% this is the .mod file var x a b c_e c_u c_n l u e s k v fs fv Lambda xi chi MRS_NC Omega Gamma tau pi i Y D dw P p_star p_a p_b q varsigma z rho b_bar eps ; varexo e_z e_r e_b e_i; parameters beta alpham alpha vartheta varrho chi_bar xi_bar iota phi eps_p eta theta psi w tau_u z_ss pi_ss i_bar fs_ss fv_ss b_bar_ss B l_ss e_ss u_ss s_ss k_ss v_ss x_ss a_ss b_ss c_e_ss c_u_ss c_n_ss xi_ss chi_ss MRS_NC_ss Omega_ss Gamma_ss P_ss p_a_ss p_b_ss q_ss tau_ss Y_ss D_ss dw_ss rho_ss rho_r sigma_r rho_b sigma_b rho_z sigma_z rho_i sigma_i ; load param; load vecSS; set_param_value('beta', beta ); set_param_value('alpham', alpham); set_param_value('alpha', alpha); set_param_value('vartheta', vartheta); set_param_value('varrho', varrho); set_param_value('chi_bar', chi_bar); set_param_value('xi_bar', xi_bar); set_param_value('iota', iota); set_param_value('phi', phi); set_param_value('eps_p', eps_p); set_param_value('eta', eta); set_param_value('theta', theta); set_param_value('psi', psi); set_param_value('tau_u', tau_u); set_param_value('w', w); %set_param_value('w_ss', w_ss); set_param_value('z_ss', z_ss); set_param_value('pi_ss', pi_ss); set_param_value('i_bar', i_bar); set_param_value('fs_ss', fs_ss); set_param_value('fv_ss', fv_ss); set_param_value('b_bar_ss', b_bar_ss); set_param_value('B', B); set_param_value('l_ss', l_ss); set_param_value('u_ss', u_ss); set_param_value('e_ss', e_ss); set_param_value('s_ss', s_ss); set_param_value('k_ss', k_ss); set_param_value('v_ss', v_ss); set_param_value('x_ss', x_ss); set_param_value('b_ss', b_ss); set_param_value('a_ss', a_ss); set_param_value('c_e_ss', c_e_ss); set_param_value('c_u_ss', c_u_ss); set_param_value('c_n_ss', c_n_ss); set_param_value('xi_ss', xi_ss); set_param_value('chi_ss', chi_ss); set_param_value('MRS_NC_ss', MRS_NC_ss); set_param_value('Omega_ss', Omega_ss); set_param_value('Gamma_ss', Gamma_ss); set_param_value('P_ss', P_ss); set_param_value('p_a_ss', p_a_ss); set_param_value('p_b_ss', p_b_ss); set_param_value('q_ss', q_ss); set_param_value('tau_ss', tau_ss); set_param_value('Y_ss', Y_ss); set_param_value('D_ss', D_ss); set_param_value('dw_ss', dw_ss); set_param_value('rho_ss', rho_ss); set_param_value('rho_r', rho_r); set_param_value('sigma_r', sigma_r); set_param_value('rho_b', rho_b); set_param_value('sigma_b', sigma_b); set_param_value('rho_z', rho_z); set_param_value('sigma_z', sigma_z); set_param_value('rho_i', rho_i); set_param_value('sigma_i', sigma_i); model; % Euler c_e^(-varrho)= beta*((1+i(+1))/pi(+1))*(e(+1)*(c_e(+1))^(-varrho) + u(+1)*(c_u(+1))^(-varrho)+(1-l(+1))*(c_n(+1))^(-varrho)); % BC and liquidity constraints x=(b(+1)/P)+(1+i)*(a/P)-(1+i)*(b/P); c_u=x+(tau_u/P); c_n=x; a(+1)/P=x+(1-tau)*e*(w/P)+(1-tau)*D+u*(tau_u/P) -(e*c_e+u*c_u+(1-l)*c_n); % employment e=rho*e(-1)+fs*s; % searchers s=l-rho*e(-1); % participation condition MRS_NC-Omega=fs*((1-tau)*(w/P) -chi_bar*(e^(1+iota))*(c_e^(varrho))-Gamma)+fs*beta*rho(+1)*(c_e(+1)^(-varrho))*((1-fs(+1))/fs(+1))*(MRS_NC(+1)-Omega(+1)); % where: chi=chi_bar*(e^(1+iota))/(1+iota); xi=xi_bar*log(1-l); MRS_NC=xi_bar*(c_e)^(varrho); %xi=xi_bar*((1-l)^(1-phi))/(1-phi); %MRS_NC=xi_bar*((1-l)^(1-phi))/mu_ce; Omega=(tau_u/P) + (c_n-c_u)+(c_e^varrho)*(log(c_u) - log(c_n) - xi); Gamma=(tau_u/P) + (c_e-c_u)+(c_e^varrho)*(log(c_u) - log(c_e) + chi); % aggregate employment and unemployment l=e+u; % discount factor Lambda=beta*((1-tau(+1))/(1-tau))*(c_e(+1)/c_e)^(-varrho); % hiring costs k=z*B*(fs)^eta; % asset market equilibrium b(+1)/P=b_bar; a(+1)/P=b_bar; % Firms: %optimal hiring k/fv=(q/P)*z-(w/P)+rho(+1)*Lambda(+1)*k(+1)/fv(+1); % dividends definition dw=(q/P)*z*e-(w/P)*e-k*v; % price p_star=p_a/p_b; p_a=((eps_p-1)/eps_p)*q*Y + Lambda(+1)*(1-theta)*p_a(+1)*(pi(+1)^(eps_p-1)); p_b=Y+Lambda(+1)*(1-theta)*p_b(+1)*(pi(+1)^(eps_p-1)); % inflation %pi=((1-theta)/(1-theta*(p_star/P)^(1-eps_p)))^(1/(1-eps_p)); P=(theta*(p_star)^(1-eps_p)+(1-theta)*P(-1)^(1-eps_p))^(1/(1-eps_p)); pi=P/P(-1); %Output Y=z*e/varsigma; % price dispersion varsigma=theta*(p_star/P)^(-eps_p)+(1-theta)*(pi^(eps_p))*varsigma(-1); % dividends D=Y-(q/P)*z*e+dw; % government tau*(e*(w/P)+D)=u*tau_u; % Taylor rule 1+i(+1) = (1+i_bar)*(pi^(psi))*exp(eps); % job finding rates fs=alpham*(v/s)^(1-alpha); fv=alpham*(v/s)^(-alpha); % bargained wage - to simplify, suppose there is binding min wage so this condition does not bind %w= vartheta*(q*z+Lambda(+1)*rho(+1)*(1-(c_e^(-varrho))*(1-fs(+1)))*k(+1)/fv(+1))+(1-vartheta)*((e^(1+iota))*chi_bar*(c_e^varrho)+Gamma)/(1-tau); % exogenous variables log(z)=(1-rho_z)*log(z_ss)+rho_z*log(z(-1))+sigma_z*e_z; log(rho)=(1-rho_r)*log(rho_ss)+rho_r*log(rho(-1))+sigma_r*e_r; b_bar=(1-rho_b)*b_bar_ss+rho_b*(b_bar(-1))+sigma_b*e_b; eps=rho_i*eps(-1)+sigma_i*e_i; end; initval; z=z_ss; pi=pi_ss; Lambda=beta; i=i_bar; rho=rho_ss; b_bar=b_bar_ss; varsigma=1; fs=fs_ss; fv=fv_ss; l=l_ss; u=u_ss; e=e_ss; s=s_ss; k=k_ss; v=v_ss; x=x_ss; b=b_ss; a=a_ss; %w=w_ss; tau=tau_ss; c_e=c_e_ss; c_u=c_u_ss; c_n=c_n_ss; xi=xi_ss; chi=chi_ss; MRS_NC=MRS_NC_ss; Omega=Omega_ss; Gamma=Gamma_ss; p_star=P_ss; P=P_ss; q=q_ss; Y=Y_ss; p_a=p_a_ss; p_b=p_b_ss; D=D_ss; dw=dw_ss; end; shocks; var e_z; stderr sigma_z; var e_r; stderr sigma_r; var e_b; stderr sigma_b; var e_i; stderr sigma_i; end; resid(1); steady; check; stoch_simul(order=1, irf=40, nograph) c_e ;