta}}$.
(8) The domestic component of intermediate input is given by $\Gamma_{h}=\alpha \phi v Y$, the foreign component is $\Gamma_{f}=(1-\alpha) \phi v Y / q$, and the composite intermediate input is $\Gamma=\Gamma_{h}^{\alpha} \Gamma_{f}^{1-\alpha}$
(9) The steady-state UIP condition (A4) implies that $R=R^{*} \gamma_{e}$ and $\pi=\pi^{*} \gamma_{e}$.
(10) The money growth rate is given by $\mu=\pi \lambda_{z}$
(11) Given R and C, we obtain the real money balance $m=\Phi_{m} C R /(R-1)$
(12) Using equations (A14) and (A16) to eliminate $c a$ and obtain

$$
\begin{equation*}
q b^{*}\left(1-\frac{R^{*}}{\pi^{*} \lambda_{z}}\right)=N X \tag{S6}
\end{equation*}
$$

where $q=1$ and $N X=0.03 G D P$ are known.
(13) We now solve for b. The portfolio share equation (A6) implies that

$$
q b_{p}^{*}\left(1-\frac{R^{*}}{\pi^{*} \lambda_{z}}\right)=\frac{1-\psi}{\psi} b\left(1-\frac{R^{*}}{\pi^{*} \lambda_{z}}\right)
$$

the government budget constraint (A17) implies that

$$
q b_{g}^{*}\left(1-\frac{R^{*}}{\pi^{*} \lambda_{z}}\right)=b\left(1-\frac{R}{\pi \lambda_{z}}\right)+m\left(1-\frac{1}{\mu}\right)
$$

Summing these equations up, we obtain

$$
\begin{equation*}
q b^{*}\left(1-\frac{R^{*}}{\pi^{*} \lambda_{z}}\right)=\frac{1-\psi}{\psi} b\left(1-\frac{R^{*}}{\pi^{*} \lambda_{z}}\right)+b\left(1-\frac{R}{\pi \lambda_{z}}\right)+m\left(1-\frac{1}{\mu}\right)=N X \tag{S7}
\end{equation*}
$$

where the second equality follows from equation (S6) and m has been solved above. Further, noting that $\frac{R}{\pi \lambda_{z}}=\frac{R^{*}}{\pi^{*} \lambda_{z}}$, we get

$$
N X=b\left(1-\frac{R}{\pi \lambda_{z}}\right) \frac{1}{\psi}+m\left(1-\frac{1}{\mu}\right)
$$

This relation gives the solution for b

$$
\begin{equation*}
\frac{b}{\psi}\left(1-\frac{R}{\pi \lambda_{z}}\right)=N X-m\left(1-\frac{1}{\mu}\right) \tag{S8}
\end{equation*}
$$

(14) Once we have b, we solve for b_{p}^{*} using the portfolio share equation (and targeting the portfolio share to be $\psi=0.9$). Specifically, we have

$$
\begin{equation*}
b_{p}^{*}=\frac{1-\psi}{q \psi} b . \tag{S9}
\end{equation*}
$$

(15) Given $N X$, we obtain b^{*} from equation (S7). We then have

$$
\begin{equation*}
b_{g}^{*}=b^{*}-b_{p}^{*} \tag{S10}
\end{equation*}
$$

(16) Current account balance is then obtained from (A14) and (S6). In particular, we have

$$
\begin{equation*}
c a=N X+\frac{q b^{*}}{\pi^{*} \lambda_{z}}\left(R^{*}-1\right)=q b^{*}\left(1-\frac{1}{\pi^{*} \lambda_{z}}\right) \tag{S11}
\end{equation*}
$$

References

Chang, C., Z. Liu, and M. M. Spiegel (2015): "Capital Controls and Optimal Chinese Monetary Policy," Journal of Monetary Economics, 74, 1-15.

