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Abstract

In this paper, we introduce our GDSGE framework and MATLAB toolbox for

solving dynamic stochastic general equilibrium models with a novel global solution

method. The framework encompasses many well-known incomplete markets mod-

els with highly nonlinear dynamics such as models on financial crises, models with

rare disasters (such as the current COVID-19 pandemic), with many financial assets

and portfolio choices, and with occasionally binding constraints. The toolbox allows

users to input a simple and intuitive model description script similar to Dynare, and

returns a convenient MATLAB interface for accessing efficient computations imple-

mented in C++. The toolbox is most effective in solving models featuring endoge-

nous state variables with implicit law-of-motion such as wealth shares or consump-

tion shares. It solves many recent important models more efficiently and accurately

compared to their original solution algorithms.
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1 Introduction

The Dynamic Stochastic General Equilibrium (DSGE) models are an important tool
in the study of business cycles and monetary and fiscal policies. The introduction of the
toolbox Dynare has made it easy to solve and estimate DSGE models and has enabled a
large number of important academic studies and policy applications. Dynare uses local
algorithms to solve the models. However, recent developments in macroeconomics high-
light the importance of solving these models using global methods. These developments
include studies on

• financial crises and highly nonlinear dynamics of the economy around the crises
in closed or open economies such as Mendoza (2010), Bianchi (2011), He and Kr-
ishnamurthy (2011), Brunnermeier and Sannikov (2014), and Cao et al. (2019);

• implications of rare disasters such as Barro (2006), Gourio (2012), Barro et al. (2017),
and Guerrieri et al. (2020) (this paper studies the impact of the current COVID-19
pandemic);

• portfolio choices and their implications such as Heaton and Lucas (1996), Guvenen
(2009), and Cao (2018);

• models with occasionally binding constraints (e.g, borrowing constraints and mon-
etary policy zero lower bound) such as Gust et al. (2017), Guerrieri and Iacoviello
(2017), Cao and Nie (2017), and Cao et al. (2019);

• international finance models with endogenous capital accumulation and/or port-
folio choices such as Caballero et al. (2008), Maggiori (2017), Coeurdacier et al.
(2019), and Cao et al. (2020);

• and many more.

Yet, despite these important developments, there has not been a unified framework and
a toolbox like Dynare for the global solutions of DSGE models. This paper offers such a
framework and toolbox.

In this paper, we first develop a general framework that encompasses many recent
well-known models and their extensions. The framework consists of state variables, pol-
icy variables, and short run equilibrium conditions, e.g., market clearing conditions and
Euler equations, that fully describe sequential equilibrium. In the framework, a recursive
equilibrium is a mapping from current state variables to current policy variables (policy
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function) and future state variables (transition function). The framework allows us to
design a general algorithm to solve for recursive equilibria in these models robustly and
efficiently using policy-function iterations. We then develop a toolbox that implements
the algorithm. The toolbox is similar to Dynare in that it allows users to write models
in intuitive and simple scripts, i.e., gmod files (gmod stands for global model), despite
requiring users to specify the state and policy variables and the ranges for state variables
explicitly, due to the nature of global solutions.

The algorithm is based on policy function iteration, collocation, and global projec-
tion. One well-known challenge for global solution methods, including ours, is that
the equilibrium equation system needs to be solved for a large number of collocation
points across the state space, requiring researchers to turn to a compiled language such
as C++ or Fortran to make computations feasible. The toolbox addresses this challenge
by compiling the model description file into a C++ library that implements the actual
computations with high efficiency, while returning a convenient MATLAB interface to
users. The low-level implementation takes care of details such as interfacing to multiple
equation solvers, dense/sparse grid function approximation methods, automatic differ-
entiation, and parallel computation, while remains flexible by allowing users to specify
options and generate model output via the MATLAB interface.

We provide many examples of existing seminal applications that can be solved rel-
atively easily using the toolbox. The examples in the paper include Heaton and Lucas
(1996), Guvenen (2009), Bianchi (2011), Barro et al. (2017), and a dynamic extension of
Guerrieri et al. (2020). Each of the examples listed can be implemented within 200 lines
of toolbox codes and execute in a minute on a regular laptop. The toolbox solves these
examples more efficiently and accurately compared to their original solution methods.
We provide many more examples on the toolbox’s website.

The toolbox demonstrates the most of its power, relative to other methods, for models
with endogenous state variables with implicit state-transition equations, such as wealth
shares or consumption shares. As we make clear in the applications, these endoge-
nous state variables help reduce the number of state variables to be kept track of in
models with multiple assets such as Heaton and Lucas (1996), Kubler and Schmedders
(2003), and Cao (2018), or help simplify the feasible region of the endogenous state
space in models with a collateral constraint such as Mendoza (2010) and Cao and Nie
(2017). They also help get around multiple equilibria issues as demonstrated in Cao et al.
(2019). The key insight which allows us to integrate these models in our framework is
to include the vectors of future realizations of endogenous state variables in the vector
of policy variables. The additional equations in the system of equations and unknowns,
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to be solved at each collocation point over the iterations, are the consistency equations
that impose the future endogenous state variables to be consistent with current policy
variables.

Our approach to solving models with endogenous state variables is different from
existing approaches in the literature. For example, Kubler and Schmedders (2003) use
wealth shares as endogenous state variables. They solve for future wealth shares using
consistency equations as an additional fixed-point problem for each guess for current
policy variables. The solution to the fixed-point problem is then used to formulate a
system of equations and unknowns for current policy variables. By contrast, we directly
include future wealth shares and consistency equations among the policy variables and
equilibrium conditions. This allows us to solve for equilibria at the current state variables
in a single step and facilitates the general implementation of the toolbox.

An earlier attempt in providing a general, unified framework for global solutions of
DSGE models is Winschel and Kratzig (2010). Our framework is more general and allows
for endogenous state variables with implicit state-transition equations. We also provide
a toolbox similar to Dynare which only requires users to provide model files. Users
do not need to code up their model in specific programming languages such as Java,
Fortran, or MATLAB. Both Winschel and Kratzig (2010) and our algorithms use policy
function iterations. Earlier work using policy-function iterations for DSGE economies
includes Coleman (1990, 1991), and Judd et al. (2000).

The framework is more readily applicable to solving GDSGE models with a finite
number of agents, or more precisely a finite number of agent-types.1 Cao (2020) shows
that incomplete markets models with finite agent types are useful special cases of fully-
heterogeneous-agent, incomplete markets model with both idiosyncratic and aggregate
shocks à la Krusell and Smith (1998). In particular, the former corresponds to the latter in
which idiosyncratic shocks are perfectly persistent. We provide an explicit comparison
between the two models on the toolbox’s website. In addition, the toolbox can be used to
solve the agents’ decision problem and to simulate in the latter given conjectured laws of
motion of the aggregate state variables. Then, with an additional fixed-point iteration on
these laws of motion, which can be coded up simply in MATLAB, the toolbox solution
can be used to solve for the DSGE in the latter. In the last section of the paper, we show
how this idea can be used to solve Krusell and Smith’s model in less than 100 lines of
toolbox code and 100 lines of MATLAB code.

The remainder of the paper is organized as follows. In Section 2, we present the

1There is a continuum of price-taking agents within each type and they make identical decisions in
equilibrium.
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leading example for our toolbox. In Section 3 and Section 4, we provide the general
framework and the design of the toolbox. A wide range of examples is presented in
Section 5. In Section 6 we discuss the application of our toolbox to heterogenous agent
models with both idiosyncratic and aggregate shocks. Section 7 concludes.

2 A Leading Example

We use the benchmark model in Heaton and Lucas (1996) as the first illustration for
how to write models in our framework and solve them using the toolbox. We follow
closely the notation in the original paper.

This is an incomplete markets model with two representative agents i ∈ I = {1, 2}
who trade in equity shares and bonds. The aggregate state z ∈ Z, which consists of
capital income share, agents’ income share, and aggregate endowment growth, follows
a first-order Markov process. ps

t(z
t) and pb

t (z
t) denote share price and bond price at time

t and in shock history zt = {z0, z1, . . . , zt}. To simplify the notation, we omit the explicit
dependence on the shock history, e.g., ps

t stands for ps
t(z

t).
Agent i takes the share and bond prices as given and maximizes her inter-temporal

expected utility

U i
t = Et

[
∞

∑
τ=0

βτ

(
ci

t+τ

)1−γ

1− γ

]
subject to

ci
t + ps

ts
i
t+1 + pb

t bi
t+1 ≤ (ps

t + dt)si
t + bi

t + Yi
t

and

si
t+1 ≥ 0

bi
t+1 ≥ Kb

t ,

where Ya
t denotes the aggregate income. dt = δtYa

t is total dividend (capital income)
and Yi

t = ηi
tY

a
t is labor income of agent i. Aggregate income grows at a stochastic rate

γa
t =

Ya
t

Ya
t−1

. zt = {γa
t , δt, η1

t } follows a first-order Markov process estimated using U.S.
data. The borrowing limit is set to be a constant fraction of per capita income, i.e.,
Kb

t = K̄bYa
t .
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In equilibrium, prices are determined such that markets clear in each shock history:

s1
t + s2

t = 1,

b1
t + b2

t = 0.

As in Kubler and Schmedders (2003) and Cao (2010, 2018), we use the normalized finan-
cial wealth share

ωi
t =

(ps
t + dt)si

t + bi
t

ps
t + dt

as an endogenous state variable. In equilibrium, the market clearing conditions imply
that ω1

t + ω2
t = 1.

For any variable xt, let x̂t denote the normalized variable: x̂t = xt
Ya

t
(except bi

t for

which b̂i
t =

bi
t

Ya
t−1

). Using this normalization, agent i’s budget constraint can be rewritten
as

ĉi
t + p̂s

ts
i
t+1 + pb

t b̂i
t+1 ≤

(
p̂s

t + d̂t

)
ωi

t + Ŷi
t .

The wealth share is rewritten as

ωi
t =

( p̂s
t + d̂t)si

t +
b̂i

t
γa

t

p̂s
t + d̂t

.

The optimality of agent i’s consumption and asset choices are captured by first-order
conditions in si

t+1 and bi
t+1:

1 = βEt

( ĉi
t+1

ĉi
t

)−γ (
γa

t+1
)1−γ p̂s

t+1 + d̂t+1

p̂s
t

+ µ̂i,s
t

1 = βEt

( ĉi
t+1

ci
t

)−γ (
γa

t+1
)−γ 1

pb
t

+ µ̂i,b
t ,

where µ̂i,s
t and µi,b

t are the Lagrangian multipliers on agent i’s no short sale constraint
and borrowing constraint, respectively. The multipliers and portfolio choices satisfy the
complementary-slackness conditions:

0 = µ̂i,s
t si

t+1

0 = µ̂i,b
t (b̂i

t+1 − K̄b).

Because the optimization problems of the agents are concave optimization problems.
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The first-order conditions are necessary and sufficient for optimality.
We solve the model using policy function iterations: we look for pricing, allocation,

and Lagrange multiplier functions over wealth share which satisfy the market clearing
conditions and first-order conditions. The GDSGE code for the model and implements
our algorithm is given below.

1 % Parameters

2 parameters beta gamma Kb;

3 beta = 0.95; % discount factor

4 gamma = 1.5; % CRRA coefficient

5 Kb = -0.05; % borrowing limit in ratio of aggregate output

6 % Shock variables

7 var_shock g d eta1;

8 % Shocks and transition matrix

9 shock_num = 8;

10 g = [.9904 1.0470 .9904 1.0470 .9904 1.0470 .9904 1.0470];

11 d = [.1402 .1437 .1561 .1599 .1402 .1437 .1561 .1599];

12 eta1 = [.3772 .3772 .3772 .3772 .6228 .6228 .6228 .6228];

13 shock_trans = [

14 0.3932 0.2245 0.0793 0.0453 0.1365 0.0779 0.0275 0.0157

15 0.3044 0.3470 0.0425 0.0484 0.1057 0.1205 0.0147 0.0168

16 0.0484 0.0425 0.3470 0.3044 0.0168 0.0147 0.1205 0.1057

17 0.0453 0.0793 0.2245 0.3932 0.0157 0.0275 0.0779 0.1365

18 0.1365 0.0779 0.0275 0.0157 0.3932 0.2245 0.0793 0.0453

19 0.1057 0.1205 0.0147 0.0168 0.3044 0.3470 0.0425 0.0484

20 0.0168 0.0147 0.1205 0.1057 0.0484 0.0425 0.3470 0.3044

21 0.0157 0.0275 0.0779 0.1365 0.0453 0.0793 0.2245 0.3932

22 ];

23 shock_trans = shock_trans ./ sum(shock_trans,2);
24 % State variables

25 v a r _ s t a t e w1; % wealth share

26 w1 = linspace(-0.05,1.05,201);

27 % Endogenous variables and bounds

28 var_policy c1 c2 s1p nb1p nb2p ms1 ms2 mb1 mb2 ps pb w1n[8];

29 inbound c1 1e-12 1;

30 inbound c2 1e-12 1;

31 inbound s1p 0.0 1.0;

32 inbound nb1p 0.0 1.0; % nb1p=b1p-Kb

33 inbound nb2p 0.0 1.0;

34 inbound ms1 0 1; % Multilier for constraints

35 inbound ms2 0 1;

36 inbound mb1 0 1;

37 inbound mb2 0 1;

38 inbound ps 0 3 adaptive(1.5);

39 inbound pb 0 3 adaptive(1.5);

40 inbound w1n -0.5 1.5;

41 % Extra output variables

42 var_aux equity_premium;

43 % Interpolation objects

44 var_interp ps_future pb_future c1_future c2_future;

45 i n i t i a l ps_future 0.0;

46 i n i t i a l pb_future 0.0;

47 i n i t i a l c1_future w1.*d+eta1;

48 i n i t i a l c2_future (1-w1).*d+1-eta1;

49 ps_future = ps;

50 pb_future = pb;

51 c1_future = c1;

52 c2_future = c2;

53
54 model;
55 % Interpolation

56 [psn’,pbn’,c1n’,c2n’] = GDSGE_INTERP_VEC’(w1n’);
57 % Expectations in Euler Equations

58 es1 = GDSGE_EXPECT{g’^(1-gamma)*(c1n’/c1)^(-gamma)*(psn’+d’)/ps};
59 es2 = GDSGE_EXPECT{g’^(1-gamma)*(c2n’/c2)^(-gamma)*(psn’+d’)/ps};
60 eb1 = GDSGE_EXPECT{g’^(-gamma)*(c1n’/c1)^(-gamma)/pb};
61 eb2 = GDSGE_EXPECT{g’^(-gamma)*(c2n’/c2)^(-gamma)/pb};
62 % b transformation

63 b1p = nb1p + Kb; % Transform bond back

64 b2p = nb2p + Kb;

65 s2p = 1-s1p; % Market clear of shares

66 % Budget constraint

67 budget_1 = w1*(ps+d)+eta1 - c1 - ps*s1p - pb*b1p;

68 budget_2 = (1-w1)*(ps+d)+(1-eta1) - c2 - ps*s2p - pb*b2p;

69 % Consistency

70 w1_consis’ = (s1p*(psn’+d’) + b1p/g’)/(psn’+d’) - w1n’;

71 % Extra output

72 equity_premium = GDSGE_EXPECT{(psn’+d’)/ps*g’} - 1/pb;

73 equations;
74 -1+beta*es1+ms1;

75 -1+beta*es2+ms2;

76 -1+beta*eb1+mb1;

77 -1+beta*eb2+mb2;

78 ms1*s1p;

79 ms2*s2p;

80 mb1*nb1p;

81 mb2*nb2p;

82 b1p+b2p;

83 budget_1;

84 budget_2;

85 w1_consis’;

86 end;
87 end;
88
89 simulate;
90 num_periods = 10000;

91 num_samples = 24;

92 i n i t i a l w1 0.5;

93 i n i t i a l shock 1;

94 var_simu c1 c2 ps pb equity_premium;

95 w1’ = w1n’;

96 end;

The GDSGE code solves for the equilibrium prices and allocation as functions of ex-
ogenous, zt and endogenous state variables ωt. A key innovation in our algorithm that
enables the implementation using the toolbox is that we incorporate consistency equa-
tions (line 70 in the GDSGE code) into the system of equations and unknowns. These
equations require that the conjectured future endogenous state variables are consistent
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with the current portfolio choices and future prices:

ω1
t+1 =

(q̂t+1(zt+1, ω1
t+1) + dt+1)k1

t+1 + b̂1
t+1/gt+1

q̂t+1((zt+1, ω1
t+1) + dt+1

.

The code produces the policy functions including equilibrium prices and allocation
as functions of the endogenous state variable, wealth share ω1, and exogenous state
variable z. Panel (a) in Figure 1 shows the equity premium (the difference between
expected stock and bond returns) as a function of wealth share and for different combi-
nation of exogenous state variables. The kinks in the equity premium function appear
at points where the borrowing and short-sale constraints switch from being binding to
non-binding, or vice versa, as ωt increases. Panel (b) in Figure 1 shows the ergodic
distribution of the endogenous state variable, ω1.

-0.2 0 0.2 0.4 0.6 0.8 1 1.2

Wealth Share of Agent 1

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

%

Equity Premium

(a) The Policy Function for Equity Premium (b) Ergodic Distribution of the Endogenous State

Figure 1: Ergodic Distribution and Policy Functions
Note: The model is solved with 8 realizations of exogenous states, 201 fixed grid points for the
endogenous state. The histogram is based on 24 sample paths, 10,000 period simulations per
sample path, with the first 1,000 periods dropped (burn-in periods).

The model can also be solved using consumption share instead of wealth share, as in
Bernard and Lyasoff (2012). In this case, the consistency equations correspond to agents’
future budget constraints: future consumption shares should be consistent with current
portfolio choices and future portfolio choices, which in turn depend on future consump-
tion shares. Bernard and Lyasoff (2012) call these equations "marketability conditions."
Our algorithm is more general and does not rely on their "kernel conditions" which are
derived by assuming the agents’ Euler equations hold exactly. Our algorithm allows for
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deviation from the Euler equations due to binding portfolio constraints, such as bor-
rowing constraint or short-selling constraint. The details of our implementation using
GDSGE toolbox are provided on the toolbox’s website. On the website, we also show
how to simplify the feasible region of the endogenous state-space in Mendoza (2010)
using consumption as one endogenous state variable.

3 General Environment

In this section we provide the general framework and the solution algorithm to com-
pute recursive equilibrium in this framework. In the next section, Section 4, we present
the design of the toolbox to implement the algorithm. In Section 5, we show that many
recent important models fit exactly in the framework and, hence, can be solved using
the toolbox. The toolbox’s algorithm is different from the algorithms in their original
papers.

3.1 Recursive Equilibrium and Solution Algorithm

We work with models for which the sequential competitive equilibrium of the econ-
omy can be characterized by a system of short-run equilibrium conditions:

F(s, x, z,
{

s′(z′), x′(z′)
}

z′∈Z ) = 0 (1)

where
z ∈ Z ⊂ Rdz

is a vector of exogenous shocks;
s ∈ S ⊂ Rds

is a vector of endogenous states variables; and

x ∈ X ⊂ Rdx

is a vector of endogenous policy variables. The function

F : Rds+dx+dz ×
(

Rds ×Rdx
)Z

⇒ Rds+dx+dz ×
(

Rds ×Rdx
)Z

,

where Z is the cardinality of Z , consists of optimality conditions, market clearing con-
ditions, and laws of motion for state variables. The laws of motion can be explicit or
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implicit, as we discuss below.
Notice that the framework allows for general dependence on the future variables,

instead of through common expectations as in Winschel and Kratzig (2010). This gener-
ality is important in allowing for non-rational expectations models such as model with
belief heterogeneity such as Sandroni (2000), Blume and Easley (2006), Simsek (2013),
and Cao (2018). It is also necessary to capture nonlinear forms of borrowing constraint
such as the collateral constraints in Kiyotaki and Moore (1997), Geanakoplos (2010), and
Cao and Nie (2017).2

Models with inequality constraints also fit into the general formulation (1) by adding
additional endogenous policy functions. Indeed, if a recursive model has both equal-
ity and inequality conditions (such as the borrowing constraints in Heaton and Lucas
(1996)):

F
(

s, x, z,
{

s′(z′), x′(z′)
}

z′∈Z

)
= 0

G
(

s, x, z,
{

s′(z′), x′(z′)
}

z′∈Z

)
≥ 0,

we can use

F̂ =

(
F

G− η

)
with η ≥ 0, and

x̂ = (x, η) ,

to write the system with inequality constraint in form (1) using F̂ and x̂.

Definition A recursive equilibrium is a solution to (1) under the form

x = P(z, s)

and
s′(z′) = T (z, z′, s)

where P and T are equilibrium policy and transition functions, respectively.

2Collateral constraints might involve nonlinear functions of future asset prices (as random variables),
beyond simple functions of expected prices such as the minimum of the price realizations over all pos-
sible future states. Cao and Nie (2017) provide a detailed comparison for different forms of collateral
constraints.
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A Collocation Policy Function Iteration Algorithm We solve for a recursive equilib-
rium of (1) using policy function iteration as follows. The algorithm starts with an initial
guess of policy and transition functions{

P (0)(., .), T (0)(., ., .)
}

Given P (n) and T (n), P (n+1) and T (n+1) are determined by solving the following system
of equations

F
(

s, x, z,
{

s′(z′),P (n) (z′, s′(z′)
)}

z′∈Z

)
= 0. (2)

with unknowns x and {s′(z′)}z′∈Z for each

(s, z) ∈ C(n) ⊂ Z × S .

The set C(n), which we call the set of collocation points, is a subset of Z × S . We keep
track of a distance between P (n), T (n) and P (n+1), T (n+1) over the iterations and stop
when the distance falls below a preset threshold.

The typical initial guess for P (0) that we use corresponds to the equilibrium in the
1-period economy. So the solution for P (n) corresponds to the equilibrium values of the
first period in the (n+1)-period economy. So the numerical limit of

{
P (n)

}
corresponds

to the finite-horizon limit. This limit is shown to be the equilibrium in the infinite horizon
economies in existence proofs for infinite-horizon incomplete markets economy such as
Duffie et al. (1994), Magill and Quinzii (1994), and Cao (2020).

Example For the model in Heaton and Lucas (1996) described above

z = (γa, δ, η),

and
s = (ω1),

and
x = (ĉ1, s1, b̂1, ĉ2, s2, b̂2, ps, pb).

3.2 More Detailed Representations

The system of equations in (1) represents different type of equilibrium conditions,
including laws of motion for state variables and Euler-type first order conditions relating
current and next period choices. These equations can be written more explicitly, as in
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Winschel and Kratzig (2010), for clarity. In some cases, they can be used to reduce the
number of equations to be solved in each policy function iteration step.

3.2.1 Explicit and Implicit State Transitions

The state variables s may consist of state variables s̄ which have explicit transition
equations (law-of-motions), and state variables ¯̄s which consists of state variables with
implicit transition equations: s = (s̄, ¯̄s). For s̄, the law of motion can be written explicitly:

s̄′ = ḡ(s, x, z, z′).

This is the specification in Winschel and Kratzig (2010). In our framework, we also allow
for state variables ¯̄s with implicit laws of motion:

0 = ¯̄g
(
s, x, z, ¯̄s′(z′), x′(z′), z′

)
.

Examples of state variables with implicit state transition includes wealth shares, as in
Section 2 for Heaton and Lucas (1996), or consumption shares.

In this case, system of equation (1) can be written as

F(s, x, z,
{

s′(z′), x′(z′)
}

z′∈Z ) =

 f
(
s, x, z, {s′(z′), x′(z′)}z′∈Z

)
s̄′ − ḡ(s, x, z, z′)

¯̄g (s, x, z, ¯̄s′(z), x′(z′), z′)


In a recursive equilibrium, the last equation becomes

0 = ¯̄g
(
s, x, z, ¯̄s′(z′),P(z′, (ḡ(s, x, z, z′), ¯̄s′(z′))), z′

)
. (3)

We call these equations consistency equations. It requires future state variables ¯̄s′(z′) to be
consistent with current policies and future policies implied by these future state variables
and the policy function P .

The state variables with explicit state transitions allow us to reduce the number of
equations and unknowns in each step of the policy function iteration algorithm described
above. Indeed, in the policy function iteration algorithm, by substituting ḡ(s, x, z, z′) for
s̄′, we can work with F̄ which only takes the first and third components from F:

F̄
(

s, x, z,
{

¯̄s′(z′),P (n) (z′, (ḡ(s, x, z, z′), ¯̄s′(z′)
))}

z′∈Z

)
= 0.
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In this case, we solve for unknowns x and { ¯̄s′(z′)}z′∈Z given future policy function P (n).
Consistency equations (3) become

¯̄g
(

s, x, z, ¯̄s′(z),P (n) (z′, (ḡ(s, x, z, z′), ¯̄s′(z′)
))

, z′
)
= 0.

One potential concern here is that if the number of possible realizations of future
exogenous shocks z′ is too large, including { ¯̄s′(z′)}z′∈Z and consistency equations in the
system of equations and unknowns to be solved leads a system which is too big. For
example, if the true exogenous shocks ζ follows a VAR process

ζ ′ = Aζ + ε′,

one needs to approximate this process with a discrete-Markov process z with many
points. To deal with this issue, we include ζ among the endogenous state variables s
and we discretize the innovation process ε′ instead. Discretizing the innovation pro-
cess requires a smaller number of discretization points, and hence a smaller number of
consistency equations.3

3.2.2 Expectation Variables

In many rational expectation models such as the ones in the general class described
in Winschel and Kratzig (2010), some of the policy functions include the expectation of
the futures

xt = (x̄t, et)

where

et = Eth(st, x̄t, zt, st+1, x̄t+1, zt+1)

= ∑
zt+1|zt

Pr(zt+1|zt)h(st, x̄t, zt, st+1, x̄t+1, zt+1), (4)

for some function h. For example, in Section 2 for Heaton and Lucas (1996), et includes
the expectation of asset returns weighted by agents’ marginal utilities.

In this case, the system of equation, (1) can be more explicitly written as

3See the RBC model with irreversible investment on the toolbox’s website (http://www.gdsge.com/
example/rbc/rbcIrr.html) for a concrete example.
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F(s, x, z,
{

s′(z′), x′(z′)
}

z′∈Z ) =

(
F̄
(
s, (x̄, e) , z, {s′(z′), (x̄′(z′), e′(z′))}z′∈Z

)
e−∑z′∈Z Pr(z′|z′)h(s, x̄, z, s′, x̄′, z′)

)
.

In the policy function iteration algorithm, we work with F̄ which takes the first compo-
nent from F:

F̄
(

s, (x̄, e) , z,
{

s′(z′),P (n) (z′, (ḡ(s, x̄, e, z, z′), s′(z′)
))}

z′∈Z

)
= 0.

This system consists of a fewer number of equations and unknowns than the original
system. In the policy function iteration steps, we only need to solve for unknowns x̄ and
{s′(z′)}z′∈Z .

4 The Design of the Toolbox

In this section, we described in detail how the toolbox is designed and implemented.
The design of the toolbox is depicted in Figure 2. Users create and edit their own gmod
file that describes the dynamic equilibrium of their model in the general form (1) of
the general framework. Gmod stands for global model. The structure of the gmod file
is given in Subsection 4.1. The gmod files can be uploaded to the toolbox’s website
and the toolbox compiles the files into MATLAB script files and C++ dynamic libraries
which solve for recursive equilibria using policy function iterations and simulate the
equilibrium dynamics. The functions of the complied files, which consist of solving
system of equations, discretizing, and approximating policy functions, are described in
Subsection 4.2

The MATLAB script files and C++ dynamic libraries should run locally on users’
computers. After finish running, they return the policy and state transition functions
from converged time iterations and the Monte-Carlo simulation samples.

4.1 User Inputs: the gmod Files

The toolbox asks users to provide gmod files which contain the equilibrium system
(1) of their models. In this subsection, we provide the description for a minimum gmod
file such as the one for the leading example in Section 2, and refer readers to the ap-
pendix and the toolbox’s website for a detailed user manual. A minimum gmod file
should contain the following components:
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GDSGE

Parser.gmod file

C++

MATLAB

Interior-Point 

Method

Knitro

Automatic 

Differentiation

Splines

Adaptive Sparse 

Grid

OpenMP

….

Random Number 

Generators

Print and Plot 

Utilities

Debug

….

mex

Figure 2: Toolbox Design and Implementations

parameters. Exogenous parameters that do not vary across states or over time.
var_shock. Exogenous state variables z in system (1). These states need to be specified

as discretized points.4

shock_num. The number of discretized points for var_shock. For multi-dimension
var_shock, this should be the size of the Cartesian set across all dimensions.

shock_trans. The Markov transition matrix for exogenous state variables.
var_state. Endogenous state variables s in system (1). The toolbox requires users to

specify the grid for each of these variables.5

var_policy. Policy variables x in system (1). For state variables with implicit laws of
motion, we include vectors of these variables in future states among the policy variables.

var_aux. Some policy variables can be directly computed as relatively simple, explicit
functions of other variables in x, s, x′, s′. We use the keyword var_aux for these variables.
We exclude them from the var_policy in order to reduce the number of equations and
unknowns to be solved in each policy function iteration.

var_interp. These are policy variables x that appear in equilibrium system (1) as
future states x′(z′). Even though the general formulation allows any policy variable in
x to appear as a future state, in practice not all of them do. Here we only include those
variables which need to be interpolated in the policy function iteration steps. When the

4To accommodate exogenous continuous shocks such as AR(1) processes, treat continuous shocks as
endogenous state variables and approximate the shock processes with discretized innovations as exoge-
nous states.

5For fixed-grid-based function approximations such as splines, the grids will directly used; for adaptive
grid method, the two end points of the grids will be used as the range of the state variable.
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time iteration converges, var_interp also delivers the state transition functions.
The updates of each var_interp after each time iteration should be specified after

declaring the var_interp’s. The updates can use functions of solutions of policy variables
in var_policy or var_aux, combining any parameters or exogenous states.

The model block. The model definition is enclosed in a block starting with model; and
ending with end;. The model block should include an equations block in which each
line represents one equation of the equilibrium system (1) to be solved. Other variables
required to be evaluated in these equations should be put into the model block preceding
the equations block. A variable followed by a prime (’) indicates that the variable is a
vector of length shock_num, and it is usually used to represent future states z′, or s′

as in the general framework notations. The model block can use the following utility
functions.

GDSGE_EXPECT. Calculate the conditional expectation of the object, such as et in
equation (4), using the default transition matrix specified in shock_trans. This function
can also accommodate a different transition matrix than shock_trans so that the toolbox
can be used to solve models with heterogeneous beliefs (see Cao (2018) and the associ-
ated gmod file in the toolbox’s website for an example).

GDSGE_INTERP_VEC. Evaluate function approximations specified in var_interp. This
function, when followed by a prime (’), indicates that the approximation is evaluated for
a vector of arguments of length shock_num; accordingly, the input and output variables in
this case should also be followed by a prime. The output is thus a vector corresponding
to s′(z′) or x′(z′) in system (1) for all possible realizations of exogenous states z′.

The simulate block. This optional block specifies the Monte Carlo simulations after
the convergence of time iterations. It should specify num_samples for the number of
sample paths, num_periods for the number of simulation periods of each path, initial
for initial values of endogenous and exogenous states, var_simu for the variables to be
recorded in the simulation, and the transitions for each endogenous state (the transition
for exogenous states are handled automatically by the toolbox).

By default, the simulation resolves the system of equations (with s′(z′) and x′(z′)
given by the converged policy and state transition functions) at each time step. This
ensures the numerical error is minimum within a time step. We also implement a con-
ventional fast albeit less accurate simulation method based on interpolating the policy
and state transition functions directly. To use this method, the users should specify
SIMU_INTERP=1 and declare interpolated variables in var_output. See the user manual
in the appendix for details.

These simulations are important to compute stationary recursive equilibria, i.e., re-
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cursive equilibria with an ergodic distribution over the state variables, from which the
model moments are calculated (the rigorous definition is provided in Duffie et al. (1994)
and Cao (2020)). They can also be used to calculate nonlinear impulse response func-
tions (see Cao and Nie (2017) and Cao et al. (2020) for examples) to understand the
transmission mechanisms, or to estimate the models.

4.2 Implementations

Once a gmod file is processed by the toolbox, it returns MATLAB files that can be
run locally in the user’ computer to solve and simulate their model.

General Implementations The gmod file is first parsed into an internal model struc-
ture, based on which the toolbox generates the C++ and MATLAB source codes. The
toolbox then compiles the C++ source code to a dynamic library that MATLAB can
call. All the actual computations are implemented in the native C++ code to achieve
maximum performance and contained in the dynamic library, while the MATLAB file
provides a convenient interface to print, debug, and specify options. To reach maximum
computation efficiency, our implementation takes care of miscellaneous designs cover-
ing equation solver, interpolation, automatic differentiation, and parallel computation,
which we discuss below each of them in details.6

Equation Solver The time iteration step requires solving systems of equations for
each discretized point in the state space. Since evaluating the function to be solved is
rather costly, it is crucial that we design an efficient equation solver. We implement
the Powell’s dogleg algorithm augmented with an interior-point method to respect the
box constraints (Powell, 1970; Coleman and Li, 1996; Bellavia et al., 2012). We also
provide interfaces to commercial optimization software SNOPT and Knitro for users
with licenses.7

Automatic Differentiation Since we use a gradient-based equation solver and the
function evaluation is expensive, it is crucial to calculate the gradients efficiently. We
use a reverse-mode automatic differentiation method implemented by Adept (Hogan,
2014). This library utilizes the expression template feature of C++, so much of the dif-

6For each of the implementation details, we also provide a separate library when possible so that they
can be used independently of the toolbox.

7Our own implementation of the algorithm turns out to be more efficient both in terms of number
of function calls and overhead, for a large class of test problems. This is partly because the algorithm
we implement is designed for solving equations, while these commercial softwares target a more general
class of optimization problems. Besides, the equation solver we implement targets small to medium scale
problems (less than 1000 unknowns), which are adequate for most applications in economics while these
commercial softwares accommodate much larger problems and thus incurs more overhead.
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ferentiation is taken care of at compile time, bringing the computation cost on par with
evaluating analytical gradients.

Interpolation The time iteration step (2) involves function approximations because
(z′, s′(z′)) might fall outside C(n). The default option is multi-dimensional linear interpo-
lation or splines. We also implement a multi-dimensional adaptive sparse grid method
with hierarchical hat basis functions developed in Ma and Zabaras (2009) and recently
applied in economic applications by Brumm and Scheidegger (2017). We provide ana-
lytical gradients to these approximation procedures, which complement the automatic
differentiation method to achieve maximum performance.

Parallel Computation Within a time iteration, the problems are independent of each
other while they share a large chunk of data for function approximations. To utilize
this structure, we use multi-threaded parallel computation so all problems share a same
block of memory for function approximation parameters, minimizing the overhead for
data communications; when evaluating the interpolations with splines or the adaptive
sparse grid method, we design the data structure such that it can exploit the single-
instruction-multiple-data (SIMD) CPU instructions. This design of parallelism turns out
to be efficient—the program executes fast on a single processor and scales well with the
number of CPU cores.

5 Applications

In this section, we provide examples of how well-known models can be solved us-
ing our toolbox. The gmod files for these models are provided in the appendix. The
toolbox algorithm is different from the algorithm provided in the original papers. These
examples could be read independently and the notation follows closely from the nota-
tion in the original papers. We also refer readers to the original papers for the important
economic motivation of these models.

5.1 Asset Pricing with Heterogeneous IES by Guvenen (2009)

Guvenen (2009) constructs a two-agent model to explain several salient features of as-
set pricing moments, such as high risk premium, low and relatively smooth interest rate,
and countercyclical movements in risk premium and Sharpe ratio. Two key ingredients
of his model are limited stock market participation and heterogeneity in the elasticity of
intertemporal substitution in consumption (EIS).

The solution algorithm in Guvenen (2009) is quite different from ours. His is based
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on the algorithm in Krusell and Smith (1998): starting from a conjectured law of motion
for state-variables and pricing functions, he solves the agents’ Bellman equation and the
agents’ policy functions using standard value function iterations. Then he uses these
policy functions and temporary market clearing conditions to obtain a new law of mo-
tions and new pricing functions. These functions are then used as conjectured functions
to obtain new functions. He keeps iterating until the new functions are close enough to
the conjectured functions.

Our algorithm recognizes that, because the agents’ optimization problems are con-
cave problems, the first-order conditions are sufficient for optimality (without having to
solve the agents’ Bellman equation). Therefore, we can directly use policy function iter-
ations to solve jointly for agents’ optimization problems and market clearing conditions.

5.1.1 Model Description

There are two types of infinitely-lived agents: stockholders (h) with measure µ, and
non-stockholders (n) with measure 1− µ. Agents have Epstein-Zin utility functions

Ui,t =

{
(1− β) c1−ρi

i,t + β
[
Et

(
U1−α

i,t+1

)] 1−ρi
1−α

}1/(1−ρi)

. (5)

for i = h, n. Most importantly, ρh < ρn, i.e., the non-stockholders have lower EIS which is
inversely proportional to ρi, and thus they have higher desire for consumption smooth-
ness. Each agent has one unit of labor endowment.

Stockholders can trade stock st and bond bh,t at prices Ps
t and P f

t respectively. Their
budget constraint is

ch,t + P f
t bh,t+1 + Ps

t st+1 ≤ bh,t + st (Ps
t + Dt) + Wt,

where Wt is the labor income and borrowing constraint is

bh,t+1 ≥ −B,

and in calibration B is set to six times of the average monthly wage rate. The non-
stockholders have the same constraints. In addition, they are restricted from trading
stocks.

A representative firm produces the consumption good using capital Kt and labor Lt

19

Electronic copy available at: https://ssrn.com/abstract=3569013



based on a Cobb-Douglas production function:

Yt = ZtKθ
t L1−θ

t ,

and the technology evolves according to an AR(1) process:

ln Zt+1 = φ ln Zt + εt+1, ε
i.i.d.∼ N

(
0, σ2

ε

)
.

The firm maximizes its value Ps
t expressed as the sum of its future dividends

{
Dt+j

}∞
j=1

discounted by the shareholders’ marginal rate of substitution process:

Ps
t = max
{It+j,Lt+j}

Et

[
∞

∑
j=1

βj Λh,t+j

Λh,t
Dt+j

]
. (6)

The firm accumulates capital subject to a concave adjustment cost function in investment:

Kt+1 = (1− δ)Kt + Φ

(
It

Kt

)
Kt. (7)

Each period, the firm sells one-period bonds at price P f
t . The bond supply is constant

and equals to χ fraction of its average capital stock K̄. Thus dividend Dt can be written
as

Dt = ZtKθ
t L1−θ

t −WtLt − It −
(

1− P f
t

)
χK̄.

A sequential competitive equilibrium is given by sequences of allocations

{ci,t, bi,t+1, st+1, It, Kt+1, Lt}

i = h, n and prices
{

Ps
t , P f

t , Wt

}
such that (i) given the price sequences, {ci,t, bi,t+1, st+1}

i = h, n solve the stockholders’ and non-stockholders’ optimization problems; (ii) Given
the wage sequence {Wt} and the law of motion for capital (7), {Lt, It} are optimal for
the representative firm; (iii) all markets clear:

µbh,t+1 + (1− µ) bn,t+1 = χK̄, (8)

µst+1 = 1, (9)

Lt = 1,

µch,t + (1− µ) cn,t + It = Yt.
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5.1.2 Computation

We use {Kt, Bn
t , Zt} as the aggregate state variables, where Bn

t = (1− µ) bn,t is total
bond holding by the non-stockholders. The optimization problems of the households
and the representative firm are concave maximization problems, so the first-order con-
ditions are necessary and sufficient for optimality. With this observation and the afore-
mentioned state variables, the competitive equilibrium in this model can be represented
by a system of short-run equilibrium conditions (1) required by the general framework.
This system consists of 8 unknowns: {ch,t,cn,t,It,Bn

t+1,λh,t,λn,t,Ps
t ,P f

t }, and 8 equations:

1. Euler equations for bond holding:

P f
t = β (1 + λi,t)Et

(
Λi,t+1

Λi,t

)
, ∀i = h, n.

2. Euler equations for the stockholders’ demand of equity:

Ps
t = βEt

[
Λh,t+1

Λh,t

(
Ps

t+1 + Dt+1
)]

.

3. Slackness condition of borrowing limit:

λi,t (bi,t+1 + B) = 0, ∀i = h, n.

4. The budget constraints (imposing st+1 = 1/µ):

ch,t + P f
t bh,t+1 +

Ps
t

µ
= Ps

t + Dt +
χK̄− Bn

t
µ

+ Wt,

cn,t + P f
t bn,t+1 =

Bn
t

1− µ
+ Wt.

5. Firm’s optimal capital accumulation Kt+1:

qt = βEt

{
Λh,t+1

Λh,t

[
θZtKθ−1

t − It+1

Kt+1
+ qt+1

(
1− δ + Φ

(
It+1

Kt+1

))]}
, (10)

in which capital price qt is the Lagrangian multiplier on the capital formation (7)
and satisfies

qtΦ
′
(

It

Kt

)
= 1. (11)
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The auxiliary variables can be determined by the utility function (5), market clearing
conditions, (7) and the following two equations:

Wt = (1− θ) Zt

(
Kt

Lt

)θ

,

β
Λi,t+1

Λi,t
= β

1−α

1−ρi

(
ci,t+1

ci,t

)−ρi


Ui,t+1

ci,t[(
Ui,t
ci,t

)1−ρi

− (1− β)

]1/(1−ρi)


ρi−α

.

Having represented the equilibrium in the required form (1), we can then use the
toolbox to solve for a recursive equilibrium. In period t, the 6 future variables in use:
ch,t+1, cn,t+1, Ps

t+1 + Dt+1, It+1/Kt+1, Uh,t+1 and Un,t+1 are functions of
{

Kt+1, Bn
t+1, Zt+1

}
and are solved from the previous iteration. Similar to Guvenen (2009), the initial guess
for these functions are obtained by solving a version of the model with no leverage
(χ = 0, B = 0).8

In Figure 3, we plot the annual equity premium and interest rate as functions of
{K, Bn} by fixing Zt = 1. Figure 4 plots the ergodic distributions of capital and the
financial wealth share of stockholders.

5.1.3 Mapping into the General Setup

For the model in Guvenen (2009) described above, the correspondence with our gen-
eral setup of the toolbox is

z = (Z),

and
s = (K, Bn) ,

8It is easy to implement this algorithm in the toolbox. Users can solve the no-leverage version first, and
after convergence, use its policy functions as the initial conjecture for the benchmark case. The toolbox
allows the users to provide their own initial conjectured functions by the “WarmUp” option, so they do
not need to write separate codes for different cases. See the code available online for details. Furthermore,
the functions provided can be defined on different grid points from the state variables, which offers the
users much flexibility. For example, a user can solve a model with coarse grids for speed first and then
uses its converged policy functions as the initial conjecture for the same model with finer grids.
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Figure 3: Asset Pricing Policy Functions in Guvenen (2009)
Note: The figure plots the annual equity premium and interest rate as functions of
{K, Bn}. We use the same parameter values as in Table 1 of Guvenen (2009), and set
Zt = 1.

and
x = (ch, cn, I, Bn′, λh, λn, Ps, P f , q, Uh, Un).

5.2 Sudden Stops in an Open Economy by Bianchi (2011)

Bianchi (2011) studies an incomplete-markets open economy model that can gener-
ate competitive equilibria featuring sudden stop episodes, mimicking those experienced
by many emerging economies. A sudden stop episode features a large output drop
and current account reversals, which are at odds with the prediction of a standard
incomplete-markets model with precautionary saving motives. A key feature for the
model in Bianchi (2011) is to introduce feedback of the price of non-tradable goods to
the borrowing constraint: a negative external shock that lowers the equilibrium price
of non-tradable goods tightens the borrowing constraint and forces reducing the con-
sumption of tradable goods, which further lowers the price of non-tradable goods. The
competitive equilibrium is inefficient since agents do not take into account the effects of
non-tradable price on the borrowing constraint in the event of a sudden stop crisis. This
leads to ex-ante over-borrowing and calls for policy interventions.

The borrowing constraint is occasionally binding in the equilibrium’s ergodic set,
and the equilibrium policy and state transition functions are highly non-linear when the
borrowing constraint binds. Therefore, a global and non-linear solution is essential to
capture the model’s rich dynamics. We now describe how this class of models9 can be

9Other models in this literature that can be solved by the toolbox include Mendoza (2010) with endoge-
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Figure 4: Ergodic Distributions of Capital and Wealth Share
Note: The Ergodic Distributions are generated by simulation. We use the same pa-
rameter values as in Table 1 of Guvenen (2009).

solved by the toolbox robustly and efficiently, using the exact model in Bianchi (2011) as
an example.

To compute the competitive equilibrium, Bianchi (2011) uses a policy function it-
eration algorithm. His algorithm treats cases with binding or non-binding constraint
separately, while the toolbox uses the Lagrange multiplier on the constraint and the
complementary slackness condition to write these cases with the same system of equa-
tions. This seemingly minor detail is important in allowing the model to be written and
solved in the same framework as in other models.

5.2.1 Model Description

Small-open economy representative consumers derive utility from consumption of
tradable goods cT

t and of non-tradable goods cN
t according to

E
[ ∞

∑
t=0

βt c1−σ
t

1− σ

]
(12)

nous capital accumulation and a borrowing constraint tied to asset instead of commodity price, which we
include as an example in the toolbox’s website.
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with the composite consumption

ct = A
(

cT
t , cN

t

)
≡ [ω(cT

t )
−η + (1−ω)(cN

t )
−η]
− 1

η , (13)

where ω ∈ (0, 1) and η > −1 are parameters. β ∈ (0, 1) is the discount factor and σ is
the coefficient of relative risk-aversion. E is the expectation operator to integrate shocks
below.

Borrowing is via a state non-contingent bond in tradable goods at a constant world
interest r. The endowments of tradable goods yT

t and non-tradable goods yN
t follow

exogenous stochastic processes. The consumer faces the following sequential budget
constraint

bt+1 + cT
t + pN

t cN
t = bt(1 + r) + yT

t + pN
t yt,

where bt+1 is the bond-holding determined at period t. Tradable good is the numeraire
and pN

t is the equilibrium price of non-tradable goods, taken as given by consumers.
A key feature of the model is that the borrowing is subject to a borrowing constraint

tied to the non-tradable good price as below

bt+1 ≥ −(κN pN
t yN

t + κTyT
t )

which says that the borrowing cannot exceed the sum of κN fraction of the value of non-
tradable goods, plus κT fraction of the value of tradable goods, with parameter κN > 0,
κT > 0 determining the collaterability of the non-tradable and tradable endowments,
respectively.

Equilibrium Definition. A sequential competitive equilibrium corresponds to stochas-
tic processes {bt+1, cT

t , cN
t , ct, pN

t }∞
t=0 such that {bt+1, cT

t , cN
t } solves the households opti-

mization problem and markets clear:

cN
t = yN

t

cT
t = yT

t + bt(1 + r)− bt+1

Because the households’ maximization problem is a concave problem, the first-order
conditions are necessary and sufficient for optimality: there exists stochastic processes
for the Lagrange multiplier, {µt, λt} such that, together with {bt+1, cT

t , cN
t } the following
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conditions are satisfied:

pN
t =

(1−ω

ω

)( cT
t

cN
t

)η+1
(14)

λt = β(1 + r)Etλt+1 + µt (15)

µt
[
bt+1 + (κN pN

t yN
t + κTyT

t )
]
= 0 (16)

bt+1 + cT
t + pN

t cN
t = bt(1 + r) + yT

t + pN
t yN

t

where

λt = c−σ
t

∂A(cT
t , cN

t )

∂cT
t

= c−σ
t [ω(cT

t )
−η + (1−ω)(cN

t )
−η]
− 1

η−1
ω[cT

t ]
−η−1.

With these observations, the equilibrium in this economy can be represented in the
form (1) required to apply the toolbox.

Parameterization. We use the exact parameters as in the benchmark calibration in
Bianchi (2011).

5.2.2 Computation

The equilibrium can be input into the toolbox by discretizing the exogenous endow-
ments process yN

t and yT
t . Following the parameterization and discretization used by

Bianchi (2011), we discretize the joint process of (yN
t , yT

t ) to 16 states. The natural en-
dogenous state variable of the economy is bt.

Like previous examples, a time step of policy iterations is to solve the equilibrium
system defined above, for each collocation point of exogenous and endogenous states,
taking the state transition function implicitly defined in λt+1(yN

t+1, yT
t+1, bt+1) as given.

After each time step, λt(yN
t , yT

t , bt) is compared with λt+1(yN
t+1, yT

t+1, bt+1) to check for
convergence under certain criteria.

While it is possible to specify an exogenous discrete grid for bt, since the model is
highly non-linear, we illustrate the use of function approximations with adaptive-grid
methods with the toolbox, which automatically place more points to the state space that
features high non-linearity.10 The equilibrium policy functions for pN

t and bt+1, and the
ergodic distribution of bt are presented in Figure 5.

10As described in the user manual in the appendix, we take care of implementation details and the user
only needs to specify one option in the toolbox to switch to the adaptive grid method. The adaptive grid
method is based on Ma and Zabaras (2009) and Brumm and Scheidegger (2017), and features sparsity for
multi-dimensional problems and thus can accommodate models with high-dimension state space.
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(a) Policy Functions (b) The ergodic Distribution of bond holdings

Figure 5: Ergodic Distribution and Policy Functions of Bianchi (2011)
Note: The policy functions are for exogenous states fixing yN

t to be the lowest of the 4 realiza-
tions, and yT

t to be the highest or lowest of the 4 realizations respectively. The markers indicate
the grid points automatically generated by the adaptive-grid method. The histogram is based
on 100 sample paths of 1000-period simulations, burning the first 500 periods of each path.

As shown in the left panel, the policy functions are highly nonlinear: when the
borrowing constraint binds, the price of non-tradable goods declines sharply in the level
of exist borrowing; future borrowing declines, instead of increasing, as the economy
goes further in debt, implying current account reversals. If the borrowing constraint
does not bind, then the price movement is much milder as we vary the level of existing
debt, and current account reversals do not happen. The right panel displays the ergodic
distribution of bond holdings, which show that the non-linear regions do exist in the
ergodic set of the equilibrium and thus cannot be ignored, but due to precautionary
motives, the frequency of the economy being in these regions cannot be determined
ex-ante, highlighting the necessity of using a global solution method.

The markers on the policy functions indicate the grid points automatically placed
by the adaptive-grid method, and show that the method adds more points to the state
space where the policy and state transition functions become non-linear. Importantly,
the method takes care that these non-linear regions can differ across exogenous states,
as shown in the figure. This illustrates the effectiveness of the adaptive-grid method
for this class of models, as these non-linear regions of state-space cannot be determined
ex-ante, and require very dense exogenous grids or painful manual configurations.

27

Electronic copy available at: https://ssrn.com/abstract=3569013



5.2.3 Mapping into the General Setup

For the model in Bianchi (2011) described above, the correspondence with our general
setup of the toolbox is

z = (yT, yN),

and
s = (b),

and
x = (b′, cT, cN, c, µ, λ, pN).

5.3 Safe Assets by Barro et al (2017)

Barro et al. (2017) incorporate heterogeneous risk-aversion into the model with rare
disasters in Barro (2006) to study the endogenous creation of safe-asset. Their model
features incomplete markets: agents can only trade in a stock and a bond as in Heaton
and Lucas (1996). They solve their model using a mixture of projection and pertur-
bation method developed in Fernández-Villaverde and Levintal (2018). Our toolbox’s
algorithm is a purely a projection method. It uses wealth share as state variables and
the normalization from Cao (2018) to deal with consumption being close to zero when
some of the wealth share is close to zero. As Barro et al. (2017) discuss in their paper,
their solution method is not sufficiently accurate for large values of risk-aversion coeffi-
cients.11 We show below that our method can tackle these cases effectively and uncover
new economic insights in these cases.

5.3.1 Model and Normalization

There are two groups of agents, i = 1, 2 in the economy. Agents have an Epstein and
Zin (1989)-Weil (1990) utility function. The coefficients of risk aversion satisfy γ2 ≥ γ1 >

0, i.e., agent 1 is less risk-averse than agent 2. The other parameters between these two
groups are the same. There is a replacement rate υ at which each type of agents move to
a state that has a chance of µi of switching into type i. Taking the potential type shifting
into consideration, their utility function can be written as

Ui,t =

{
ρ + υ

1 + ρ
C1−θ

i,t +
1− υ

1 + ρ

[
Et

(
U1−γi

i,t+1

)] 1−θ
1−γi

}1/(1−θ)

. (17)

11See Table 2 in their paper.
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In this economy, there is a Lucas tree generating consumption good Yt in period t
consumed by both agents. Yt is subject to identically and independently distributed
rare-disaster shocks. With probability 1− p, Yt grows by the factor 1 + g; with a small
probability p, Yt grows by the factor (1 + g) (1− b). Thus the expected growth rate of
Yt in each period is g∗ ≈ g− pb. Denote agent i’s holding of the tree as Kit. The supply
of the Lucas tree is normalized to one, and denote its price as Pt. The gross return of
holding equity is Re

t =
Yt+Pt
Pt−1

. Agents also trade a risk-free bond, Bit, whose net supply

is zero, and the gross interest rate is R f
t .

Denote the beginning-of-period wealth of agent i by Ait. Each agent’s budget con-
straint is

Cit + PtKit + Bit = Ait.

Considering the type shifting shock, the law of motion of Ait is

Ait = (Yt + Pt) [Kit−1 − υ (Kit−1 − µi)] + (1− υ) R f
t Bit−1.

As in Cao (2018, Appendix C.3, Extension 3), we normalize the utility Uit and con-
sumption Cit by Ait and write equation (17) as follows:

u1−θ
it =

ρ + υ

1 + ρ
c1−θ

i,t +
1− υ

1 + ρ
(1− cit)

1−θ
(

Et

[
(Ri,t+1uit+1)

1−γi
]) 1−θ

1−γi , (18)

in which uit = Uit/Ait, cit = Cit/Ait, and

Ri,t+1 = xitRe
t+1 + (1− xit) R f

t+1

is the average return of agent i’s portfolio, and

xit =
PtKit

PtKit + Bit

is the equity share of agent i’s portfolio holding. The FOCs for consumption and portfo-
lio choices are

(ρ + υ) c−θ
i,t = (1− υ) (1− cit)

−θ
[
Et (Ri,t+1uit+1)

1−γi
] 1−θ

1−γi , (19)

and

Et


(

Re
t+1 − R f

t+1

)
uit+1

(Ri,t+1uit+1)
γi

 = 0. (20)
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The choice of cit and xit are identical across agents of the same type i, and the portfolio
choices of agent i is

Kit = xit (1− cit) (1 + pt) /ptωit,

bit = (1− xit) (1− cit) (1 + pt)ωit.

In equilibrium, prices are determined such that markets clear:

C1t + C2t = Yt, (21)

K1t + K2t = 1, (22)

B1t + B2t = 0. (23)

To achieve stationarity, we normalize {Bit, Pt}variables by Yt. We define the wealth
share of agent i as

ωit = Kit−1 − υ (Kit−1 − µi) +
(1− υ) R f

t bit−1

(1 + pt) (1 + gt)
. (24)

We see that given the market clearing conditions (22) and (23),

ω1t + ω2t = 1, ∀t.

5.3.2 Log Utility

For much of the analysis in Barro et al. (2017), the intertemporal elasticity of substi-
tution θ is set at 1. In this case, agents consume a constant share of their wealth, and
equation (19) is replaced by

cit =
ρ + υ

1 + ρ
.

Using this relationship for i = 1, 2, and use the market clearing conditions (21), (22) and
(23), we have

pt =
1− υ

ρ + υ
.

The utility function (18) is replaced by

ln uit =
ρ + υ

1 + ρ
ln cit +

1− υ

1 + ρ
ln (1− cit) (25)

+
1− υ

1 + ρ

1
1− γi

ln
[
Et (Ri,t+1uit+1)

1−γi
]

.
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The state variable is ω1t. The unknowns are
{

x1t, x2t, R f
t , ωit+1 (zt+1)

}
. We have 4 equa-

tions: (20) for i = 1, 2, the market clearing condition for bond (23) and the consistency
equation (24) to solve the unknowns.

Since the growth shock is i.i.d., ω1 is the only state variable. The policy functions and
stationary distributions of ω1are given in Figure 6.
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(a) Policy Functions (b) Ergodic Distributions

Figure 6: Ergodic Distribution and Policy Functions
Note: The figure is generated using the baseline parameters in Barro et al. (2017).
For annual data, ρ = 0.02, υ = 0.02, µ = 0.5, γ1 = 3.3, and γ2 = 5.6. Growth rate
in normal times is 0.025. Rare disaster happens with probability 4%, and once it
happens, productivity drops by 32%. The model period is one quarter.

When the economy is at the steady state of normal times, the impulse responses after
a one-time disaster shock in the first period are given in Figure 7.

In Table 2 of Barro et al. (2017), the values of risk aversion parameters γ1 and γ2 are
adjusted to target an average annual interest rate R̄ f = 1.01. The implicit reasoning is
that, for each γ1, R̄ f is decreasing in γ2 and there exists a value of γ2 such that R̄ f = 1. In
Table 2 of their paper displays γ2 as a function of γ1 following this procedure. However,
when γ1 = 3.1, the authors set γ2 = 10 while acknowledging that their numerical
solutions in this region were insufficiently accurate.

Using our toolbox, we can solve this problem for a wider range of γ2. In Figure 8(a),
we plot R̄ f corresponding to different values of γ2 up to 100. In particular, we find that
R̄ f is a non-monotone function of γ2. In addition, R̄ f = 1.01 cannot be reached when
γ1 = 3.1, since R̄ f is increasing in γ2 when γ2 is larger than 8.

The mechanism behind the non-monotonicity can be understood by looking at two

31

Electronic copy available at: https://ssrn.com/abstract=3569013



0 5 10 15 20

years

0.68

0.69

0.7

0.71

0.72

0.73

0 5 10 15 20

years

2.6

2.7

2.8

2.9

3

3.1
10

-3

0 5 10 15 20

years

0.77

0.78

0.79

0.8

0.81

0 5 10 15 20

years

0.084

0.086

0.088

0.09

0.092

0.094
Safe Assets/Total Assets

Figure 7: Dynamic Paths Following a Disaster
Note: The figure plots the dynamic paths after a one-time disaster using the baseline
parameters in Barro et al. (2017). For annual data, ρ = 0.02, υ = 0.02, µ = 0.5,
γ1 = 3.3, and γ2 = 5.6. Growth rate in normal times is 0.025. Rare disaster happens
with probability 4%, and once it happens, productivity drops by 32%. The model
period is one quarter.

opposing forces. First, as γ2 gets larger, agent 2 becomes more risk-averse, and demand
for more of the safe asset (bond). This pushes down R̄ f . Second, an increase in γ2 also
leads agent 1 to borrow more and become more leveraged. Since the return of equity
is higher than bond, the average wealth share of agent 1, ω1 becomes larger. Larger ω1

leads to more relative supply of safe asset and pushes up R̄ f . Whether R̄ f decreases or
increases in γ2 depends on which force dominates. Figure 8 shows that when γ2 is below
8 the first force dominates and R̄ f is decreasing in γ2 as assumed in Barro et al. (2017).
However, when γ2 is larger than 8, the second force dominates and R̄ f is increasing in
γ2. When γ2 is larger than 20, R̄ f is not responsive to γ2, since the wealth distribution ω1

is almost degenerated to its upper limit. See Figure 8(b) as a comparison of two cases:
γ2 = 8 versus γ2 = 10.
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Figure 8: Interest Rate with Different γ2
Note: The figure is generated using the baseline parameters in Barro et al. (2017).
In particular, we fix γ1 = 3.1 and change the value of γ2 to generate the results. In
Figure (a), we plot the average interest rate and wealth share of agent 1 correponding
to different values of γ2. In Figure (b), we compare the policy functions of R f and
ergodic distributions when γ2 = 8 and 10.

5.3.3 Mapping into the General Setup

For the model in Barro et al. (2017) described above, the correspondence with our
general setup of the toolbox is

z = (g),

and
s = (ω1),

and
x =

(
c1, c2, x1, x2, R f , K1, b1, p

)
.

5.4 Macroeconomic Implications of COVID-19 by Guerrieri et al (2020)

In this timely and important contribution, Guerrieri et al. (2020) analyze the effects
of supply shocks such as shutdowns, layoffs, and firm exits due to COVID-19. They
show that in a two-sector model, these supply shocks can trigger changes in aggregate
demand larger than the shocks themselves. This is the case when the elasticity of sub-
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stitution across sectors is not too large and the inter-temporal elasticity of substitution is
sufficiently high.

Their model is deterministic and the supply shock is unexpected. They also assume
maximally tight borrowing constraint. We extend their model to allow for stochastic,
recurrent shocks and more relaxed borrowing constraint. This extension can be solved
easily using our toolbox.

5.4.1 The Model

We following closely the notation in Guerrieri et al. (2020). The total population is
normalized to one, with a fraction φ of agents working in sector 1 and the remaining
fraction 1 − φ of agents working in section 2. We assume that workers are perfectly
specialized in their sector. Sector 1 is the contact-intensive sector that is directly affected
by the supply shock.

The labor endowment of workers in sector 2 is constant and is set to n̄, while the
labor endowment of workers in sector 1 follows a two-point Markov process with state
in {1, 2}, where 1 corresponds to normal times and 2 corresponds to pandemics. During
normal times, their labor endowment is n1t = n̄, while when a supply shock hits, their
labor endowment drops to n1t = δn̄ with δ < 1. In the COVID-19 example, as sector 1
is contact-intensive and a fraction δ of its production is shut down when the pandemic
hits. On the other hand, sector 2 is unaffected. The transition matrix between these two
states is [

π1 1− π1

1− π2 π2

]
,

in which 1− π1 is a small probability for the economy to enter the supply-driven crisis,
and π2 is the probability for the crisis to last for one more period.

The production technology is linear in both sectors:

Yjt = Njt

for j = 1, 2. Competitive firms in each sector j hire workers at wage Wjt and sell their
products at price Pjt. Prices are flexible, and given the market structure we have Pjt =

Wjt. The consumer’s utility function is

E0

[
∞

∑
t=0

βt C1−σ
t

1− σ

]
, (26)
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in which

Ct =
(

φρc1−ρ
1t + (1− φ)ρ c1−ρ

2t

) 1
1−ρ ,

which features constant elasticity of subsitution 1/ρ between the two goods and constant
intertemporal elasticity of substitution 1/σ.

As in Guerrieri et al. (2020), here we set good 2 to be the numeraire, i.e., P2t ≡ 1.
Workers in sector j maximize (26) subject to

P1tc
j
1t + cj

2t +
aj

t+1
1 + rt

≤Wjtn
j
t + aj

t, (27)

where they allocate their labor income and bond holding from the previous period, aj
t

among consumption goods produced in the two sectors and bond holding into the next
period. Interest rate rt is determined competitively.

In addition, we assume that the workers are subject to the following borrowing con-
straint:

aj
t+1 ≥ −Ā. (28)

Denote sector j workers’ Lagrangian multiplier for the budget constraint (27) as βtλ
j
t,

and the multiplier for the borrowing constraint as βtµ
j
t. The first-order conditions for the

workers’ optimal decision are:

λ
j
t =

(
Cj

t

)ρ−σ
(1− φ)ρ

(
cj

2t

)−ρ
,

P1t =

(
cj

1t/φ

cj
2t/ (1− φ)

)−ρ

, (29)

− λ
j
t

1 + rt
+ µ

j
t + βEt

(
λ

j
t+1

)
= 0, (30)

µ
j
t

(
aj

t+1 + Ā
)
= 0. (31)

And we also have the market clearing conditions for bond and consumption good 2:

φa1
t+1 + (1− φ) a2

t+1 = 0,

φc1
2t + (1− φ) c2

2t = (1− φ) n̄,

and the market clearing conditions of consumption good 1 is implied by Walras’ law.
We use a1

t as the endogenous state variable and look for a recursive equilibrium as a
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mapping from a1
t to the allocation and prices that satisfies the first-order conditions and

market clearing conditions above.
Notice that by the pricing equation (29),

c1
1t

c2
1t

=
c1

2t
c2

2t
,

which means the consumption shares of workers in sector 1 are the same between these
two consumption goods. Denote the consumption share of workers in sector 1 as c̃1t,
then

c1
1t = c̃1tn1t,

c2
1t = (1− c̃1t) φn1t/ (1− φ) ,

c1
2t = c̃1t (1− φ) n̄/φ,

c2
2t = (1− c̃1t) n̄,

which leads to

C1
t =

c̃1t

φ
Yt,

C2
t =

1− c̃1t

1− φ
Yt,

where Yt =
[
φn1−ρ

1t + (1− φ) n̄1−ρ
] 1

1−ρ , and

λ1
t =

(
c̃1t

φ
Yt

)−σ (Yt

n̄

)ρ

,

λ2
t =

(
1− c̃1t

1− φ
Yt

)−σ (Yt

n̄

)ρ

.

In total, for each a1
t (and the exogenous state of the economy), the minimal equi-

librium system can be represented by 5 unknowns:
{

c̃1t, a1
t+1, µ1

t , µ2
t , rt+1

}
, and can be

solved by a system of 5 equations: the budget of workers in sector 1, equation (27), and
the FOC in equation (30), and slackness condition in equation (31) for j = 1, 2.

5.4.2 Calibration and Results

We use quarters for model periods and standard parameters in the literature. For
preferences, we use β = 0.99 as quarterly discount factor. The inverse inter-temporal
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elasticity of substitution is set at σ = 0.5 (strictly less than 1 as required by the analytical
results Guerrieri et al. (2020) for supply shocks to trigger larger aggregate demand re-
sponses). We vary the inverse intra-temporal elasticity of substitution ρ between 0.1 and
0.9.

For labor market parameters, we normalize n̄ at 1. The share of the contact-intensive
sector φ is set at 0.2. We assume that when the pandemic shocks hit, labor supply
in the contact-intensive sector declines by 50% (roughly consistent with the increase in
unemployment claims in the U.S. during the pandemics). We assume that the pandemics
last for 2 quarters on average, so π2 = 0.5 and π1 is chosen so that the economy stays in
pandemics in around 0.5% of the times (consistent with the historical frequency reported
in Jordà et al. (2020)). Borrowing limit Ā is set at 30% of the wage in normal times.

For the benchmark results, we use ρ = 0.75 > σ = 0.5. The upper panel in Figure
9 shows the interest rate as a function of the endogenous state variable a1

t in normal
times (z = 1) and during pandemics (z = 2). Interest rate is lower during pandemics,
which reflects that the aggregate demand response outweighs the supply shock, a result
emphasized in Guerrieri et al. (2020). In addition, the figure also shows that the effect
is stronger when the net worth of workers in the contact-sensitive sector is low. The
lower panel plots the ergodic distribution of bond holding of workers in sector 1. The
possibility of pandemics leads these workers to do precautionary saving, sometimes up
to the borrowing limit of workers in sector 2. However, the precautionary saving does
not undo the results in Guerrieri et al. (2020).

Figure 9: Interest Rate Policy Function and the Ergodic Distribution
Note: We use ρ = 0.75 > σ = 0.5 and other parameters described in the main text.

Because this extension of the model is dynamics, we can look at the dynamics re-
sponse of the economy to pandemic shocks. Figure 10 shows the impulse responses of
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interest rate and the wealth of sector 1 workers to a pandemic shock. While interest
rate reverses relatively quickly to pre-pandemic level after the shock, workers in sector
1 suffers from a persistent, long-lasting wealth lost.

Figure 10: Interest Rate Policy Function and the Ergodic Distribution
Note: We use ρ = 0.75 > σ = 0.5 and other parameters described in the main text.

To further investigate the robustness of the results in Guerrieri et al. (2020), Figure 11
plots the average interest rate before and after the pandemic shocks hit the economy as
we vary ρ. The figure shows that when ρ > σ (more precisely 1/ρ < 1/σ), interest rate
drops when the pandemic shock hits, while it rises when ρ < σ (1/ρ > 1/σ). This is
exactly the result emphasized in Guerrieri et al. (2020).

5.4.3 Mapping into the General Setup

For the extension of the model in Guerrieri et al. (2020) described above, the corre-
spondence with our general setup of the toolbox is

z = (n1),

and
s = (a1),

and
x =

(
c̃1, µ1, µ2, r

)
.
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Figure 11: Interest Rate before and after Pandemics
Note: We use σ = 0.5 and other parameters described in the main text. The dashed
curve corresponds to the interest rate when the shock switches from normal to pan-
demic, averaged in the model’s ergodic set. The solid curve corresponds to the
average interest rate prior to the period in which the pandemic shock hits.

6 Heterogeneous Agent Models with Aggregate Shocks

The framework is more readily applicable to solving GDSGE models with a finite
number of agents, or more precisely a finite number of agent-types. This is because in
these models the equilibrium conditions can be represented as a system of a finite num-
ber of equations and unknowns. The solutions to these systems lie in finite-dimensional
spaces. The policy and transition functions are mappings from finite-dimensional state-
spaces to these finite-dimensional spaces. While in fully heterogeneous agent models
à la Krusell and Smith (1998) with both idiosyncratic and aggregate shocks, both state
spaces, such as spaces of wealth distributions, and equilibrium objects, such as policy
and value functions, are infinite-dimensional objects, as emphasized in Cao (2020).

However, Cao (2020) shows that incomplete markets models with finite agent types
are useful special cases of fully heterogeneous agent, incomplete markets models with
both idiosyncratic and aggregate shocks a la Krusell and Smith (1998). In particular, the
former corresponds to the latter in which idiosyncratic shocks are perfectly persistent.
We provide an explicit comparison between the two models in the toolbox’s website. The
dynamics of the aggregate variables in the two models are similar. Therefore, in general,
the solution of the finite-agent models can be useful in understanding the properties of
the fully heterogenous agent models and can be solved at low cost using the toolbox.

In addition, the toolbox can be used to solve the agents’ decision problem by ob-
serving that, given conjectured laws of motion of the aggregate capital, the households’
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Euler equation, together with the complementary-slackness condition, is necessary and
sufficient for optimality:

u′(ct) = E
[
u′(ct+1)(1− δ + rt+1)

]
+ λt,

where λt is the Lagrangian multiplier on households’ borrowing constraint and rt+1 is
the rental rate of capital at t + 1. The toolbox can also be used to simulate the implied
dynamics of wealth distribution and aggregate capital. Then, with an additional fixed-
point iteration on these laws of motion, which can be coded up simply in MATLAB, the
toolbox solution can be used to solve for the DSGE in the latter. In the last section of the
paper, we show how this idea can be used to solve Krusell and Smith’s baseline model
in less 100 lines of toolbox code and 100 lines of MATLAB code. We also provide these
codes, as well as the codes for heterogenous discount factors, on the toolbox’s website.

Similarly, we can use the toolbox to compute stationary recursive equilibrium in het-
erogenous agent models without aggregate shocks such as Huggett (1993) and Aiyagari
(1994), and transitional path equilibrium in Huggett (1997). The codes for these models
are also available on the toolbox’s website.

7 Conclusion

We provide a unified framework and a toolbox for solving DSGE models using global
methods. The toolbox proves to work efficiently and robustly for a large class of highly
nonlinear models, covering macro-finance, international finance, and asset pricing mod-
els.

In principle, any dynamic problems characterized by systems of equations and state
transition functions can readily fit in the toolbox, such as the decision rules in hetero-
geneous agent models (Huggett, 1993; Aiyagari, 1994; Krusell and Smith, 1998). The
equilibrium systems of many models with discrete choices such as sovereign default
can be transformed to equation systems by introducing preference or technology shocks
(Chatterjee and Eyigungor, 2015; Arellano et al., 2020), and thus also fits in the tool-
box. The toolbox uses a policy iteration method and thus can be used to solve stochastic
transition paths such as Storesletten et al. (2019).

The toolbox also allows researchers to define model estimations in a unified way,
which we leave for future development.
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Appendix A Example Toolbox Codes

In this appendix, we provide the gmod files for the models discussed in Section 5.
These codes can also be downloaded from the toolbox’s website, together with the gmod
codes for many other models.

A.1 Guvenen (2009)

1 % Parameters

2 parameters beta alpha rhoh rhon theta delta mu xsi chi a1 a2 Kss Bbar bn_shr_lb bn_shr_ub varianceScale;

3
4 beta = 0.9966; % discount factor

5 alpha = 6; % risk aversion

6 rhoh = 1/.3; % inv IES for stockholders

7 rhon = 1/.1; % inv IES for non-stockholders

8 theta = .3; % capital share

9 delta = .0066; % depreciation rate

10 mu = .2; % participation rate

11 xsi = .4; % adjustment cost coefficient

12 chi = .005; % leverage ratio

13 a1 = (((delta^(1/xsi))*xsi)/(xsi-1));

14 a2 = (delta/(1-xsi));

15 Kss = ((1/beta-1+delta)/theta)^(1/(theta-1));

16 Bbar = -0.6*(1-theta)*Kss^theta; %borrowing constraint

17 varianceScale = 1e4;

18
19 TolEq = 1e-4;

20 INTERP_ORDER = 4; EXTRAP_ORDER = 4;

21 PrintFreq = 100;

22 SaveFreq = inf;

23
24 % Shocks

25 var_shock Z;

26 shock_num = 15;

27 phi_z = 0.984; % productivity AR(1)

28 mu_z = 0;

29 sigma_e = 0.015/(1+phi_z^2+phi_z^4).^0.5;

30 [z,shock_trans,~]=tauchen(shock_num,mu_z,phi_z,sigma_e,2);

31 Z = exp(z);

32
33 % States

34 v a r _ s t a t e K bn_shr;

35 K_pts = 10;

36 K = exp(linspace(log(.84*Kss),log(1.2*Kss),K_pts));

37
38 bn_shr_lb = (1-mu)*Bbar/(chi*Kss);

39 bn_shr_ub = (chi*Kss - mu*Bbar)/(chi*Kss);

40 b_pts = 30;

41 bn_shr = linspace(bn_shr_lb,bn_shr_ub,b_pts);

42
43 % Last period

44 var_policy_init c_h c_n;

45
46 inbound_init c_h 1e-6 100;

47 inbound_init c_n 1e-6 100;

48
49 var_aux_init Y W vh vn vhpow vnpow Ps Pf Div Eulerstock Eulerbondh Eulerbondn Inv dIdK Eulerf;

50
51 model_init;
52 Y = Z*(K^theta);

53 W = (1-theta)*Z*(K^theta);

54 resid1 = 1 - (W + (bn_shr*chi*Kss/(1-mu)))/c_n; % c_n: individual consumption

55 resid2 = 1 - (W + (Div/mu) + ((1-bn_shr)*chi*Kss/mu))/c_h; % c_h: individual consumption

56 vh = ((1-beta)*(c_h^(1-rhoh)))^(1/(1-rhoh));

57 vn = ((1-beta)*(c_n^(1-rhon)))^(1/(1-rhon));

58 vhpow = vh^(1-alpha);

59 vnpow = vn^(1-alpha);
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60 Pf = 0;

61 Ps = 0;

62 Div = Y - W - (1-Pf)*chi*Kss; % investment is zero

63
64 Eulerstock = (vh^(rhoh-alpha))*(c_h^-rhoh)*(Ps + Div);

65 Eulerbondh = (vh^(rhoh-alpha))*(c_h^-rhoh);

66 Eulerbondn = (vn^(rhon-alpha))*(c_n^-rhon);

67
68 Inv = 0;

69 Knext = 0;

70 dIdK = (Inv/K) - (1/a1)*(xsi/(xsi-1))*(Inv/(K*((1/a1)*((Knext/K)-(1-delta)-a2))))*(Knext/K);

71 Eulerf = (vh^(rhoh-alpha))*(c_h^-rhoh)*(theta*Z*(K^(theta-1)) - dIdK);

72
73 equations;
74 resid1;

75 resid2;

76 end;
77 end;
78
79 var_interp EEulerstock_interp EEulerbondh_interp EEulerbondn_interp EEulerf_interp Evh_interp Evn_interp EPD_interp EPD_square_interp;

80 i n i t i a l EEulerstock_interp shock_trans*reshape(Eulerstock,shock_num,[]);

81 i n i t i a l EEulerbondh_interp shock_trans*reshape(Eulerbondh,shock_num,[]);

82 i n i t i a l EEulerbondn_interp shock_trans*reshape(Eulerbondn,shock_num,[]);

83 i n i t i a l EEulerf_interp shock_trans*reshape(Eulerf,shock_num,[]);

84 i n i t i a l Evh_interp shock_trans*reshape(vhpow,shock_num,[]);

85 i n i t i a l Evn_interp shock_trans*reshape(vnpow,shock_num,[]);

86 i n i t i a l EPD_interp shock_trans*reshape(Div,shock_num,[]);

87 i n i t i a l EPD_square_interp shock_trans*reshape(Div.^2,shock_num,[]) / varianceScale;

88
89 EEulerstock_interp = shock_trans*Eulerstock;
90 EEulerbondh_interp = shock_trans*Eulerbondh;
91 EEulerbondn_interp = shock_trans*Eulerbondn;
92 EEulerf_interp = shock_trans*Eulerf;
93 Evh_interp = shock_trans*vhpow;
94 Evn_interp = shock_trans*vnpow;
95 EPD_interp = shock_trans*(Ps+Div);
96 EPD_square_interp = shock_trans*(Ps+Div).^2 / varianceScale;

97
98 % Endogenous variables, bounds, and initial values

99 var_policy c_h c_n Ps Pf Inv bn_shr_next lambdah lambdan;

100
101 inbound c_h 1e-3 100;

102 inbound c_n 1e-3 100;

103 inbound Ps 1e-3 500;

104 inbound Pf 1e-3 10;

105 inbound Inv 1e-9 100;

106 inbound bn_shr_next bn_shr_lb bn_shr_ub;

107 inbound lambdah 0 2;

108 inbound lambdan 0 2;

109
110 % Other equilibrium variables

111 var_aux Y W b_h b_n Div dIdKp Eulerstock Eulerbondh Eulerbondn dIdK Eulerf vhpow vnpow omega PDratio Rs R_ep vh vn Knext std_ExcessR

SharpeRatio;

112
113 model;
114 Y = Z*(K^theta); % output

115 W = (1-theta)*Z*(K^theta); % Wage = F_l

116 Div = Y - W - Inv - (1-Pf)*chi*Kss; % dividends

117
118 Knext = (1-delta)*K + (a1*((Inv/K)^((xsi-1)/xsi))+a2)*K;

119 dIdKp = (1/a1)*(xsi/(xsi-1))*(Inv/(K*((1/a1)*((Knext/K)-(1-delta)-a2))));

120
121 b_h = (1-bn_shr)*chi*Kss/mu;

122 b_n = bn_shr*chi*Kss/(1-mu);

123
124 [EEulerstock_future,EEulerbondh_future,EEulerbondn_future,EEulerf_future,Evh_future,Evn_future,EPD_future,EPD_square_future] =

GDSGE_INTERP_VEC(shock,Knext,bn_shr_next);
125 EPD_square_future = EPD_square_future*varianceScale;

126
127 vh = ((1-beta)*(c_h^(1-rhoh)) + beta*(Evh_future^((1-rhoh)/(1-alpha))))^(1/(1-rhoh));

128 vn = ((1-beta)*(c_n^(1-rhon)) + beta*(Evn_future^((1-rhon)/(1-alpha))))^(1/(1-rhon));

129
130 Eulerstock = (vh^(rhoh-alpha))*(c_h^-rhoh)*(Ps + Div);

131 Eulerbondh = (vh^(rhoh-alpha))*(c_h^-rhoh);
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132 Eulerbondn = (vn^(rhon-alpha))*(c_n^-rhon);

133
134 dIdK = (Inv/K) - (1/a1)*(xsi/(xsi-1))*(Inv/(K*((1/a1)*((Knext/K)-(1-delta)-a2))))*(Knext/K);

135 Eulerf = (vh^(rhoh-alpha))*(c_h^-rhoh)*(theta*Z*(K^(theta-1)) - dIdK);

136
137 vhpow = vh^(1-alpha);

138 vnpow = vn^(1-alpha);

139
140 omega = (Ps+Div+ mu*b_h)/(Ps+Div+chi*Kss);

141 PDratio = Ps/Div;

142 Rs = EPD_future/Ps;

143 R_ep = Rs - 1/Pf;

144 % The following inline implements

145 % std_ExcessR = (GDSGE_EXPECT{(PD_future’/Ps - Rs)^2})^0.5;

146 std_ExcessR = (EPD_square_future/(Ps^2) + Rs^2 - 2*EPD_future*Rs/Ps)^0.5;

147 SharpeRatio = R_ep/std_ExcessR;

148
149 % Equations:

150 err_bdgt_h = 1 - (W + (Div/mu) + b_h - Pf*(chi*Kss*(1-bn_shr_next)/mu))/c_h; % these are individual consumptions

151 err_bdgt_n = 1 - (W + b_n - Pf*(bn_shr_next*chi*Kss/(1-mu)))/c_n;

152 foc_stock = 1 - (beta*EEulerstock_future*(Evh_future^((alpha-rhoh)/(1-alpha))))/((c_h^(-rhoh))*Ps);

153 foc_bondh = 1 - (beta*EEulerbondh_future*(Evh_future^((alpha-rhoh)/(1-alpha))) + lambdah)/((c_h^(-rhoh))*Pf);

154 foc_bondn = 1 - (beta*EEulerbondn_future*(Evn_future^((alpha-rhon)/(1-alpha))) + lambdan)/((c_n^-rhon)*Pf);

155 foc_f = 1 - (beta*EEulerf_future*(Evh_future^((alpha-rhoh)/(1-alpha))))/((c_h^(-rhoh))*dIdKp);

156
157 slack_bn = lambdan*(bn_shr_next - bn_shr_lb); %mun_lw*bn_shr_next;

158 slack_bh = lambdah*(bn_shr_ub - bn_shr_next); %mun_up*(1-bn_shr_next);

159
160 equations;
161 err_bdgt_h;

162 err_bdgt_n;

163 foc_stock;

164 foc_bondh;

165 foc_bondn;

166 foc_f;

167 slack_bn;

168 slack_bh;

169 end;
170
171 end;
172
173 simulate;
174 num_periods = 10000;

175 num_samples = 100;

176
177 i n i t i a l K Kss;

178 i n i t i a l bn_shr 0.5;

179 i n i t i a l shock 2;

180
181 var_simu Y c_h c_n Inv Ps Div Pf bn_shr_next Knext omega PDratio Rs R_ep SharpeRatio std_ExcessR;

182
183 K’ = Knext;

184 bn_shr’ = bn_shr_next;

185 end;

A.2 Bianchi (2011)

1 % Toolbox options

2 USE_ASG=1; USE_SPLINE=0;

3 AsgMaxLevel = 10;

4 AsgThreshold = 1e-4;

5
6 % Parameters

7 parameters r sigma eta kappaN kappaT omega beta;

8 r = 0.04;

9 sigma = 2;

10 eta = 1/0.83 - 1;

11 kappaN = 0.32;

12 kappaT = 0.32;

13 omega = 0.31;

14 beta = 0.91;

15
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16 % States

17 v a r _ s t a t e b;

18 bPts = 101;

19 bMin=-0.5;

20 bMax=0.0;

21 b=linspace(bMin,bMax,bPts);

22
23 % Shocks

24 var_shock yT yN;

25 yPts = 4;

26 shock_num=16;

27
28 yTEpsilonVar = 0.00219;

29 yNEpsilonVar = 0.00167;

30 rhoYT = 0.901;

31 rhoYN = 0.225;

32
33 [yTTrans,yT] = markovappr(rhoYT,yTEpsilonVar^0.5,1,yPts);

34 [yNTrans,yN] = markovappr(rhoYN,yNEpsilonVar^0.5,1,yPts);

35
36 shock_trans = kron(yNTrans,yTTrans);

37 [yT,yN] = ndgrid(yT,yN);

38 yT = exp(yT(:)’);

39 yN = exp(yN(:)’);

40
41 % Define the last-period problem

42 var_policy_init dummy;

43 inbound_init dummy -1.0 1.0;

44
45 var_aux_init c lambda;

46 model_init;
47 cT = yT + b*(1+r);

48 cN = yN;

49 c = (omega*cT^(-eta) + (1-omega)*cN^(-eta))^(-1/eta);

50 partial_c_partial_cT = (omega*cT^(-eta) + (1-omega)*cN^(-eta))^(-1/eta-1) * omega * cT^(-eta-1);

51 lambda = c^(-sigma)*partial_c_partial_cT;

52
53 equations;
54 0;

55 end;
56 end;
57
58 % Implicit state transition functions

59 var_interp lambda_interp;

60 i n i t i a l lambda_interp lambda;

61 lambda_interp = lambda;

62
63 % Endogenous variables, bounds, and initial values

64 var_policy nbNext mu cT pN;

65 inbound nbNext 0.0 10.0;

66 inbound mu 0.0 1.0;

67 inbound cT 0.0 10.0;

68 inbound pN 0.0 10.0;

69
70 var_aux c lambda bNext;

71 var_output bNext pN;

72
73 model;
74 % Non tradable market clear

75 cN = yN;

76
77 % Transform variables

78 bNext = nbNext - (kappaN*pN*yN + kappaT*yT);

79 % Interp future values

80 lambdaFuture’ = lambda_interp’(bNext);

81
82 % Calculate Euler residuals

83 c = (omega*cT^(-eta) + (1-omega)*cN^(-eta))^(-1/eta);

84 partial_c_partial_cT = (omega*cT^(-eta) + (1-omega)*cN^(-eta))^(-1/eta-1) * omega * cT^(-eta-1);

85 lambda = c^(-sigma)*partial_c_partial_cT;

86 euler_residual = 1 - beta*(1+r) * GDSGE_EXPECT{lambdaFuture’}/lambda - mu;

87
88 % Price consistent

89 price_consistency = pN - ((1-omega)/omega)*(cT/cN)^(eta+1);
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90
91 % budget constraint

92 budget_residual = b*(1+r)+yT+pN*yN - (bNext+cT+pN*cN);

93
94 equations;
95 euler_residual;

96 mu*nbNext;

97 price_consistency;

98 budget_residual;

99 end;
100 end;
101
102 simulate;
103 num_periods = 1000;

104 num_samples = 100;

105 i n i t i a l b 0.0

106 i n i t i a l shock 1;

107 var_simu c pN;

108 b’ = bNext;

109 end;

A.3 Barro et al. (2017)

1 % Parameters

2 parameters rho nu mu gamma1 gamma2;

3 period_length=0.25; % a quarter

4 rho = 0.02*period_length; % time preference

5 nu = 0.02*period_length; % replacement rate

6 mu = 0.5; % population share of agent 1

7 P = 1-exp(-.04*period_length); % disaster probability

8 B = -log(1-.32); % disaster size

9 g = 0.025*period_length; % growth rate

10 gamma1 = 3.1;

11 gamma2 = 50;

12
13 % Shocks

14 var_shock yn;

15 shock_num = 2;

16 shock_trans = [1-P,P;

17 1-P,P];

18 yn = exp([g,g-B]);

19
20 % States

21 v a r _ s t a t e omega1;

22 Ngrid = 501;

23 omega1 = [linspace(0,0.03,200),linspace(0.031,0.94,100),linspace(0.942,0.995,Ngrid-300)];

24
25 p = (1-nu)/(rho+nu);

26 pn = p;

27 Re_n = (1+pn)*yn/p;

28 % Endogenous variables, bounds, and initial values

29 var_policy shr_x1 Rf omega1n[2]

30 inbound shr_x1 0 1; % agent 1’s equity share

31 inbound Rf Re_n(2) Re_n(1); % risk-free rate

32 inbound omega1n 0 1.02; % state next period

33
34 % Other equilibrium variables

35 var_aux x1 x2 K1 b1 c1 c2 log_u1 log_u2 expectedRe;

36
37 % Implicit state transition functions

38 var_interp log_u1future log_u2future;

39 log_u1future = log_u1;

40 log_u2future = log_u2;

41 i n i t i a l log_u1future (rho+nu)/(1+rho)*log((rho+nu)/(1+rho)) + (1-nu)/(1+rho)*log((1-nu)/(1+rho));

42 i n i t i a l log_u2future (rho+nu)/(1+rho)*log((rho+nu)/(1+rho)) + (1-nu)/(1+rho)*log((1-nu)/(1+rho));

43
44 model;
45 c1 = (rho+nu)/(1+rho);

46 c2 = (rho+nu)/(1+rho);

47 p = (1-nu)/(rho+nu);

48 pn = p;

49
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50 log_u1n’ = log_u1future’(omega1n’);

51 log_u2n’ = log_u2future’(omega1n’);

52 u1n’ = exp(log_u1n’);

53 u2n’ = exp(log_u2n’);

54
55 Re_n’ = (1+pn)*yn’/p;

56 x1 = shr_x1*(Rf/(Rf - Re_n(2)));

57
58 % Market clearing for bonds:

59 b1 = omega1*(1-x1)*(1-c1)*(1+p);

60 b2 = -b1;

61 x2 = 1 - b2/((1-omega1)*(1-c2)*(1+p));

62 K1 = x1*(1-c1)*omega1*(1+p)/p;

63 K2 = x2*(1-c2)*(1-omega1)*(1+p)/p;

64
65 R1n’ = x1*Re_n’ + (1-x1)*Rf;

66 R2n’ = x2*Re_n’ + (1-x2)*Rf;

67
68 % Agent 1’s FOC wrt equity share:

69 eq1 = GDSGE_EXPECT{Re_n’*u1n’^(1-gamma1)*R1n’^(-gamma1)} / GDSGE_EXPECT{Rf*u1n’^(1-gamma1)*R1n’^(-gamma1)} - 1;

70
71 % Agent 2’s FOC wrt equity share:

72 log_u2n_R2n_gamma’ = log_u2n’*(1-gamma2) - log(R2n’)*gamma2;

73 min_log_u2n_R2n_gamma = GDSGE_MIN{log_u2n_R2n_gamma’};
74 log_u2n_R2n_gamma_shifted’ = log_u2n_R2n_gamma’ - min_log_u2n_R2n_gamma;

75 eq2 = GDSGE_EXPECT{Re_n’*exp(log_u2n_R2n_gamma_shifted’)} / GDSGE_EXPECT{Rf*exp(log_u2n_R2n_gamma_shifted’)} - 1;

76
77 % Consistency for omega:

78 omega_future_consis’ = K1 - nu*(K1-mu) + (1-nu)*Rf*b1/(yn’*(1+pn)) - omega1n’;

79
80 % Update the utility functions:

81 ucons1 = ((rho+nu)/(1+rho))*log(c1) + ((1-nu)/(1+rho))*log(1-c1);

82 ucons2 = ((rho+nu)/(1+rho))*log(c2) + ((1-nu)/(1+rho))*log(1-c2);

83 log_u1 = ucons1 + (1-nu)/(1+rho)/(1-gamma1)*log(GDSGE_EXPECT{(R1n’*u1n’)^(1-gamma1)});
84 log_u2 = ucons2 + (1-nu)/(1+rho)/(1-gamma2)*( log(GDSGE_EXPECT{R2n’*exp(log_u2n_R2n_gamma_shifted’)}) + min_log_u2n_R2n_gamma );

85
86 expectedRe = GDSGE_EXPECT{Re_n’};
87
88 equations;
89 eq1;

90 eq2;

91 omega_future_consis’;

92 end;
93 end;
94
95 simulate;
96 num_periods = 10000;

97 num_samples = 50;

98 i n i t i a l omega1 .67;

99 i n i t i a l shock 1;

100
101 var_simu Rf K1 b1 expectedRe;

102
103 omega1’ = omega1n’;

104 end;

A.4 Guerrieri et al. (2020)

1 % Parameters

2 parameters beta rho sigma phi nbar delta Abar;

3 beta = 0.99; % discount factor

4 rho = 0.75; % 1/rho intratemporal elasticity

5 sigma = 0.5; % 1/sigma intertemporal elasticity

6 phi = 0.2; % share of sector 1

7 nbar = 1; % normal labor endowment

8 delta = 0.5; % fraction of labor endowment during crisis

9 Abar = 0.3; % borrowing limit

10 TolEq = 1e-8; % Solve with high adccuracy

11
12 % Shocks

13 var_shock n1;

14 shock_num = 2;

50

Electronic copy available at: https://ssrn.com/abstract=3569013



15 pi2 = 0.5; % the pandemic lasts for 2 quarters

16 freq = 0.005; % frequency of pandemic: 0.5 percent of the time.

17 pi1 = 1 - (freq/(1-freq))*(1-pi2);

18 shock_trans = [pi1,1-pi1;

19 1-pi2,pi2];

20 n1 = [nbar,delta*nbar];

21
22 % Endogenous States

23 v a r _ s t a t e a1;

24 Ngrid = 301;

25 a1_lb = -Abar;

26 a1_ub = (1-phi)*Abar/phi;

27 a1 = linspace(a1_lb,a1_ub,Ngrid);

28
29 % Last period

30 var_policy_init c1_shr;

31 inbound_init c1_shr 0 1;

32 var_aux_init P1 log_lambda1 log_lambda2;

33
34 model_init;
35 c1_1 = c1_shr*(phi*n1)/phi;

36 c2_1 = (1-c1_shr)*(phi*n1)/(1-phi);

37 c1_2 = c1_shr*((1-phi)*nbar)/phi;

38 c2_2 = (1-c1_shr)*((1-phi)*nbar)/(1-phi);

39
40 Y = (phi*n1^(1-rho) + (1-phi)*nbar^(1-rho))^(1/(1-rho));

41 lambda1 = (c1_shr/phi*Y)^(-sigma)*(Y/nbar)^rho;

42 lambda2 = ((1-c1_shr)/(1-phi)*Y)^(-sigma)*(Y/nbar)^rho;

43 log_lambda1 = log(lambda1);

44 log_lambda2 = log(lambda2);

45
46 % price of good 1

47 P1 = ((c1_1/phi)/(c1_2/(1-phi)))^(-rho);

48 % wage of sector 1

49 W1 = P1;

50 budget1_resid = P1*c1_1 + c1_2 - W1*n1 - a1;

51
52 equations;
53 budget1_resid;

54 end;
55 end;
56
57 var_interp log_lambda1_interp log_lambda2_interp;

58 i n i t i a l log_lambda1_interp log_lambda1;

59 i n i t i a l log_lambda2_interp log_lambda2;

60 % Updates

61 log_lambda1_interp = log_lambda1;

62 log_lambda2_interp = log_lambda2;

63
64 % Endogenous variables, bounds, and initial values

65 var_policy c1_shr a1n mu1 mu2 r;

66 inbound c1_shr 0 1;

67 inbound a1n -Abar (1-phi)*Abar/phi;

68 inbound mu1 0 1;

69 inbound mu2 0 1;

70 inbound r -0.5 0.5;

71
72 % Other equilibrium variables

73 var_aux a2 P1 log_lambda1 log_lambda2;

74
75 model;
76 a2 = -a1*phi/(1-phi);

77 c1_1 = c1_shr*(phi*n1)/phi;

78 c2_1 = (1-c1_shr)*(phi*n1)/(1-phi);

79 c1_2 = c1_shr*((1-phi)*nbar)/phi;

80 c2_2 = (1-c1_shr)*((1-phi)*nbar)/(1-phi);

81
82 Y = (phi*n1^(1-rho) + (1-phi)*nbar^(1-rho))^(1/(1-rho));

83 lambda1 = (c1_shr/phi*Y)^(-sigma)*(Y/nbar)^rho;

84 lambda2 = ((1-c1_shr)/(1-phi)*Y)^(-sigma)*(Y/nbar)^rho;

85 log_lambda1 = log(lambda1);

86 log_lambda2 = log(lambda2);

87
88 % price of good 1
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89 P1 = ((c1_1/phi)/(c1_2/(1-phi)))^(-rho);

90 % wage of sector 1

91 W1 = P1;

92
93 log_lambda1Future’ = log_lambda1_interp’(a1n);

94 log_lambda2Future’ = log_lambda2_interp’(a1n);

95 lambda1Future’ = exp(log_lambda1Future’);

96 lambda2Future’ = exp(log_lambda2Future’);

97
98 budget1_resid = P1*c1_1 + c1_2 + a1n/(1+r) - W1*n1 - a1;

99 euler_residual = 1 - beta*(1+r) * GDSGE_EXPECT{lambda1Future’}/lambda1 - mu1;

100 euler_residua2 = 1 - beta*(1+r) * GDSGE_EXPECT{lambda2Future’}/lambda2 - mu2;

101
102 a2n = -a1n*phi/(1-phi);

103 slackness1 = mu1*(a1n + Abar);

104 slackness2 = mu2*(a2n + Abar);

105 equations;
106 budget1_resid;

107 euler_residual;

108 euler_residua2;

109 slackness1;

110 slackness2;

111 end;
112 end;
113
114 simulate;
115 num_periods = 10000;

116 num_samples = 20;

117 i n i t i a l a1 0;

118 i n i t i a l shock 1;

119
120 var_simu a2 P1 r c1_shr;

121
122 a1’ = a1n;

123 end;

Appendix B User Manual

The user manual, online compiler, and other examples can be found on the toolbox’s
website: http://www.gdsge.com.
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