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Abstract

I develop a new method to solve and estimate heterogeneous agent macro models.

The main challenge is that the state vector contains the distribution of microeconomic

agents, which is typically infinite-dimensional. I approximate the distribution with a

flexible parametric family, reducing the dimensionality to a finite set of parameters, and

solve for the dynamics of these parameters by perturbation. I implement the method

in Dynare and find that it is accurate and extremely effi cient. As an illustration, I

use the method to estimate a heterogeneous firm model with neutral and investment-

specific productivity shocks using Bayesian techniques. The behavior of firms at the

micro level matters quantitatively for inference about the aggregate shock processes,

suggesting an important role for micro data in estimating macro models.
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1 Introduction

Heterogeneity is pervasive in microeconomic data: households vary tremendously by income,

wealth, and consumption, for example, and firms vary by productivity, investment, and hir-

ing. Accordingly, a rapidly growing literature has emerged in macroeconomics which asks

how micro heterogeneity matters for our understanding of aggregate business cycles.1 The

models used in this literature are computationally challenging because the aggregate state

of the economy contains the distribution of micro agents, generally an infinite-dimensional

object. Most existing algorithms, following Krusell and Smith (1998), approximate the

distribution with a finite number of moments, typically just the mean. This approximation

works well if the mean accurately captures how the distribution affects aggregate dynam-

ics, a condition known as “approximate aggregation.” But by construction, approximate

aggregation imposes sharp restrictions on how the distribution affects aggregate dynamics,

leaving many important questions unanswerable.2

In this paper, I develop a new method to solve and estimate heterogeneous agent models

that does not rely on approximate aggregation. Instead, I approximate the entire distribution

with a finite-dimensional parametric family and include the parameters of that approximation

in the state vector. A good approximation of the distribution may require a large number of

parameters, however, leaving globally accurate approximation techniques infeasible due to

the curse of dimensionality. Instead, I solve for the aggregate dynamics using locally accurate

perturbation methods, which are computationally effi cient even with a large state space. I

show how to implement this perturbation step in Dynare, a Matlab toolbox designed to

solve and estimate representative agent models in a user-friendly way. My website provides

a example codes and a user guide for using Dynare to solve and estimate heterogeneous agent

1There are too many papers to provide a comprehensive list of citations. For recent papers on the
household side, see Auclert (2015), Berger and Vavra (2015), or Kaplan, Moll, and Violante (2015); on the
firm side, see Bachmann, Caballero, and Engel (2013), Khan and Thomas (2013), Clementi and Palazzo
(2015), or Terry (2015a).

2A straightforward way to relax approximate aggregation is to extend the number of moments used to
approximate the distribution. However, this quickly becomes infeasible due to the curse of dimensionality,
as each new moment adds a new state variable.
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models as well.

Although the method is applicable to a wide range of heterogeneous agent models, for

concreteness I demonstrate it in the context of a real business cycle model with heteroge-

neous firms and fixed capital adjustment costs, as in Khan and Thomas (2008). In the

recursive equilibrium of this model, the aggregate state contains the distribution of firms

over productivity and capital, which evolves over time in response to aggregate shocks. The

dynamics must satisfy a complicated fixed point problem: each firm’s investment decision

depends on its expectations of the dynamics of the distribution, and the dynamics of the

distribution depend on firms’investment decisions. This type of fixed point problem is at

the heart of the computational challenges faced by the heterogeneous agent literature.

My method solves this problem accurately and effi ciently; depending on the degree of

approximation of the distribution of firms (ranging from 5 to 20 parameters), computing

a first order approximation of the aggregate dynamics takes between 50 —140 seconds in

Matlab.3 Degrees of approximation on the high end of this range are necessary to capture

the shape of the distribution, which features positive skewness and excess kurtosis; however,

degrees on the low end of this range are suffi cient to capture the dynamics of aggregate

variables. I also compute a second-order approximation of the dynamics, but consistent

with the results in Khan and Thomas (2008), find quantitatively small nonlinearities in

the aggregate. Finally, I consider a parameterization of the model in which approximate

aggregation fails to hold and show that as expected my method continues to perform well in

this case.

As an illustration, I then incorporate aggregate investment-specific productivity shocks

in addition to the neutral shocks already in the model and estimate the parameters of the

two shock processes using Bayesian techniques. Characterizing the posterior distribution of

parameters using Markov Chain Monte Carlo takes less than 24 minutes using Dynare. To

3This runtime overstates the time the algorithm spends on solving the model in each step of the estimation,
because it includes the time spent processing the model and taking symbolic derivatives. Once these tasks
are complete, they do not need to be performed again for different parameter values.
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understand how micro behavior impacts this estimation of aggregate shock processes, I re-

estimate the parameters conditional on different values of the fixed capital adjustment costs,

which correspond to different patterns of firm investment behavior. For small adjustment

costs, less volatile investment-specific shocks are needed to match the data, while for large

adjustment costs, more volatile shocks are needed. Of course, the ideal estimation exercise

would incorporate both micro- and macro-level data to jointly estimate the parameters of

the model; these results show that doing so is feasible using my method, even with full-

information Bayesian techniques.

The Dynare codes and user guide is designed to make solving and estimating heteroge-

neous agent models as simple as possible. Broadly speaking, the user provides two files: a

Matlab .m file that computes the stationary equilibrium of the model, and a Dynare .mod file

that defines the approximate equilibrium conditions of the model. Thanks to the structure

of Dynare, these conditions can be programmed almost as they would be written in a paper.

Dynare then differentiates these conditions, computes the locally accurate dynamics around

the stationary equilibrium, simulates the model, and if requested, estimates the model using

either maximum likelihood or Bayesian techniques. Hence, if a researcher can solve for

the stationary equilibrium of their model, these codes will compute the aggregate dynamics

almost for free.

Related Literature My method builds heavily on two important papers in the computa-

tional literature. The first is Algan et al. (2008), who solve the Krusell and Smith (1998)

model by parameterizing the distribution of households using the same parameterization I

use in this paper. However, Algan et al. (2008) solve for the aggregate dynamics with

globally accurate methods, which are extremely slow in their context. The second paper I

build on is Reiter (2009) who, following an idea of Campbell (1998), solves the Krusell and

Smith (1998) model using a mix of globally and locally accurate techniques. However, Reiter

(2009) approximates the distribution with a fine histogram, which requires many parameters
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to achieve acceptable accuracy. This limits the approach to problems which have a low-

dimensional individual state space because the size of the histogram grows exponentially in

the number of individual states. Furthermore, neither Algan et al. (2008) or Reiter (2009)

explore using their methods for formal estimation or implement their methods in Dynare.4

Road Map The rest of this note is organized as follows. I briefly describe the benchmark

heterogeneous firm framework in Section 2. I then explain my solution method in the

context of this benchmark model in Section 3. In Section 4, I add investment-specific shocks

to the model, and estimate the parameters of the shock processes using Bayesian techniques.

Section 5 concludes. Various appendices contain additional details not contained in the

main text.

2 Benchmark Real Business Cycle Model with Firm

Heterogeneity

Although I illustrate my method using the heterogeneous firm model from Khan and Thomas

(2008), the method itself applies to a large class of heterogeneous agent models.5 In the

online codes and user guide, I use the method to solve the heterogeneous household model

from Krusell and Smith (1998), and discuss how to generalize the method to solve other

models as well.
4Veracierto (2016) also proposes a method based on a mix of globally and locally accurate techinques

that does not rely on any direct approximation of the distribution. Instead, Veracierto (2016) approximates
the history of individual agents’decision rules, and simulates a panel of agents to compute the distribution
at any point in time. He then linearizes the system with respect to the history of approximated decision
rules and uses that to compute the evolution of the distribution. The advantage of his methodology is that
it does not require any approximation of the distribution. However, the disadvantage is that it is extremely
computationally intensive, precluding the possibility of estimation.

5Since the benchmark is directly taken from Khan and Thomas (2008), I keep my exposition brief, and
refer the interested reader to their original paper for details.
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2.1 Environment

Firms There is a fixed mass of firms j ∈ [0, 1] which produce output yjt according to the

production function

yjt = ezteεjtkθjtn
ν
jt, θ + ν < 1,

where zt is an aggregate productivity shock, εjt is an idiosyncratic productivity shock, kjt is

capital, njt is labor, θ is the elasticity of output with respect to capital, and ν with respect

to labor. The aggregate shock zt is common to all firms and follows the AR(1) process

zt+1 = ρzzt + σzω
z
t+1, where ω

z
t+1 ∼ N(0, 1).

The idiosyncratic shock εjt is independently distributed across firms, but within firms follows

the AR(1) process

εjt+1 = ρεεjt + σεω
ε
t+1, where ω

ε
t+1 ∼ N(0, 1).

Each period, the firm j inherits its capital stock from previous periods’investments, observes

the two productivity shocks, hires labor from a competitive market, and produces output.

After production, the firm invests in capital for the next period. Gross investment ijt

yields kjt+1 = (1− δ) kjt + ijt units of capital next period, where δ is the depreciation rate

of capital. If ijt
kjt

/∈ [−a, a], the firm must pay a fixed adjustment cost ξjt in units of labor.

The parameter a governs a region around zero investment within which firms do not incur

the fixed cost. The fixed cost ξjt is a random variable distributed U [0, ξ], independently

over firms and time.

Households There is a representative household with preferences represented by the utility

function

E
∞∑
t=0

βt
[
C1−σt − 1

1− σ − χN
1+α
t

1 + α

]
,
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where Ct is consumption, Nt is labor supplied to the market, β is the discount factor, σ is

the coeffi cient of relative risk aversion, χ governs the disutility of labor supply, and α is the

Frisch elasticity of labor supply. The total time endowment per period is normalized to 1,

so Nt ∈ [0, 1]. The household owns all the firms in the economy and markets are complete.

2.2 Firm Optimization

Following Khan and Thomas (2008), I directly incorporate the implications of household

optimization into the firm’s optimization problem by approximating the transformed value

function

v̂ (ε, k; s) = λ (s) max
n

{
ezeεkθnν − w (s)n

}
(1)

+Eξ [max {va (ε, k; s)− ξλ (s)w (s) , vn (ε, k; s)}] ,

where s is the aggregate state vector (defined in Section 2.3 below), λ (s) = C (s)−σ is the

marginal utility of consumption in equilibrium, and

va (ε, k; s) = max
k′∈R
−λ (s) (k′ − (1− δ) k) + βE [v̂(ε′, k′; s′ (z′; s) |ε, k; s] (2)

vn (ε, k; s) = max
k′∈[(1−δ−a)k,(1−δ+a)k]

−λ (s) (k′ − (1− δ) k) + βE [v̂(ε′, k′; s′ (z′; s) |ε, k; s] . (3)

Denote the unconstrained capital choice from (2) by ka (ε, k; s) and the constrained choice

from (3) by kn (ε, k; s). The firm will choose to pay the fixed cost if and only if va (ε, k; s)−

ξλ (s)w (s) ≥ vn (ε, k; s). Hence, there is a unique threshold which makes the firm indifferent

between these two options,

ξ̃ (ε, k; s) =
va (ε, k; s)− vn (ε, k; s)

λ (s)w (s)
. (4)
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Denote ξ̂ (ε, k; s) as the threshold bounded to be within the support of ξ, i.e., ξ̂ (ε, k; s) =

min{max{0, ξ̃ (ε, k; s)}, ξ}}.

2.3 Equilibrium

In the recursive competitive equilibrium, the aggregate state s contains the current draw of

the aggregate productivity shock, z, and the distribution of firms over (ε, k)-space, µ.

Definition 1 A recursive competitive equilibrium for this model is a set v̂ (ε, k; s),

n (ε, k; s), ka (ε, k; s), kn (ε, k; s), ξ̂ (ε, k; s), λ (s), w (s), and s′ (z′; s) = (z′;µ′ (z, µ)) such

that

1. (Firm optimization) Taking w (s), λ (s), and s′ (z′; s) as given, v̂ (ε, k; s), n (ε, k; s),

ka (ε, k; s), kn (ε, k; s), and ξ̂ (ε, k; s) solve the firm’s optimization problem (1) - (4).

2. (Implications of household optimization)

• λ (s) = C (s)−σ, where C (s) =
∫

[ezeεkθn (ε, k; s)ν + (1− δ) k −
(
ξ̂(ε,k;s)

ξ

)
ka (ε, k; s)

−
(

1− ξ̂(ε,k;s)

ξ

)
kn (ε, k; s) ] dµ (ε, k).

• w (s) satisfies
∫

(n (ε, k; s) + ξ̂(ε,k;s)2

2ξ
)dµ (ε, k) =

(
w(s)λ(s)

χ

) 1
α
.

3. (Law of motion for distribution) For all measurable sets ∆ε ×∆k,

µ′ (z, µ) (∆ε ×∆k) =

∫ ∫
p (ρεε+ σεω

ε ∈ ∆ε) dω
ε × [

(
ξ̂ (ε, k; s)

ξ

)
1{ka (ε, k; s)(5)

∈ ∆k}+

(
1− ξ̂ (ε, k; s)

ξ

)
1 {kn (ε, k; s) ∈ ∆k}]dµ (ε, k) ,

where p is the p.d.f. of idiosyncratic productivity shocks.

4. (Law of motion for aggregate shocks) z′ = ρzz + ω′z, where ω
′
z ∼ N(0, σz).
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Table 1: Baseline Parameterization

Parameter Description Value Parameter Description Value

β Discount factor .961 ρz Aggregate TFP AR(1) .859

σ Utility curvature 1 σz Aggregate TFP AR(1) .014

α Inverse Frisch limα→ 0 ξ Fixed cost .0083

χ Labor disutility N∗ = 1
3

a No fixed cost region .011

ν Labor share .64 ρε Idiosyncratic TFP AR(1) .859

θ Capital share .256 σε Idiosyncratic TFP AR(1) .022

δ Capital depreciation .085

Notes: Parameterization follows Khan and Thomas (2008), Table 1, adjusted for the fact that my model
does not feature trend growth.

2.4 Baseline Parameterization

The baseline parameter values, reported in Table 1, are those chosen by Khan and Thomas

(2008), adjusted to reflect the fact that my model does not feature trend growth. The

model period is one year, and the utility function corresponds to indivisible labor. The

firm-level adjustment costs and idiosyncratic shock process were chosen to match features of

the investment rate distribution reported in Cooper and Haltiwanger (2006).

3 Using the Method to Solve the Benchmark Model

In this section, I show how to solve the benchmark model in three distinct steps. First, I

approximate the equilibrium objects using finite-dimensional approximations. In particular,

I approximate the distribution using a flexible parametric family, so that the approximation

is pinned down by the parameters of that family, and I approximate the value function

using a weighted sum of polynomials, so the approximation is pinned down by the coeffi -

cients on those polynomials. This yields a set of finite-dimensional approximate equilibrium

8



conditions. Second, I compute the stationary equilibrium of the model with no aggregate

shocks. Finally, I solve for the dynamics of these variables around their stationary values

using locally accurate perturbation methods. This is completely analogous to solving a

representative agent model by perturbation, except that the endogenous variables include

the distribution parameters and polynomial coeffi cients. Throughout this section, I focus

on the new features of the method, such as the approximation of the distribution and the

perturbation for aggregate dynamics; for further details, see Appendix A.

3.1 Step 1: Approximate Equilibrium Conditions Using Finite-

Dimensional Objects

Distribution Following Algan et al. (2008), I approximate the p.d.f. of the distribution

of firms, denoted g (ε, k), by

g (ε, k) ∼= g0 exp{g11
(
ε−m1

1

)
+ g21

(
k −m2

1

)
+ (6)

ng∑
i=2

i∑
j=0

gji

[(
ε−m1

1

)i−j (
k −m2

1

)j −mj
i

]
},

where ng indexes the degree of approximation, g0, g11, g
2
1,
{
gji
}(ng ,i)
i,j=(2,0)

are parameters, and

m1
1, m

2
1,
{
mj
i

}(ng ,i)
i,j=(2,0)

are centralized moments of the distribution. The parameters g and

moments m must be consistent in the sense that the moments are actually implied by the

parameters:6

m1
1 =

∫ ∫
εg (ε, k) dεdk, (7)

m2
1 =

∫ ∫
kg (ε, k) dεdk, and

mj
i =

∫ ∫ (
ε−m1

1

)i−j (
k −m2

1

)j
g (ε, k) dεdk for i = 2, ..., ng, j = 0, ..., i.

6The normalization g0 is chosen so that the total mass of the p.d.f. is 1.
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Hence, given the vector of moments m, the parameters g are pinned down by (7). I

therefore use the moments m as my characterization of the distribution, and approximate

the infinite-dimensional aggregate state (z, µ) with (z,m).7

To derive the law of motion for the approximate aggregate state, note that the current dis-

tributionm and decision rules pin down the p.d.f. of firms in the next period, g′ (ε′, k′; z,m),

through the identity:

g′ (ε′, k′; z,m) =

∫ ∫ ∫  1 {ρεε+ σεω′ε = ε′} × [ ξ̂(ε,k;z,m)
ξ

1 {ka (ε, k; z,m) = k′}

+
(
1− ξ̂(ε,k;z,m)

ξ

)
1 {kn (ε, k; z,m) = k′}]

 p (ω′ε) g (ε, k;m) dω′εdεdk,

(8)

where p is the standard normal p.d.f. Because of the convolution with decision rules,

the new p.d.f. g′ (ε′, k′; z,m) is not necessarily in the parametric family (6). I therefore

approximate the law of motion (8) by choosing m′ (z,m) to match the moments of the true

p.d.f. g′ (ε′, k′;m):

m1′
1 =

∫ ∫ ∫
(ρεε+ ω′ε)p (ω′ε) g (ε, k;m) dω′εdεdk (9)

m2′
1 =

∫ ∫ ∫ 
ξ̂(ε,k;z,m)

ξ
ka (ε, k; z,m)

+
(

1− ξ̂(ε,k;z,m)

ξ

)
ka (ε, k; z,m)

 p (ω′ε) g (ε, k;m) dω′εdεdk

mj′
i (z,m) =

∫ ∫ ∫ 
(ρεε+ ω′ε −m1′

1 )i−j{ ξ̂(ε,k;z,m)
ξ

(ka (ε, k; z,m)−m2′
1 )

j

+
(

1− ξ̂(ε,k;z,m)

ξ

)
(ka (ε, k; z,m)−m2′

1 )
j}

 p (ω′ε) g (ε, k;m) dω′εdεdk.

In practice, I compute this integral numerically using two-dimensional Gauss-Legendre quadra-

ture, which replaces the integral with a finite sum.

7The distribution in the benchmark model is continuous, but in the online user guide, I show how to
extend this family to include mass points. Essentially, this adds one parameter specifying the location of
the mass point and another specifying the mass itself.
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Firm’s Value Functions Given this approximation of the aggregate state, I approximate

firms’value functions by

v (ε, k; z,m) ∼=
nε∑
i=1

nk∑
j=1

θij (z,m)Ti (ε)Tj (k) ,

where nε and nk define the order of approximation, Ti (ε) and Tj(k) are Chebyshev polyno-

mials, and θij (z,m) are coeffi cients on those polynomials.8 I solve for the dependence of

these coeffi cients on the aggregate state using perturbation in Section 3.3.

With this particular approximation of the value function, it is natural to approximate

the Bellman equation (1) using collocation, which forces the equation to hold exactly at a

set of grid points {εi, kj}nε,nki,j=1,1:

v̂ (εi, kj; z,m) = λ (z,m) max
n

{
ezeεikθjn

ν − w (z,m)n
}

+ λ (z,m) (1− δ) k (10)

+

(
ξ̂ (εi, kj; z,m)

ξ

)
−λ (z,m)

(
ka (εi, kj; z,m)− w (z,m)

ξ̂(εi,kj ;z,m)

2

)
+βEz′|z

[∫
v̂ (ρεεi + σεω

′
ε, k

a (εi, kj; z,m) ; z′,m′ (z,m)) p (ω′ε) dω
′
ε

]


+

(
1− ξ̂ (εi, kj; z,m)

ξ

)
−λ (z,m) kn (εi, kj; z,m)

+βEz′|z
[∫
v̂ (ρεεi + σεω

′
ε, k

n (εi, kj; z,m) ; z′,m′ (z,m)) p(ω′ε)dω
′
ε

]
 ,

where the decision rules are computed from the value function via first order conditions.9

Note that the conditional expectation of the future value function has been broken into its

component pieces: the expectation with respect to idiosyncratic shocks is taken explicitly

by integration, and the expectation with respect to aggregate shocks implicitly through the

expectation operator. I compute the expectation with respect to idiosyncratic shocks using

8Technically, the Chebyshev polynomials are only defined on the interval [−1, 1], so I rescale the state
variables to this interval.

9The choice of Chebyshev collocation is not essential, and the online user guide explains how to use other
approximations, such as splines.
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Gauss-Hermite quadrature, and will compute the expectation with respect to aggregate

shocks using perturbation in Section 3.3.

Approximate Equilibrium Conditions With all of these approximations, the recursive

equilibrium in Definition 1 becomes computable, replacing the true aggregate state (z, µ) with

the approximate aggregate state (z,m), the true Bellman equation (1) with the Chebyshev

collocation approximation (10), and the true distribution law of motion with the approxi-

mation (9). I show in Appendix A that these approximate equilibrium conditions can be

represented by a function f : R2nεnk+ng+2×R2nεnk+ng+2×Rng+1×Rng+1 → R2nεnk+ng+2+ng+1

which satisfies

Eω′z [f (y′,y,x′,x) = 0] , (11)

where y = (θ,ka,g, λ, w) are the control variables, x = (z,m) are the state variables, ψ is

the perturbation parameter, and ka denotes the target capital stock along the collocation

grid. This is exactly the canonical form in Schmitt-Grohé and Uribe (2004), who show how

to solve such systems using perturbation methods. A solution to this system is of the form

y = g(x;ψ)

x′ = h (x;ψ) + ψ × ηω′z,

where η =
(
1,0ng×1

)′
.

Perturbation methods approximate the solution g and h using Taylor expansions around

the point where ψ = 0, which corresponds to the stationary equilibrium with no aggregate

shocks. For example, a first order Taylor expansion gives:

g(x; 1) ∼= gx (x∗; 0) (x− x∗) + gψ (x∗; 0) (12)

h(x; 1) ∼= hx (x∗; 0) (x− x∗) + hψ (x∗; 0) + ηω′z.
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The unknowns in this approximation are the partial derivatives gx, gψ, hx, and hψ. Schmitt-

Grohé and Uribe (2004) show how to solve for these partial derivatives from the partial

derivatives of the equilibrium conditions, fy′ , fy, fx′ , fx, and fψ, evaluated at the stationary

equilibrium with ψ = 0. Since this procedure is by now standard, I refer the interested

reader to Schmitt-Grohé and Uribe (2004) for further details. Given values for x∗ and y∗,

Dynare effi ciently implements this procedure completely automatically. Hence, to solve for

the aggregate dynamics, we just need to compute the stationary equilibrium x∗ and y∗, and

plug this into Dynare to compute the Taylor expansion (12). An analogous procedure can be

used to compute higher-order approximations of g and h, with no additional coding required.

3.2 Step 2: Compute Stationary Equilibrium with No Aggregate

Shocks

In terms of Schmitt-Grohé and Uribe (2004)’s canonical form (11), the stationary equilibrium

is represented by two vectors x∗= (0,m∗) and y = (θ∗,ka∗,g∗, λ∗, w∗) such that

f (y∗,y∗,x∗,x∗) = 0.

In principle, this is a system of nonlinear equations that can be solved numerically; in

practice, this system is large, so numerical solvers fail to converge. I instead solve this

system using a stable iterative scheme described in Appendix A, similar to the algorithm

developed in Hopenhayn and Rogerson (1993).

Figure 1 shows that a moderately high degree of approximation is necessary to capture

the shape of the invariant distribution. The figure plots various slices of this invariant distri-

bution for different degrees of approximation, and compares them to an “exact”histogram.10

The marginal distribution of productivity in Panel (a) is normal, so a second degree approx-

imation gives an exact match due to the functional form of the family (6). However, the

10In particular, I use the same iterative scheme, but approximate the distribution with a histogram which
simply records the mass of firms at points along a fine grid as in Young (2010).
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Table 2: Aggregates in Stationary Equilibrium, for Different Degrees of Distribution Ap-
proximation

Variable ng = 1 ng = 2 ng = 3 ng = 4 ng = 5 Exact

Output 0.522 0.500 0.499 0.499 0.499 0.499

Consumption 0.420 0.413 0.413 0.412 0.412 0.412

Investment 0.100 0.087 0.086 0.086 0.086 0.086

Capital 1.178 1.023 1.015 1.014 1.013 1.015

Wage 0.945 0.962 0.961 0.961 0.961 0.961

Marginal Utility 2.382 2.422 2.423 2.426 2.426 2.427

Notes: Aggregates in stationary equilibrium computed using various orders of approximation. "Exact"
refers to distribution approximated with fine histogram, as in Young (2008).

marginal distribution of capital in Panel (b) features positive skewness and excess kurtosis,

which requires a higher degree approximation. Additionally, a second degree approximation

implies that the conditional distributions of capital by productivity in Panels (c) and (d)

only vary in their location, while the true distribution varies in both location and scale. A

ng = 6 degree approximation captures these complicated shapes almost exactly.

In contrast, even low degree approximations of the distribution provide a good approx-

imation of key aggregate variables. Table 2 computes various aggregates in the stationary

equilibrium, using different degrees of approximation, and again compares them to the val-

ues obtained using an “exact”histogram. A second degree approximation, which fails to

capture the non-normal features of the distribution, nevertheless yields aggregates which are

virtually indistinguishable from higher degree approximations.

3.3 Step 3: Compute Aggregate Dynamics Using Perturbation

Given the values for x∗ and y∗ in the stationary equilibrium, it is straightforward to compute

the Taylor expansions of g and h dynamics using Dynare. Solving for these dynamics

involves two main steps: first, computing the derivatives of the equilibrium conditions (11),
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Figure 1: Invariant Distribution for Different Degrees of Distribution Approximation

(a) Marginal distribution of productivity (b) Marginal distribution of capital

(c) Conditional distributions of capital, ng = 2 (d) Conditional distributions of capital, ng = 6

Notes: Slices of invariant distribution of firms over productivity ε and capital k. "Exact" refers to
nonparametric histogram, following Young (2010). ng refers to highest order moment used in parametric
family (6). Marginal distributions computed by numerical integration of joint p.d.f. "High productivity"
and "Low productivity" correspond to roughly + / - two standard deviations of the productivity
distribution.
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which gives a linear system of equations for the partial derivatives of the solution g and

h, and second, solving the linear system for those partial derivatives. Dynare computes

the derivatives of the equilibrium conditions using symbolic differentiation and solves the

linear system using standard linear rational expectation model solvers, such as Anderson

and Moore (1985) or Sims (2001); see Adjemian (2011) for more details.11 Dynare will

then, if requested, simulate the solution (if necessary, pruning as in Andreasen, Fernández-

Villaverde, and Rubio-Ramírez (2014)), compute theoretical and/or empirical moments of

simulated variables, or estimate the model using likelihood-based methods.

First Order Approximation Computing a first-order approximation of the dynamics

takes between 50 —140 seconds on a Dell workstation, depending on the degree of approx-

imation for the distribution. Table 3 reports these run times and breaks them down into

the fractions spent on various tasks. For all degrees of the distribution approximation, the

majority of time is spent “pre-processing”the model, during which time Dynare reads in the

model file and computes the symbolic derivatives. This is a fixed cost that does not need

to be performed again for different parameter values. The remaining time is spent solv-

ing for the stationary equilibrium of the model (“stationary equilibrium”) and computing

the first-order approximation (“perturbation”). For higher degree approximations of the

distribution, pre-processing takes up relatively more computation time, and the stationary

equilibrium and perturbation steps less time.

The resulting dynamics of key aggregate variables are well in line with what Khan and

Thomas (2008) and Terry (2015b) have reported using different algorithms to solve this

model. Figure 2 plots impulse response functions to an aggregate TFP shock, which com-

pletely characterize the dynamics in a first order approximation. An increase in aggregate

TFP directly increases output, but also increases investment and labor demand, which fur-

ther increases output but also factor prices. The resulting business cycle statistics are

11Moving to higher order approximations requires solving additional equations, but as described in Schmitt-
Grohé and Uribe (2004) these additional systems are linear, and thus simple to solve.
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Table 3: Computing Time for First Order Approximation

Task ng = 2 ng = 3 ng = 4 ng = 5

Total time (in seconds) 53.04 72.89 101.14 136.01

Pre-processor 39% 48% 55% 58%

Stationary equilibrium 24% 19% 16% 15%

Perturbation 37% 33% 29% 27%

Notes: Computing time for computing a first order approximation of aggregate dynamics in seconds.
"Pre-processor" refers to Dynare file processing, which parses the model file and symbolically differentiates
the equilibrium conditions. "Stationary equilibrium" refers to computing the stationary equilibrium of the
model with no aggregate shocks, as in Section 3.2. "Perturbation" refers to Dynare evaluating derivatives
at the stationary equilibrium, and solving the linear system.

Figure 2: Impulse Responses of Aggregates, First Order Approximation

(a) Output (b) Consumption (c) Investment
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Notes: Impulse respones of aggregate variables, for different degrees of approximation of the distribution.
ng refers to highest order moment used in parametric family (6).
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Table 4: Business Cycle Statistics of Aggregates in First Order Approximation

SD (rel. to output) ng = 2 ng = 5 Corr. with Output ng = 2 ng = 5

Output (2.13%) (2.14%) × × ×

Consumption 0.4695 0.4672 Consumption 0.9028 0.9013

Investment 3.8733 3.8925 Investment 0.9689 0.9687

Hours 0.6133 0.6121 Hours 0.9441 0.9444

Real wage 0.4695 0.4672 Real wage 0.9028 0.9013

Real interest rate 0.0845 0.0841 Real interest rate 0.7966 0.7978

Notes: Standard deviation of aggregate variables. All variables are HP-filtered with smoothing parameter
λ = 100 and, with the exception of the real interest rate, have been logged. Standard deviations for
variables other than output are expressed relative to that of output.

reported in Table 4. As usual in a real business cycle model, consumption is roughly half

as volatile as output, investment is nearly four times as volatile, and labor is slightly less

volatile. All variables are highly correlated with output because aggregate TFP is the only

shock driving fluctuations in the model.

The aggregate dynamics are largely unaffected by the degree of approximation of the

distribution. Visually, increasing the degree of approximation from ng = 2 to ng = 5 barely

changes the impulse responses in Figure 2. Quantitatively, the business cycle statistics

reported in Table 4 barely change as well. Hence, including high-degree approximation of

the distribution would not significantly improve the accuracy of the algorithm for studying

these aggregate dynamics.

Second Order Approximation In principle, the first order approximation of the model

considered above could hide important nonlinearities in the aggregate dynamics. In a

nonlinear model, impulse response functions depend on the size and sign of the shock, as

well as the history of previous shocks. These nonlinearities could significantly alter the

dynamics of the model. To investigate this possibility, in Appendix B I compute a second
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order approximation of the aggregate dynamics, which amounts to changing a Dynare option

from order=1 to order=2.12 Quantitatively, the dynamics of the second order approximation

closely resemble those of the first order approximation. This is consistent with Khan and

Thomas (2008), who find little evidence of such nonlinearities using an alternative solution

method.

Method Does Not Require Approximate Aggregation In this benchmark model,

Khan and Thomas (2008) show that “approximate aggregation” holds, in the sense that

the aggregate capital stock almost completely characterizes how the distribution influences

aggregate dynamics. Following Krusell and Smith (1998), they solve the model by ap-

proximating the distribution with the aggregate capital stock, and find that their solution

is extremely accurate. Hence, for this particular model, my method and the Krusell and

Smith (1998) method are both viable. However, my method is significantly more effi cient; in

a comparison project, Terry (2015b) shows that my method solves and simulates the model

in 0.098% the time of the Krusell and Smith (1998) method. This speed gain makes the

full-information Bayesian estimation in Section 4 feasible.

Furthermore, because my method directly approximates the entire distribution, it can

be applied to other models in which approximate aggregation fails. Appendix C makes

this case concrete by adding investment-specific shocks to the model, and showing that

for suffi ciently volatile shocks the aggregate capital stock does not accurately approximate

how the distribution affects dynamics. Extending Krusell and Smith (1998)’s algorithm

would therefore require adding more moments to the forecasting rule. This quickly becomes

infeasible, as each additional moment adds another state variable in a globally accurate

solution method.

Hence, my method is not only significantly faster for models in which approximate ag-

12In the interest of speed, for the second order approximation I use a slightly lower-order approximation of
individual decision rules. As explained in the online user guide, this is because Dynare would otherwise run
into issues with the size of the Matlab workspace. This can be overcome by instructing Dynare to instead
use compiled C++ code to compute the derivatives, which is relatively slow but still feasible. The slow C++
compilation is during the “pre-processing”phase, which only must be performed once.
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gregation holds, it applies equally well to models in which it fails.

4 Estimating Aggregate Shock Processes with Hetero-

geneous Firms

The goals of this section are to show that full-information Bayesian estimation of heteroge-

neous agent models is feasible using my method, and to illustrate how micro-level behavior

can quantitatively impact estimation results. To do this, I extend the benchmark model to

include aggregate investment-specific productivity shocks in addition to the neutral shocks

and estimate the parameters of these two shock processes. As will become clear below, I

include the additional investment-specific shock because this process is most directly shaped

by micro-level investment behavior. The investment-specific shock only affects the capital

accumulation equation, which becomes kjt+1 = (1− δ) kjt+eqtijt. The two aggregate shocks

follow the joint process

zt = ρzzt−1 + σzω
z
t (13)

qt = ρqqt−1 + σqω
q
t + σqzω

z
t ,

where ωzt and ω
q
t are i.i.d. standard normal random variables. I include a loading on neutral

productivity innovations, σqz, to capture comovement between the two shocks. Without

this loading factor, the investment-specific shocks would induce a counterfactual negative

comovement between consumption and investment. Abusing notation introduced in Section

3, denote the vector of parameter values θ =
(
ρz, σz, ρq, σq, σqz

)
.

I estimate the shock process parameters θ conditional on four different parameterizations

of the remaining parameters. The only parameters to vary across these parameterizations

are ξ, the upper bound on fixed cost draws, and σε, the standard deviations of the innovations

to idiosyncratic productivity. I vary the fixed costs from ξ = 0, in which case the model
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exactly aggregates to a representative firm, to ξ = 1; in the last case, I increase σε from 0.02

to 0.04, because otherwise there would be little capital adjustment. These parameters vary

the extent of micro-level adjustment frictions, and therefore micro-level investment behavior,

from frictionless to extreme frictions. The remaining parameters are fixed at standard values,

adjusting the model frequency to one quarter in order to match the frequency of the data.

Table 5 collects all these parameter values.

The Bayesian approach combines a prior distribution of parameters, p (θ), with the like-

lihood function, L (Y|θ) where Y is the observed time series of data, to form the posterior

distribution of parameters, p (θ|Y). The posterior is proportional to p (θ)L (Y|θ), which

is the object I characterize numerically. The data I use is Y =
(

log Ŷ1:T , log Î1:T

)
, where

log Ŷ1:T is the time series of log-linearly detrended real output and log Î1:T is log-linearly

detrended real investment; for details, see Appendix D. I choose relatively standard prior

distributions to form p (θ), also contained in Appendix D. I sample from p (θ)L (Y|θ) using

the Metropolis-Hastings algorithm; since this procedure is now standard (see, for exam-

ple, Fernández-Villaverde, Rubio-Ramírez, and Schorfheide (2015)), I omit further details.

Dynare computes 10,000 draws from the posterior in 23 minutes, 57 seconds.13

Table 6 shows that as the upper bound of the fixed costs increases from ξ = 0 to ξ = 1, the

estimated variance of investment-specific shocks significantly increases from 0.0058 to 0.0088.

Intuitively, matching the aggregate investment data with large frictions requires more volatile

shocks than with small frictions. Additionally, the factor loading of neutral shocks on

investment-specific shocks shrinks, because larger frictions reduce the negative comovement

of consumption and investment. The remaining parameters are broadly constant over the

different specifications, indicating that micro-level adjustment frictions matter mainly for

the inference of the investment-specific shock process.

Of course, the ideal estimation exercise would jointly estimate the adjustment frictions

13A key reason that this estimation is so effi cient is that the parameters of the shock processes do not affect
the stationary equilibrium of the model. Hence, the stationary equilibrium does not need to be recomputed
at each point in the estimation process. Estimating parameters which affect the steady state would take
longer, but is still feasible in Dynare.
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Table 5: Parameterizations Considered in Estimation Exercises

Fixed Parameters Value Fixed Parameters Value

β (discount factor) .99 a (no fixed cost) .011

σ (utility curvature) 1 ρε (idioynscratic TFP) .85

α (inverse Frisch) limα→ 0 ν (capital share) .21

χ (labor disutility) N∗ = 1
3 Changing Parameters Value 1 Value 2 Value 3 Value 4

θ (labor share) .64 σε (idiosyncratic TFP) .02 .02 .02 .04

δ (depreciation) .025 ξ 0 .01 .1 1

Notes: Calibrated parameters in the estimation exercises. "Fixed parameters" refer to those which are the
same across the different estimations. "Changing parameters" are those which vary across estimations.

and shock processes using both micro and macro level data; these results show that, using

my method, such exercises are now feasible. These exercises provide a potentially important

step forward for formal inference in macroeconomics, which currently falls into two broad

categories. The first is estimation of models with meaningful general equilibrium forces, as

in the DSGE literature. To maintain tractability, these exercises generally rely upon (nearly)

representative agent assumptions and ignore micro heterogeneity. The second category is

estimation of models which focus on micro heterogeneity, but ignore meaningful general

equilibrium, as in labor economics or industrial organization. Some recent work (such as

Vavra (2014) or Bloom et al. (2014)) bridges this gap by estimating models with both micro

heterogeneity and meaningful general equilibrium forces. Because of severe computational

burden, these exercises use partial information, moment-based econometrics. My new so-

lution method, and its Dynare implementation, instead bridges these two literatures in a

tractable fashion, overcoming the extreme runtimes and restriction to partial information

procedures in previous work.
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Table 6: Posterior Distribution of Parameters, for Different Micro-Level Calibrations

Micro-Level TFP ρz TFP σz ISP ρq ISP σq ISP Loading ρzq

ξ = 0, σε = .02 0.9811 0.0078 0.9718 0.0058 -0.00446

[90% HPD] [0.9694, 0.9940] [0.0072, 0.0083] [0.954, 0.9912] [0.0045, 0.0071] [-0.0060, -0.0031]

ξ = .01, σε = .02 0.9808 0.0078 0.9747 0.0071 -0.0043

[0.9687, 0.9924] [0.0072, 0.0084] [0.9591, 0.9901] [0.0056, 0.0088] [-0.0059, -0.0026]

ξ = .1, σε = .02 0.9796 0.0078 0.9732 0.0075 -0.0040

[0.9670, 0.9922] [0.0073, 0.0084] [0.9581, 0.9902] [0.0059, 0.0094] [-0.0056, -0.0025]

ξ = 1, σε = .04 0.9786 0.0079 0.9730 0.0088 -0.0037

[0.9659, 0.9913] [0.0073, 0.0085] [0.9549, 0.9924] [0.0066,0.0111] [-0.0054, -0.0020]

Notes: Posterior means and highest posterior density sets of parameters, conditional on micro-level
parameterizations.

5 Conclusion

In this note, I developed a general-purpose method for solving and estimating heterogeneous

agent macro models. In contrast to most existing work, my method does not rely on the

dynamics of the distribution being well-approximated by a small number of moments, sub-

stantially expanding the class of models which can be feasibly computed. Nevertheless, my

method is straightforward to implement. I have provided codes and a user guide for solving

a general class of models using Dynare, with the hope that it will help bring heterogeneous

agent models into the fold of standard macroeconomic analysis. A particularly promising

avenue for future research is incorporating micro data into the estimation of DSGE mod-

els. As I showed in Section 4, micro-level behavior places important restrictions on model

parameters. In the current DSGE literature, such restrictions are either absent or imposed

through ad-hoc prior beliefs; my method instead allows for the micro data to formally place

these restrictions itself.
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A Details of the Method

This appendix provides additional details of the method referenced in Section 3 in the main

text.

A.1 Approximate Equilibrium Conditions

I first show that the approximate equilibrium conditions can be written as a system of

2nεnk+ng+2+ng+1 equations, of the form (11). To that end, let {τ gi , (εi, ki)}
mg
i=1 denote the

weights and nodes of the two-dimensional Gauss-Legendre quadrature used to approximate

the integrals with respect to the distribution, and let {τ εi , ωεi}
mε
i=1 denote the weights and

nodes of the one-dimensional Gauss-Hermite quadrature used to approximate the integrals

with respect to the idiosyncratic shock innovations. In my numerical implementation, I use

the degree of approximation for value functions nε = 3 and nk = 5, for the Gauss-Legendre

quadrature mg = 64 (from the tensor product of two 8th order, one dimensional Gauss-

Legendre quadrature nodes and weights), and mε = 3 for the degree of the Gauss-Hermite

quadrature.

With this notation, and the notation defined in the main text, the approximate Bellman

equation (10) can be written as

0 = E[
nε∑
k=1

nk∑
l=1

θijTk (εi)Tl (kj)− λ
(
ezeεikθjn (εi, kj)

ν − wn (εi, kj)
)
− λ (1− δ) kj (14)

−
(
ξ̂ (εi, kj)

ξ

)
−λ
(
ka (εi, kj)− w ξ̂(εi,kj)

2

)
+β
∑mε

o=1 τ
ε
o

∑nε
k=1

∑nk
l=1 θ

′
ijTk (ρεεi + σεω

ε
o)Tl (k

a (εi, kj))



−
(

1− ξ̂ (εi, kj)

ξ

)
−λkn (εi, kj)

+β
∑mε

o=1 τ
ε
o

∑nε
k=1

∑nk
l=1 θ

′
ijTk (ρεεi + σεω

ε
o)Tl (k

n (εi, kj))

],
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for the nεnk collocation nodes i = 1, ..., nε and j = 1, ...nk. The optimal labor choice is

defined through the first order condition

n (εi, kj) =

(
νezeεikθj

w

) 1
1−ν

.

The policy functions ka (εi, kj), kn (εi, kj), and ξ̂ (εi, kj) are derived directly from the ap-

proximate value function θ as follows. First, the adjust capital decision rule ka (εi, kj) must

satisfy the first order condition

0 = E

[
λ− β

mε∑
o=1

τ εo

nε∑
k=1

nk∑
l=1

θ′ijTk (ρεεi + σεω
ε
o)T

′
l (ka (εi, kj))

]
. (15)

Conditional on this choice, the constrained capital decision is

kn (εi, kj) =



(1− δ + a) kj if ka (εi, kj) > (1− δ + a) kj

ka (εi, kj) if ka (εi, kj) ∈ [(1− δ − a) kj, (1− δ + a) kj]

(1− δ − a) kj if ka (εi, kj) < (1− δ − a) kj


.

Finally, the capital adjustment threshold ξ̃ (εi, kj) is defined as

ξ̃ (εi, kj) =
1

wλ


−λ (ka (εi, kj)− kn (εi, kj))

+β
∑mε

o=1 τ
ε
o

∑nε
k=1

∑nk
l=1 θ

′
ijTk (ρεεi + σεω

ε
o) (Tl (k

a (εi, kj))− Tl (kn (εi, kj)))

 ,

and the bounded threshold is given by ξ̂ (εi, kj) = min{max{0, ξ̃ (εi, kj) , ξ}}. To evaluate the

decision rules off the grid, I interpolate the adjust capital decision rule ka using Chebyshev

polynomials, and derive kn and ξ̂ from the above formulae.

Given the firm decision rules, the implications of household optimization can be written
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as

0 = λ−


mg∑
i=1

τ gi


ezeεikθi n (εi, ki) + (1− δ) ki

− ξ̂(εi,ki)

ξ
ka (εi, ki)−

(
1− ξ̂(εi,ki)

ξ

)
kn (εi, ki)

 g (εi, ki|m)


−σ

(16)

0 =

(
wλ

χ

) 1
α

−
mg∑
i=1

τ gi

(
n (εi, ki) +

ξ̂ (εi, ki)
2

2ξ

)
g (εi, ki|m) , (17)

where

g (εl, kl|m) = g0 exp{g11
(
εl −m1

1

)
+ g21

(
kl −m2

1

)
+

ng∑
i=2

i∏
j=0

gji

[(
εl −m1

1

)i−j (
kl −m2

1

)j −mj
i

]
}.

The approximate law of motion for the distribution (9) can be written

0 = m1′
1 −

mg∑
l=1

τ gl

mε∑
k=1

τ εk (ρεεl + σεω
ε
k) g (εl, kl|m) (18)

0 = m2′
1 −

mg∑
l=1

τ gl

mε∑
k=1

τ εk

[
ξ̂ (εl, kl)

ξ

(
ka (εl, kl)−m2′

1

)
+

(
1− ξ̂ (εl, kl)

ξ

)(
ka (εl, kl)−m2′

1

)]
g (εl, kl|m)

0 = mj′
i −

mg∑
l=1

τ gl

mε∑
k=1

τ εk


ξ̂(εl,kl)

ξ

(
(ρεεl + ωεk −m1′

1 )i−j (ka (εl, kl)−m2′
1 )

j
)

+
(

1− ξ̂(εl,kl)

ξ

)(
(ρεεl + ωεk −m1′

1 )
i−j

(ka (εl, kl)−m2′
1 )

j
)
 g (εl, kl|m) .

Consistency between the moments m and parameters g requires

m1
1 =

mg∑
l=1

τ gl εlg (εl, kl|m) , (19)

m2
1 =

mg∑
l=1

τ gl klg (εl, kl|m) , and

mj
i =

mg∑
l=1

τ gl

[(
εl −m1

1

)i−j (
kl −m2

1

)j −mj
i

]
g (εl, kl|m) for i = 2, ..., ng, j = 0, ..., i.
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Finally, the law of motion for the aggregate productivity shock is

0 = E [z′ − ρzz] (20)

With all these expressions, we can define f (y′,y,x′,x;ψ) which outputs (14), (15), (16),

(17), (18), (19), and (20).

A.2 Solving for Stationary Equilibrium

Following Hopenhayn and Rogerson (1993), I solve for the stationary equilibrium by iterating

on the wage w∗:

1. Guess a value for the wage w∗

2. Given w∗, compute the firm’s value function θ∗ by iterating on the Bellman equation

(10). Note that λ∗ does not enter the stationary Bellman equation because it is a

multiplicative constant.

3. Using the firm’s decision rules, compute the invariant distribution m∗ by iterating on

the law of motion (9).

4. Compute aggregate labor demand using this invariant distribution, and compute ag-

gregate labor supply using the household’s first order condition.

5. Update the guess of w∗ appropriately.14

For the “exact”histogram comparisons in the main text, I follow these steps, except I

approximate the distribution with a histogram recording the mass of firms along a fine grid

following Young (2010).

14Although I describe this as an iteration, it is actually more effi cient numerically to view this as a root-
finding problem, solving for the wage which sets excess labor demand to 0.
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B Second Order Approximation of Aggregate Dynam-

ics

In this appendix, I document properties of the second order approximation of aggregate

dynamics referenced in Section 3.3 of the main text. Figure 3 plots the impulse response

to a positive, one standard deviation aggregate TFP shock starting from the stationary

equilibrium, in a first order and a second order approximation of the model. The two

responses are nearly indistinguishable. In fact, the resulting business cycle statistics reported

in Table 7 are quantitatively identical up to four decimal places.

To further investigate the potential for nonlinearities, the top row of Figure 4 plots the

response to a positive vs. a negative shock in the second order expansion, and finds that the

absolute responses are almost the same. The bottom row of Figure 4 plots the response to

a one standard deviation positive shock, starting from a "recession" (negative one standard

deviation shocks in the previous two periods) compared to an "expansion" (positive shocks

in the previous periods). Although there is a slight history dependence in the response of

investment, it is quantitatively small.

C Method Does Not Require Approximate Aggrega-

tion

In this appendix, I show that my method continues to perform well even when approximate

aggregation fails to hold. To do this, I modify the benchmark model, because as Khan

and Thomas (2008) show approximate aggregation holds in this case. In the benchmark

model, the distribution impacts firms’decisions through two channels: first, by determining

the marginal utility of consumption λ (z, µ), and second, by determining the law of motion
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Figure 3: Aggregate Impulse Responses, First vs. Second Order Approximation

(a) Output (b) Consumption (c) Investment
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Notes: Impulse respones of aggregate variables, for different orders of approximation. "First order" refers
to linear impulse response. "Second order" refers to nonlinear generalized impulse response function, as in
Koop et al. (1996).

Table 7: Business Cycle Statistics, First vs. Second Order Approximation

SD (rel. to output) Order 1 Order 2 Corr. with Output Order 1 Order 2

Output (2.11%) (2.11%) × × ×

Consumption 0.4739 0.4739 Consumption 0.9078 0.9078

Investment 3.7299 3.7299 Investment 0.9698 0.9698

Hours 0.6066 0.6066 Hours 0.9445 0.9445

Real wage 0.4739 0.4739 Real wage 0.9078 0.9078

Real interest rate 0.0806 0.0806 Real interest rate 0.7864 0.7864

Notes: All variables are HP-filtered with smoothing parameter λ = 100 and, with the exception of the real
interest rate, have been logged. Standard deviations for variables other than output are expressed relative
to that of output.
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Figure 4: Sign and Size Dependence in Impulse Responses, Second Order Approximation

(a) Sign dependence, output (b) Sign dependence, investment
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(c) State dependence, output (d) State dependence, investment
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Notes: Nonlinear features of the impulse responses of aggregate output (left column) and investment (right
column). "Sign dependence" refers to the impulse response to a one standard deviation positive vs.
negative shock. "State dependence" refers to the impulse response after positive one standard deviation
shocks vs. negative one standard deviation shocks in the previous two years. All impulse responses
computed nonlinearing as in Koop et al. (1996).
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Table 8: Standard Deviation of Aggregates in First Order Approximation

Forecasting Equation R2 RMSE

Marginal Utility 0.998185 0.00145

Future capital 0.999855 0.00061

Notes: Results from running forecasting regressions (21) on data simulated from first order model solution.

of the distribution, µ′ (z, µ).15 Table 8 shows that the aggregate capital stock Kt captures

both of these channels very well, by estimating the forecasting equations

log λt = α0 + α1zt + α2 logKt (21)

logKt+1 = γ0 + γ1zt + γ2 logKt

on data simulated using my solution. The R2 of these forecasting equations are high, and

the root mean-squared error low, indicating that a Krusell and Smith (1998) algorithm using

the aggregate capital stock performs well in this environment.

To break this approximate aggregation result, I add an investment-specific productivity

shock qt to the benchmark model. In this case, the capital accumulation equation becomes

kjt+1 = (1− δ) kjt + eqtijt, but the remaining equations are unchanged. I assume the

investment-specific shock follows the AR(1) process qt = ρqqt−1 + σqω
q
t , where ω

q
t ∼ N(0, 1),

independently of the aggregate TFP shock.

Figure 5 shows that approximate aggregation becomes weaker as the investment-specific

productivity shock becomes more important. Panel (a) plots the R2s from the forecasting

15Given the linear disuility of labor supply, the wage is purely a function of the marginal utility of con-
sumption.
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Figure 5: Forecasting Power of Aggregate Capital, as a Function of Investment-Specific
Shock Variance

(a) R2 of forecasting regs (b) DH statistic, capital (c) DH statistic, mar. utility
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Notes: Results from running forecasting regressions (22) on data simulated from first order model solution.
"DH statistic" refers to Den Haan (2010)’s suggestion of iterating on forecasting equations without
updating Kt from simulated data.

equations

log λt = α0 + α1zt + α2qt + α3 logKt (22)

logKt+1 = γ0 + γ1zt + γ2qt + γ3 logKt

as a function of the shock volatility σq, keeping ρq = 0.859 throughout. However, as Den

Haan (2010) notes, the R2 is a loose error metric for two reasons: first, it only measures one

period ahead forecasts, whereas agents must forecast into the infinite future; and second,

it only measures average deviations, which potentially hide occasionally large errors. To

address these concerns, Den Haan (2010) proposes iterating on the forecasting equations (22)

without updating the capital stock, and computing both average and maximum deviations of

these forecasts from the actual values in a simulation. Panels (b) and (c) of Figure 5 shows

that these more stringent metrics grow even more sharply as a function of the volatility σq.

Hence, Krusell and Smith (1998) algorithms which approximate the distribution with only

the aggregate capital stock will fail in these cases.

Because my method directly approximates the distribution, rather than relying on these

low-dimensional forecasting rules, it continues to perform well as investment-specific shocks
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Figure 6: Aggregate Impulse Responses to Investment-Specific Productivity Shock

(a) Output (b) Consumption (c) Investment
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Notes: Impulse respones of aggregate variables, for different orders of approximation of the distribution. ng
refers to highest order moment used in parametric family (6).
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become more important. Figure 6 plots the impulse responses of key aggregate variables to

an investment-specific shock for σq = 0.02, a value for which approximate aggregation fails.

As with neutral productivity shocks in Figure 2, even relatively low degree approximations

of the distribution are suffi cient to capture the dynamics of these variables. However, there

is a slightly greater difference between ng = 2 and ng = 3 degree approximations, indicating

that the shape of the distribution varies more in response to the investment-specific shocks.

D Estimation Details

In this appendix, I provide additional details of the estimation exercise described in Section

4 of the main text. The particular data sets I use are (1) Real Gross Private Domestic

Investment, 3 Decimal (series ID: GPDIC96), quarterly 1954-01-01 to 2015-07-01, and (2)

Real Personal Consumption Expenditures: Nondurable Goods (chain-type quantity index)

(series ID: DNDGRA3Q086SBEA), seasonally adjusted, quarterly 1954-01-01 to 2015-07-01. I

log-linearly detrend both series and match them to log-deviations from stationary equilib-

rium in the model. The prior distributions of parameters are independent of each other, and

given in Table 9. To sample from the posterior distribution, I use Markov Chain Monte Carlo

with 10,000 draws, and drop the first 5,000 draws as burn-in. Figure 7 plots the prior and

estimated posterior distributions of parameters under two micro-level calibrations. Increas-

ing the capital adjustment frictions from Panel (a) to Panel (b), the posterior distribution

of σq is shifted rightward and is slightly more dispersed.
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