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Introduction

I We investigate the performance of the rotated slice sampler first introduced by

Planas Ratto Rossi (2015) (PRR2015) for the Bayesian estimation of

medium/large scale DSGE models.

I We measure the relative performance of samplers based on inefficiency factors

and we also test the rejection rates of the samplers against known distributions.

I We benchmark the rotated slice sampler together with the standard slice and the

Metropolis-Hastings in the estimation of the Smets and Wouters (2003, 2007)

model.

I the method is regularly used for the estimation of the European Commission’s

Global Multicountry model (Albonico et al. , 2019).
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Main outcomes

I Unlike Metropolis, the Slice algorithm does not require any ad-hoc tuning nor any

proposal distribution.

I The Rotated Slice extension boosts the efficiency of the sampler in case of highly

correlated posterior distributions.

I A further extension of the rotated algorithm allows to dramatically increase the

mixing properties of the slice sampler in successfully exploring the shape of

complex multi-modal distributions.

I A parallel implementation of the algorithm provides accurate posterior draws with

a computational cost comparable to the preliminary posterior maximization

required by Metropolis ⇒ the slice algorithm strongly advisable in medium/large

scale DSGE models.
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Bayesian inference of DSGE

Mostly using MCMC methods: obtaining draws from the the posterior distribution

p(θ, z|y) using the factorization:

p(θ, z|y) = p(θ|y)p(z|θ, y)

I θ ∼ p(θ|y) ⇐ our main concern

I z ∼ p(z|θ, y) off-line by a simulation smoother (e.g. Durbin and Koopman, 2002)

using the Kalman filter.
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Sampling model parameters

Draws θ ∼ p(θ|y) can be obtained in several ways:

I Random walk proposal Metropolis-Hastings (Dynare): easy to implement, faster

than many other implementations, but sometimes inefficient.

I Slice sampler (Neal, 2003, also in Dynare): offers an avenue that we wish to

explore carefully.

I · · ·
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Slice sampler’s main features

Advantages:

I Only require f(θ|y) ∝ p(θ|y) (like Metropolis);

I No proposal: does not require mode-Hessian or other info for defining proposal;

I Tuning parameters less important than Metropolis;

I Provides a framework for

- adaptation

- suppressing random walk behaviour (over-relaxation).

Disadvantages:

I Not easy to generalize in the multivariate framework;

I Requires a large number of likelihood evaluations.
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In this talk

I The univariate slice sampler

I Some univariate test cases - to mimic θi ∼ f(θi|θ1, · · · , θi−1, θi+1, · · · , θd, y),

i = 1, 2, · · · , d

I Rotated univariate sampler - correlated and multimodal distributions

I Test cases and DSGE applications

I Conclusions
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The idea of slice sampling
Introduce an auxiliary variable γ and construct p(θ, γ) taking the marginal p(θ)

unchanged. Sampling from the joint p(θ, γ) is not possible but ...

draws from p(θ) can be obtained iterating Gibbs updates on γ|θ and θ|γ:

I sample γ given θ from a uniform pdf over the set (0, f(θ))

I sample θ given γ from a uniform pdf over S = {θ : γ < f(θ)}
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Slice sampling in practice

Sampling θ from a uniform over S = {θ : γ < f(θ)} is difficult to achieve exactly

(perfect slice sampling). In practice:

I Position I = (L,R) around θ0 at random that contains S as much as possible;

I Draw θ from the set A = {θ : θ ∈ S ∩ I and Pr(I|θ) = Pr(I|θ0)}

Neal (2003) proposes some strategies:

(i) stepping out;

(ii) doubling;

(iii) random positioning, etc.
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Stepping out
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The performance of the slice sampler

We start using a battery of univariate pdfs. By 1000 replications of sample size

G = 5000, we measure

I NSE: V ar( 1
G

∑G
i=1 θ

i)1/2, i = 1, 2, · · · , G (small)

I ρ1: the 1st order autocorrelation of the chain θ1, · · · , θG (close to 0)

I IF = 1 + 2
∑p
j=1 ωjρj , ωj the Parzen-weights (close to 1)

I the (average) number of calls to f(θ) (small)

I the number of rejections of the Cramer-Von Mises (CVM) test (5%)
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Univariate test cases - Marron and Wand (1992)
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Univariate test cases - summary results

RW-MH Slice

Stepping out Doubling

W 1
2
σ 3σ 10σ 100σ 1

2
σ 3σ 10σ 100σ

NSE 3.77 2.75 1.92 1.83 1.79 2.30 2.02 1.85 1.80

ρ1 0.71 0.23 0.15 0.12 0.11 0.24 0.18 0.14 0.12

IF 6.38 3.97 1.51 1.38 1.34 2.24 1.68 1.42 1.35

N eval 1 9.42 6.09 6.61 9.72 23.31 14.65 9.47 10.00

CVM 0.59 0.22 0.13 0.11 0.11 0.20 0.15 0.12 0.12

RE 1 4.1 1.42 1.42 2.04 7.44 3.72 2.12 2.12
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Slice sampling for multivariate distributions

I Generalizing the stepping out procedure for a d-dimensional θ (PRR2015):

I need to evaluate f(θ|y) 2d-times to compute the vertices of the hypercube that

approximates the Slice

⇒ parallelization as in Tibbits et al. (2011)?

I not easy to approximate the Slice in many dimensions by axis-aligned hypercubes

⇒ gradient of f(θ)

⇒ directional hypercubes for high-correlated parameters
I still difficult to solve the curse of dimensionality issue

I Here: Rotated univariate slice for high-correlated parameters as first proposed

by PRR2015 and further developed here.
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Rotated univariate sampler

We use a rotated orthonormnal basis:

Let Σ ≡ V ar(θ|y). Any rough estimate (e.g. burn-in period) will suffice.

By spectral decomposition Σ = AΛA′.

I A, the eigenvectors of Σ, suggests in which direction to rotate the axes;

I the eigenvalues in Λ suggest the scale of the slices along each direction. We use

Wi = 3Λ
1/2
ii .

This simple algorithm allows to increase the efficiency of the univariate sample for

correlated multivariate distributions [ same cost as plain OAT for orthogonal ones].
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Illustrations of the classical stepping out method by Neal (2003) (left) and the

rotated stepping out method (right).
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DYNARE Implementation

The rotated slice sampling is based on procedure with at least 2 steps:

1. burnin OAT, calling estimation with options
I posterior sampling method=’slice’
I the parameter mh replic=50, mh blocks= ...

2. Rotated
I posterior sampling method=’slice’
I posterior sampler options= (’rotated’,1,’use mh covariance matrix’,1)
I load mh file, which is loading the variance-covariance matrix obtained in the previous

step.
I the parameter mh replic=50-1000, mh blocks= ...
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Multivariate test cases

We test the accuracy of some multivariate slice algorithms in four different examples:

1. θ ∼ Nd(0, Id), d = 2, 5, 10

⇒ highlights issues even for well behaving distributions

2. Bivariate Mixture of 2 Normals (Chib - Ramamurthy, 2010)

⇒ slow mixing of RW-MH even for small dimension; effectiveness of rotated slice

3. θ ∼ Nd(0, ρ11′ + (1− ρ)Id), d = 10

⇒ shows the effectiveness of rotated slice

4. Mixture of 4 Normals (Chib - Ramamurthy, 2010) d = 12

⇒ shows the effectiveness of rotated slice
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Case 1. Gaussian - uncorrelated variables

θ ∼ Nd(0, Id), d = 2, 5, 10

RW-MH Slice

One-at-a-time

d 2 5 10 2 5 10

NSE 5.0 5.8 8.2 1.4 1.4 1.4

ρ1 .78 .90 0.95 .00 .00 .00

IF 7.84 17.7 40.7 .95 .96 .95

N eval 1 1 1 12 30 60

CVM .83 .95 .99 .06 .07 .07

RE 1 1 1 1.46 1.62 1.40

Calès-Pericoli-Ratto Slice Sampling



Case 2. Chib Ramamurthy (2001)

θ ∼ .99×N2(µ1,Σ1) + .01×N2(µ2,Σ2)

where µ1 = (1,−1), µ2 = 6µ1, Σ1 = 1.3I2, and Σ2 = 0.05I2.

RW-MH Slice

One-at-a-time

Max NSE 5.28 2.87

Max ρ1 0.81 0.04

Max IF 12.94 11.9

N eval 1 11.99

CVM 0.82 0.2

RE 1 11.02
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Case 2. Chib Ramamurthy (2010)
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Case 3. Gaussian - high correlated variables

θ ∼ Nd(0, .95× 11′ + .05× Id), d = 10

RW-MH Slice

OAT Rotated OAT

Max NSE 10.4 11.3 1.8

Max ρ1 .98 .94 0.2

Max IF 91 122 3.3

N eval 1 71.2 61

CVM 1 .96 0.1

RE 1 95.6 2.2
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Slice sampler

I Rule of thumb for the tuning parameter W ' 3σ;

I Stepping out procedure generally outperforms the doubling one (and other not

reported here);

I Univariate slice sampling more appealing than multivariate one when variables are

loosely correlated;

I Rotated univariate sampler works well with highly-correlated variables and

multi-modal problems.

I How bout medium-large scale problems?
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DSGE examples

I Smets Wouters (2003, 2007)

I EC Global Multicountry model (Albonico et al. , 2019);

I An Schorfheide (2007);
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Smets Wouters (2003)
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Smets Wouters (2003, 2007)

SW2003 32 parameters SW2007 36 parameters

RW-MH Slice

Rotated OAT

IF 110 3.2

N eval 1 183

RE 1 5.37

RW-MH Slice

Rotated OAT

IF 110 3.3

N eval 1 210

RE 1 6.3
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Modified Implementation: go parallel

Once chains properly start, not clear trade-off between slice and MH. BUT: can slice

be run at the same cost of optimizer??

1. burnin OAT, calling estimation with options
I posterior sampling method=’slice’
I the parameter mh replic=50 → 30-35, mh blocks=250

2. Rotated
I posterior sampling method=’slice’
I posterior sampler options= (’rotated’,1,’use mh covariance matrix’,1)
I load mh file, which is loading the variance-covariance matrix obtained in the previous

step.
I the parameter mh replic=100-1000 → 15-20, mh blocks=250
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Q: How short can be slice/MH chains?

I We test the performance of the slice sampler and MH for estimating the

parameters of a SW2003-like posterior (approximated with a truncated normal).

I We apply the multivariate version of the Cramer test proposed by Baringhaus and

Franz (2004)

I We explore the posterior of the model through samples of 250 points, obtained as

the last element of 250 parallel chains (each point has 32 parameters/dimension)

I We repeat the experiment 30 times to get the distribution of the p-value of the

test (each point has 32 parameters/dimension)
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Slice sampler performance after rotation - non truncated normal

We give the p-values of the Cramer test at different poinst of the chain, during burnin

and after rotation. Null of the test: the sample comes from the known distribution of

the posterior.
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Adaptive Slice sampler performance before/after rotation - truncated

normal
OAT length: 30-35 iterations; rotated length: 15-20 iterations.
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Metropolis Hastings - truncated normal

We randomize the p-values of the Cramer test at different point of the chain. Null of

the test: the sample comes from the known distribution of the posterior.
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A: How short can be slice/MH chains?

I A few tens of slice iterations (without the fixed cost of optimizer)

I A few hundreds of MH iterations (after the optimization step)

are sufficient to get good iid sample from a lot of parallel chains

I Rotated slice iterations can start after about 20-30 iterations, reducing

computational cost.

I How about overhead cost of optimization for MH?
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Computational cost of slice.

One slice iteration uses on average 6-8 function evaluation per parameter. So, for 50

iterations, the total number of function evaluations N for n parameters can estimated

as:

N = 50× 7× n

Note. Never set the ‘usual’ huge number of MCMC iterations applied for MH.

Slice will last forever for such a big number!
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Computational cost: slice vs. optimizer

Number of function evaluations to run 50 slice iterations vs optimizer.

Across different tests, optimizer may last more than the 50 slice iterations.

Optimization becomes more difficult:

I when posterior is more concentrated w.r.t. prior

I presence of cliffs (e.g. no solution, B-K violations etc.)

I large number of parameters n.
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Computational cost: slice vs. optimizer. n = 32 vs n = 192

Number of function evaluations to run 50 slice iterations vs optimizer.

Increasing the size of the problem, cost of optimizer increases w.r.t. the 50 slice

iterations.
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Rotated univariate sampler: multimodal problems

The same idea can also be used to improve mixing and efficiency of the sampler in the

case of multi-modal problems. As in Chib Ramamurthy (2010) rely on assumption

that we know the location of the different local optima:

1. identify (at least some of) the multiple local optima characterizing the posterior

distribution;

2. perform slice sampling along rotated axes, parallel to lines joining different local

optima
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Case 2. Chib Ramamurthy (2010) REVISITED
θ ∼ .99×N2(µ1,Σ1) + .01×N2(µ2,Σ2)

where µ1 = (1,−1), µ2 = 8µ1, Σ1 = 1.3I2, and Σ2 = 0.05I2.
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Case 4. Chib Ramamurthy (2010)

Mixture of 4 normals in 12 dimensions with probability pj = [0.75, 0.05, 0.15, 0.05]
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Case 4. Chib Ramamurthy (2010)

Mixture of 4 normals in 12 dimensions with probability pj = [0.75, 0.05, 0.15, 0.05].

Excerpt from Chib Ramamurthy:
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Case 4. Chib Ramamurthy (2010): go parallel
Parallel implementation of mixture of 4 normals in 12 dimensions with probability

pj = [0.75, 0.05, 0.15, 0.05]. It easily finds the four modes, but misses relative weight.
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Case 4. Chib Ramamurthy (2010): go parallel
Compute the marginal likelihood for the four optima: p̂j = [0.73, 0.05, 0.14, 0.05].

Re-weight estimated densities accordingly:
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An Schorfheide (2007)

I multimodal posterior distribution;

I although ‘low’ mode has very low probability (0.005%), MH or standard slice

samplers incapable to jump to high density region

I rotated slice sampler can deal with this (likewise Chib Ramamurthy, 2010, with

Tailored randomized block MCMC)
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An Schorfheide (2007)
Univariate slice sampler:
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An Schorfheide (2007)
Rotated univariate slice sampler:
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An Schorfheide (2007): go parallel

I perform many short chains as usual: very easily get to the two modes.

I Compute the relative marginal likelihood for the two optima: p̂2,1 = 0.03%

[relative likelihood at mode: L̂2,1 = 0.005% ]

I Re-weight estimated densities accordingly...
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Conclusions

Slice sampler has appealing properties for usage with DSGE models:

I does not require optimization to compute the mode and the Hessian;

I small IF and short chains: good to get a few ‘good’ points in the posterior space,

with a limited initial budget of function evaluations;

I rotated slice makes the method much more efficient, even at short number of

iterations;

I available in DYNARE.

[Note. Optimizer 5 of DYNARE is based on the same principle, with Gibbs steps.]
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Conclusions

Many short parallel chains are to be preferred to long chains:

I provides iid samples;

I applies to any kind of sampler MH/slice etc.

I applies to large problems;

I short slice chains (50 iterations) are often faster than the optimizer needed to

start MH;

I effective also for multimodal problems.
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