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Introduction

In this chapter, we provide an introduction into the main tools and
techniques that will be applied throughout this course:

(Linear) difference equations
Linear state space models
(Stochastic) dynamic optimization techniques
Markov processes
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1.1 Setup

First-order difference equations
Consider the first-order linear difference equation (LDE)

xt = axt−1 + et, t = 1, 2, . . . (1)

where
a is a constant coefficient/parameter
xt and et are scalar real-valued functions of time t = 1, 2, . . .:

xt = x(t)
et = e(t)

We assume perfect foresight, i.e. et is known for all t

In economic applications, we will refer to xt as the endogenous
variable and et as the exogenous forcing variable
et is assumed to be a bounded scalar real-valued sequence
(generalization to vector difference equations straightforward)
A solution to (1) is an expression giving xt as a function only of past,
present, and future values of et (and boundary conditions)
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1.2 Characterization Miao (2014), Ch. 1.4

Boundedness

Definition 1 (Boundedness)
A sequence {Xt} is bounded/stable if there exists M > 0 such that
||Xt||∞ < M ∀ t

Typically, only bounded solutions are economically relevant as
otherwise, there is no scarcity
Some problems, particularly those involving growth, may require
appropriate stationarizing, e.g. transforming into intensive form

Adv. Macro II, Ch. II Deterministic linear difference equations Stochastic linear difference equations 6/90



1.2 Characterization Miao (2014), Ch. 1.4

Characterizing difference equations: two important
distinctions

The stability of the LDE determines how to actually solve the LDE
Is the difference equation stable, i.e. |a| <= 1?
→ solve the equation backward
Or do we have an unstable root, i.e. |a| > 1?
→ solve the equation forward

The type of available boundary condition determines how we should
solve the LDE:

Do we have an initial condition that restricts x to a particular value
today or in the past?
→ solve the equation backward
Do we have a terminal condition that restricts x to a particular value in
the future?
→ solve the equation forward

Sometimes the type of stability condition does not match the
available boundary condition: leads to problems with uniqueness and
existence of bounded solutions
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1.2 Characterization Hamilton (1994), Ch. 2

The lead/lag operator

LDEs can generally be solved by recursive substitution, i.e.
iteratively plugging in
This can be made easier by introducing the lag/lead-operator L
defined through

Lzaxt = axt−z , (2)

where a is a constant and z is an integer
We will first consider the case of a stable difference equation, i.e.
|a| < 1
Exercise 1: Show that for a scalar |a| < 1 it holds that

∞∑
i=0

aiLi = (1 − aL)−1 = 1 + aL + a2L2 + . . . (3)
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1.3 Solving LDEs Hamilton (1994), Ch. 2, Miao (2014), Ch. 1

Solving backward
To find a solution for xt, rewrite (1) using the lag operator as

xt(1 − aL) = et (4)
Exercise 2: Show that the non-homogenous component, which
expresses xt as a function of current and past et

xt =
t∑

s=−∞
at−ses (5)

is a solution
Adding the homogenous component cat, with c being an arbitrary
constant, delivers the general solution:

xt =
t∑

s=−∞
at−ses + cat = (1 − aL)−1et + cat (6)

Exercise 3: Show that this is an actual solution to the LDE
Due to discounting with |a| < 1, this backward solution is bounded
and the effect of past et decays geometrically
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1.3 Solving LDEs Hamilton (1994), Ch. 2, Miao (2014), Ch. 1

Ruling out indeterminacy using a boundary condition
Problem: (6) will hold for any arbitrary c and there is no way to
determine it without further information
This case is called indeterminacy
But: suppose we have an initial condition stating that x0 is some
given (known) constant.
From the general solution (6) at time 0 we know that

x0 =
0∑

s=−∞
a−ses + ca0 , (7)

This equation then determines c uniquely as

c = x0 −
0∑

s=−∞
a−ses (8)
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1.3 Solving LDEs Hamilton (1994), Ch. 2, Miao (2014), Ch. 1

The unique and determinate backward solution
Inserting expression (8) for c into the solution for xt, (6), we get

xt =
t∑

s=−∞
at−ses + cat (8)=

t∑
s=−∞

at−ses + at(x0 −
0∑

s=−∞
a−ses) (9)

Using that

t∑
s=−∞

at−ses −
0∑

s=−∞
at−ses =

t∑
s=1

at−ses (10)

yields

xt =
t∑

s=1
at−ses + atx0 (11)

Due to discounting with |a| < 1, the backward solution with starting
value x0 is unique and bounded
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1.3 Solving LDEs Hamilton (1994), Ch. 2, Miao (2014), Ch. 1

Solving forward
But what if |a| > 1, in which case the backward solution (11) will be
unbounded?
Fortunately, we can then try to solve forward
Consider the difference equation (1) at time t + 1

xt+1 = axt + et+1 (12)
Exercise 4: Show, using the lead operator, that the non-homogenous
component of the forward solution is given by

xt = −
∞∑

s=t+1

(1
a

)s−t

es (13)

Again, there exist more solutions that include the homogenous
component cat:

xt = −
∞∑

s=t+1

(1
a

)s−t

es + cat (14)

Since |a| > 1, unless c = 0, cat → ±∞ for t → ∞
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1.3 Solving LDEs Hamilton (1994), Ch. 2, Miao (2014), Ch. 1

Forward solutions and boundedness

(14) doesn’t look like much progress: we still cannot pin down c and
the sequence for xt grows without bounds for t → ∞
An initial condition as before would make the problem determinate,
but still unbounded
However: in economic applications sensible solutions typically require
economic quantities to be bounded
This amounts to a terminal condition xt < ∞ for t → ∞
This leaves c = 0 as the only possible choice
→ the initial value x0 of the sequence has to adjust to ensure that
c = 0 is satisfied
Sidenote: justification of terminal conditions can be subject of intense
debate (e.g. Cochrane 2011)
Physical capital stock obviously cannot go to infinity, but what about
inflation?
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1.3 Solving LDEs Hamilton (1994), Ch. 2, Miao (2014), Ch. 1

Economic example: stable difference equation
Law of motion for capital accumulation with given initial value k0

kt+1 = (1 − δ)kt + it+1 (15)

With (1 − δ) ∈ [0, 1), one can apply the backward solution (11):

kt =
t∑

s=−∞
(1 − δ)t−sis + c(1 − δ)t

=
t∑

s=1
(1 − δ)t−sis + (1 − δ)tk0

(16)

Capital stock at each point in time is the sum of
1. what depreciation has left from the initial capital stock at t = 0
2. the cumulative historical additions through (depreciated) investment

National accounting often relies on this perpetual inventory method
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1.3 Solving LDEs Hamilton (1994), Ch. 2, Miao (2014), Ch. 1

Economic example: unstable difference equation
No-arbitrage asset pricing relationship between

bond with constant coupon/interest rate r > 0 and
stock with purchase price pt and known dividend dt

Interest rate on bond needs to equal dividend yield plus capital gains
yield:

1 + r = dt+1 + pt+1
pt

(17)

Since (1 + r) > 1, the resulting difference equation

pt+1 = (1 + r)pt − dt+1 (18)

can be solved forward using (14):

pt =
∞∑

s=t+1

( 1
1 + r

)−(t−s)
ds + c (1 + r)t (19)

The stock price is equal to the present discounted value of dividends
(fundamental value) plus a bubble component growing at rate r
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1.3 Solving LDEs Hamilton (1994), Ch. 2, Miao (2014), Ch. 1

Economic example: unstable difference equation II

Again, without further information, we cannot uniquely pin down c
and therefore pt

Let’s impose a boundary condition of non-explosive/bounded stock
prices, i.e. c = 0:

pt =
∞∑

s=t+1

( 1
1 + r

)−(t−s)
ds (20)

In this case, the (fundamental) stock price is equal to the discounted
future stream of dividends
But: does this boundary condition make sense?
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1.3 Solving LDEs

Summary

For stable LDEs, we solve backward and need an initial condition for
uniqueness
For unstable LDEs, we solve forward and need a terminal condition
for a unique and bounded solution
This suggests two problems that can arise:

1. if we have an initial condition paired with an unstable root, no bounded
solution exists (called no solution)

2. if we only have a terminal condition paired with a stable root, infinitely
many bounded solutions exist (called indeterminacy)
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1.4 Coupled systems of higher order

LDEs: potential complications

In practical applications, there can be two complications
1. Models may involve difference equations of order higher than 1
2. Economic models usually involve both stable and unstable equations

→ we now know how to handle both of them separately, but what if
the equations are simultaneously related?
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1.4 Coupled systems of higher order

Higher order linear difference equations

The second-order linear difference equation

xt = a1xt−1 + a2xt−2 + et (21)

can be brought into companion form and thus handled as a system
of two first-order equations
Defining an auxiliary variable zt := xt−1 we can form a
two-dimensional first-order system[

xt

zt

]
=
[

a1 a2
1 0

] [
xt−1
zt−1

]
+
[

1
0

]
et

Generally, an n−th order linear difference equation can be analyzed as
an n-dimensional system of first-order LDEs
But how to deal with these systems?
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1.4 Coupled systems of higher order

The n-dimensional case

Consider the n-dimensional first-order LDE vector system

xt = Axt−1 + et (22)

with the square transition matrix A containing constant coefficients
We assume A to be non-singular, i.e. invertible
We will learn how to decouple the system into n independent
equations that can be solved separately
One way is to diagonalize the transition matrix via a Jordan
eigenvalue decomposition
If A has real and distinct eigenvalues, it can be diagonalized using the
eigenvalue decomposition as described below
If these assumptions are not satisfied, other methods like the
generalized Schur decomposition (e.g. Klein 2000), are available

Adv. Macro II, Ch. II Deterministic linear difference equations Stochastic linear difference equations 20/90



1.5 Decoupling the system Heer and Maußner (2009), 11.1.7

Eigenvalues and eigenvectors: definition
The scalar λ is called an eigenvalue (or characteristic root) of A and
the vector z a corresponding eigenvector if they satisfy

λz = Az (23)

or equivalently
(A − λI) z = 0 (24)

A non-zero solution requires the matrix A − λI to be singular
→ determinant must be 0
Hence, for given matrix A the solution(s) for λ can be derived as the
roots of the characteristic equation

|A − λI| = 0 (25)

The resulting characteristic equation has n solutions and A therefore
n (potentially complex) eigenvalues: λ = h ± iv.
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1.5 Decoupling the system

Stable eigenvalues

The modulus of an eigenvalue is given by its Euclidean norm
|λ| =

√
h2 + v2

Definition 1
An eigenvalue is stable if its modulus is strictly smaller than one: |λ| < 1

For now we will only consider cases with real eigenvalues
→ stable eigenvalue is one that is smaller than one in absolute value
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1.5 Decoupling the system

Modulus of an eigenvalue

R

I

0

h + iv

|λ|
v

h

In the complex plane, a
modulus below 1 can be
represented as being
inside of the unit circle
A thorny issue is the
treatment of unit
eigenvalues (unit roots)
In economic problems it
often makes sense to
lump them together with
the stable roots
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1.5 Decoupling the system Heer and Maußner (2009), 11.1.8

Jordan Eigenvalue Decomposition
Define Λ as the diagonal matrix with the eigenvalues of A on its main
diagonal:

Λ =


λ1 0 · · · 0

0 λ2
. . . ...

... . . . . . . 0
0 · · · 0 λn

 (26)

Let D collect the eigenvectors

D =
[
z1, . . . , zn

]
(27)

With distinct real eigenvalues it can be shown that A can be
decomposed via the Jordan Eigenvalue Decomposition into

A = DΛD−1 (28)

Adv. Macro II, Ch. II Deterministic linear difference equations Stochastic linear difference equations 24/90



1.5 Decoupling the system

Application to our difference equation

Premultiplying our system (22) by D−1 we get

D−1xt = D−1Axt−1 + D−1et
(28)= ΛD−1xt−1 + D−1et (29)

Defining

ζt = D−1xt (30)
vt = D−1et (31)

we can write this an uncoupled system

ζt = Λζt−1 + vt (32)
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1.5 Decoupling the system

Solving the decoupled system

The ζit can be solved separately with the single equation method used
above (with the initial/terminal conditions for x transformed into
ones for ζ)
The eigenvalues of A appearing on the diagonal of Λ form the
coefficients in the transformed equations

Equations associated with an unstable eigenvalue are solved forward
Equations associated with a stable eigenvalue are solved backward

Once the solution ζt has been found, the solution for the original
variables can be computed from

xt = Dζt (33)
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The importance of backward-looking stochastic LDEs

Most of the time we will be concerned with stochastic problems,
giving rise to stochastic linear difference equations
In this case, the perfect foresight assumption on et is replaced by et

being random
They can be handled very similarly as deterministic ones (as we will
see later)
Typically, solutions to economic problems take the form of
backward-looking SLDEs in the predetermined variables, i.e. the
ones that are restricted by initial conditions
Because these predetermined variables cannot freely adjust every
period, they are also called state variables
In this section, we will characterize stable and unique solutions in the
state variables
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2.1 Setup and stochastic structure Ljungqvist and Sargent (2012), Ch. 2.4

Stochastic LDEs: Setup
Consider a process {xt} of n-dimensional vectors, recursively
generated by the following first-order linear difference equation:

xt+1 = Aoxt + Cet+1, for t = 0, 1, ... (34)

where
{et} for t = 0, 1, . . . is a sequence of m × 1-dimensional random vectors
x0 is a given initial condition drawn from a distribution with mean µ0
and covariance Σ0 = E [(x0 − µ0)(x0 − µ0)′]
xt is an n × 1 state vector containing variables that are observed by
agents at time t
Ao is an n × n transition matrix,
C is an n × m matrix related to the covariance

The generated {xt} is then also a random sequence (stochastic
process)
Note the intimate connection of (34) to VARs from time series
econometrics (where n = m)
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2.1 Setup and stochastic structure Ljungqvist and Sargent (2012), Ch. 2.4

Stochastic shock structure

The {et} process generates a sequence of information sets {Jt} with
Jt = {et . . . , e1, x0}.
The sequence {et} is assumed to satisfy

E[et+1|Jt] = 0, (35)
E[et+1e′

t+1|Jt] = Im, (36)

where Et ≡ E[·|Jt] denotes the conditional expectations based on
information set Jt

Hence, {et} is a sequence of serially uncorrelated random vectors with
an unconditional mean equal to zero (shown below)
Exercise 5: Show that xt is contained in the information set Jt
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2.1 Setup and stochastic structure

Expectations operator: mathematical rules
Et [Xt+1 + Yt+1] = Et [Xt+1] + Et [Yt+1] .

In general: Et [Xt+1 · Yt+1] ̸=Et [Xt+1] · Et [Yt+1]
Law of iterated expectations:

Et [Et+1 [Xt+2]] = Et [Xt+2]

Constants and variables contained in the information set:
Et [Xt] = Xt.
Et [Xt · Yt+1] = Xt · Et [Yt+1] .
Et [b · Xt+1] = b · Et [Xt+1] .

Taking derivatives
∂

∂Yt+1
Et [f(Yt+1) ] = Et

[
∂

∂Yt+1
f(Yt+1)

]
.

Exercise 6: Show that
E[et] = 0 (37)
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2.2 Conditional moments/forecasting Ljungqvist and Sargent (2012), Ch. 2.4

Conditional mean and covariance
Exercise 7: Show that, if xt follows the SLDE in (34), the optimal
forecast of xt+1 (in the mean squared sense) for a given information
set at time t is

E[xt+1|Jt] = Aoxt, (38)

The one-step ahead forecast error is

xt+1 − Etxt+1 = Cet+1 (39)

The conditional covariance matrix of xt+1 (sometimes called
one-step ahead mean squared prediction error), can be computed
by postmultiplying the prediction error by its transpose and taking
conditional expectations:

Et

[
(xt+1 − Etxt+1) (xt+1 − Etxt+1)′

]
= Et

[
Cet+1 (Cet+1)′

]
= EtCet+1e′

t+1C ′ = CC ′.
(40)
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2.2 Conditional moments/forecasting Ljungqvist and Sargent (2012), Ch. 2.4

Moving average representation
The autoregressive (AR) first-order linear difference equation (34)
can alternatively be written as a moving average (MA) process
Exercise 8: Show that

xt+1 =Aoxt + Cet+1 =
t+1∑
i=1

At+1−i
o Cei + At+1

o x0 (41)

Leading this by j − 1-periods

xt+j =
t+j∑

s=t+1
At+j−s

o Ces + Aj
oxt (42)

and applying conditional expectations yields the j-step ahead
prediction

Etxt+j = Aj
oxt. (43)

The associated j-step ahead prediction error is then given by

xt+j − Etxt+j =
t+j∑

s=t+1
At+j−s

o Ces =
j−1∑
i=0

Ai
oCet+j−i (44)
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2.2 Conditional moments/forecasting Ljungqvist and Sargent (2012), Ch. 2.4

j-step ahead covariance matrix
The covariance matrix of the j-step ahead forecast error follows from

Ξt(j) =Et

[
(xt+j − Etxt+j) (xt+j − Etxt+j)′

]
(44)= Et

j−1∑
i=0

Ai
oCet+j−i

j−1∑
i=0

Ai
oCet+j−i

′
=Et

j−1∑
i=0

Ai
oCet+j−i

j−1∑
i=0

e′
t+j−iC

′
(
Ai

o

)′


=
j−1∑
i=0

Ai
oCC ′

(
Ai

o

)′
,

(45)

where we used that Et(et+ie
′
t+i) = I and Et(et+ie

′
t+k) = 0 for i ̸= k

and i, k > 0.
Thus, uncertainty increases in the forecast horizon j
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2.3 Unconditional moments and covariance stationarity Ljungqvist and Sargent (2012), Ch. 2.4

Generic formulation with a constant
We will consider the concept of covariance stationarity using a
system where we have separated out constant terms:

Ao =
[

A Ã
0 1

]
, C =

[
C1
0

]
, (46)

where
A is an (n − 1) × (n − 1) matrix with only stable eigenvalues
Ã is an (n − 1) × 1 column vector

Correspondingly partitioning x′
t = [x′

1t x′
2t], equation (34) can be

written as
x1t+1 =Ax1t + Ãx2t + C1et+1, (47)
x2t+1 =x2t (48)

Given that x2t is constant over time (it exhibits a unit root), and thus
equal to x20, we define

B ≡ Ãx20 (49)
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2.3 Unconditional moments and covariance stationarity Ljungqvist and Sargent (2012), Ch. 2.4

Covariance stationarity

Definition 2
A stochastic process {xt} is covariance stationary if the unconditional
mean is time invariant

Ext = Ex0 ∀ t (50)

and the sequence of unconditional autocovariance matrices

Σ(j) ≡ E(xt+j − Ext+j)(xt − Ext)′ (51)

is finite and only depends on the separation between dates j, but not on t.

Note that conditional heteroscedasticity is allowed, because it refers
to conditional moments
Our sequence {xt} will be covariance stationary, if all eigenvalues of
A (i.e. not associated with the constant) have moduli less than one
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2.3 Unconditional moments and covariance stationarity Ljungqvist and Sargent (2012), Ch. 2.4

The goal: a fixed point

We will be looking for an initial distribution with mean µ0 = Ex0 and
covariance Σ0 = E [(x0 − µ0)(x0 − µ0)′] that, if x0 is drawn from
this distribution, makes xt covariance stationary
If instead starting from a arbitrary initial value x0, the process will
still converge to this stationary distribution as t → ∞
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2.3 Unconditional moments and covariance stationarity Ljungqvist and Sargent (2012), Ch. 2.4

The unconditional mean

Taking unconditional expectations on both sides of (47), yields

Ex1t+1 = AEx1t + B. (52)

If µ0 is the stationary value of Ex1t, it needs to satisfy

µ0 = Aµ0 + B ⇔ µ0 = (I − A)−1B (53)

As before, using that the eigenvalues are stable, we know that

(I − A)−1 = I + A + A2 + A3 + . . . (54)
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2.3 Unconditional moments and covariance stationarity Ljungqvist and Sargent (2012), Ch. 2.4

Convergence to the unconditional mean

From the eigenvalue decomposition A = DΛD−1, the jth power of A
can be written as

Aj =
(
DΛD−1

) (
DΛD−1

)
. . .
(
DΛD−1

)
= DΛjD−1 (55)

Thus, the stationary mean µ0 satisfies

µ0 = (I − A)−1B
(54)=

∞∑
i=0

AiB
(55)= D

( ∞∑
i=0

Λi

)
D−1B (56)

If all eigenvalues of A are stable, µ0 will have a finite value
Exercise 9: Show that in this case, x1t will converge to the stationary
value µ0 for any initial value of x10
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2.3 Unconditional moments and covariance stationarity Ljungqvist and Sargent (2012), Ch. 2.4

The unconditional covariance
Subtracting (52) from (47) yields the uncond. period t forecast error

(x1t − Ex1t) = A (x1t−1 − Ex1t−1) + C1et (57)

The uncond. forecast error covariance at t, Σt, then satisfies

Σt =E
[
(x1t − Ex1t) (x1t − Ex1t)′

]
(57)= E

[
(A (x1t−1 − Ex1t−1) + C1et) (A (x1t−1 − Ex1t−1) + C1et)′

]
=E

[
A (x1t−1 − Ex1t−1) (x1t−1 − Ex1t−1)′ A′ + C1ete

′
tC

′
1

+ C1et (x1t−1 − Ex1t−1)′ A′ + A (x1t−1 − Ex1t−1) e′
tC

′
1
]

=AE
[
(x1t−1 − Ex1t−1) (x1t−1 − Ex1t−1)′

]
A′ + E

[
C1ete

′
tC

′
1
]

=AΣt−1A′ + C1C ′
1 ,

(58)

where the second-to-last line uses that et is orthogonal to
x1t−1 − Ex1t−1
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2.3 Unconditional moments and covariance stationarity Ljungqvist and Sargent (2012), Ch. 2.4

The unconditional covariance II
The result is a discrete Lyapunov equation

Σt = AΣt−1A′ + C1C ′
1 (58)

A stationary value Σ0 for the covariance matrix of x1t has to satisfy
(with Ex1t = µ0)

Σ0 = AΣ0A′ + C1C ′
1 (59)

Iterating backwards yields the solution

Σ0 =
∞∑

k=0
AkC1C ′

1Ak′ (60)

Exercise 10: Verify that this solves (59) if A is a stable matrix
Comparing the j-step ahead forecast error variance, (45), with the
unconditional one in (60) reveals that the unconditional covariance is
the limit of the former
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2.3 Unconditional moments and covariance stationarity Ljungqvist and Sargent (2012), Ch. 2.4

Inspecting the stationary covariance matrix
If the eigenvalues of A have moduli less than one, the unconditional
covariance matrix Σ0 takes a finite value:

Σ0
(55)=

∞∑
j=0

DΛjD−1C1C ′
1

(
DΛjD−1

)′

=D
∞∑

j=0
Λj
[
D−1C1

] [
C ′

1

(
D−1

)′
] (

Λj
)′

D′

=D

 ∞∑
j=0

ΛjC̃C̃ ′
(
Λj
)′
D′ ,

(61)

where C̃ = D−1C1 and C̃ ′ = C ′
1(D−1)′

Thus, if the covariance matrix of x10 is Σ0, it will remain constant
over time
Otherwise, the sequence of covariance matrices will asymptotically
converge to Σ0
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2.3 Unconditional moments and covariance stationarity Ljungqvist and Sargent (2012), Ch. 2.4

The unconditional autocovariances

This shows that the contemporaneous covariance at lag 0,
Σ0 = Σ0(0), only depends on j, but not on t

But what about other leads and lags?
The unconditional forecast error at time t + j satisfies

(x1t+j − Ex1t+j) (44)= Aj+1 (x1t−1 − Ex1t−1)+C1et+j + . . .+AjC1et

(62)
Exercise 11: Show that the autocovariance at lead/lag j

Σt (j) ≡ E (x1t+j − Ex1t+j) (x1t − Ex1t)′ (63)

is given by
Σt (j) = AjΣt(0) (64)

Thus, if Σt(0) does not depend on t, neither does Σt (j)
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2.4 State-space systems and impulse response functions Ljungqvist and Sargent (2012), Ch. 2.4

State space systems

We have already characterized the state transition equation, i.e. the
evolution of the predetermined state variables xt over time

xt+1 = Aoxt + Cet+1, for t = 0, 1, ... (34)

But often we are also interested in functions of the state variables:

yt = Gxt , (65)

where yt is a ny × 1 vector and G a ny × nx matrix
Equation (65) linking endogenous non-state variables to state
variables is called a measurement equation/observation equation
Equations (34) and (65) together form a state-space system,
describing the evolution of all variables of interest
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2.4 State-space systems and impulse response functions Ljungqvist and Sargent (2012), Ch. 2.4

Moving average representations (again)
We already derived the moving average representation for the state
variables

xt+1 =
t+1∑
i=1

At+1−i
o Cei + At+1

o x0 (41)

From (65) then follows

yt = G
t∑

i=0
At−i

o Cei + GAt
ox0 (66)

Exercise 12: Show that
E[yt|x0] = GAt

ox0 (67)
and using (45) that

Et

[
(yt+j − Etyt+j) (yt+j − Etyt+j)′

]
= G

j−1∑
i=0

Ai
oCC ′

(
Ai

o

)′
G′

(68)
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2.4 State-space systems and impulse response functions Ljungqvist and Sargent (2012), Ch. 2.4

Impulse response functions

We will often be concerned with the dynamic response of a variable
yt+h to a shock εt occurring at time t:

∂yt+h

∂εt
for some t and some h (typically ≥ 0) (69)

The moving average representations (41) and (66) reveal that the
impulse-response functions for h ≥ 0 are given by

∂yt+h

∂εt
= GAh

oC (70)

∂xt+h

∂εt
= Ah

oC (71)

If all eigenvalues are inside of the unit circle, the effect of shocks will
die out over time
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Introduction

We have made great headway in solving and understanding LDEs, but
we still do not know where the LDEs come from in economic
applications
They follow from economic optimization problems in discrete time
We again start with the deterministic case, before turning to the
stochastic case
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3.1 Setup Ljungqvist and Sargent (2012), Ch. 3, Chow (1997)

Setup: the sequence problem

1. Choose an infinite sequence of control variables, {ut}∞
t=0

2. to maximize a discounted time-separable objective

max
{u}∞

t=0

∞∑
t=0

βtr(xt, ut), (72)

where β ∈ (0, 1) is a discount factor and r the instantaneous return
function,

3. subject to a set of equations constraining the evolution of the state
variables {xt}∞

t=0
xt+1 ≤ gt(xt, ut) (73)

4. for a given initial value x0

Adv. Macro II, Ch. II Dynamic optimization Lagrangian formulation Stoch. Dyn. Prog. Recurs. competitive RE EQ References 48/90



3.1 Setup Ljungqvist and Sargent (2012), Ch. 3, Chow (1997)

Classification of variables

When discussing LDEs, we already saw the important distinction
between predetermined variables and non-predetermined ones
In economic problems, we classify variables into endogenous and
exogenous state variables and control variables
State variables: cannot be changed by the agent in the current
period, because they are predetermined. They characterize the state
of the system at any point in time.

exogenous state: cannot be changed by the agent at any time, but
follow exogenous (stochastic) law of motion
endogenous state: are predetermined at time t, but can be changed
by the agent at time t + j, j > 0

Control variables: all variables that the agent can change at time t
(can be an endogenous state variable at t + j, j > 0)
We will discuss examples later on
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3.2 Solution concept Ljungqvist and Sargent (2012), Ch. 3, Chow (1997)

The goal

Derive a (time-invariant) policy function h that maps the state xt

into the control ut such that the sequence of controls generated by
the two functions

ut = h(xt) (74)
xt+1 ≤ g(xt, ut) , (73)

starting from the initial condition x0 at t = 0, solves the problem
Knowing h : D → R is equivalent to knowing {ut}∞

t=0

Note that both {ut}∞
t=0 and h are infinite-dimensional objects

The structure of the system (73)-(74) is called recursive: starting
with x0, we can generate the sequence for {ut, xt+1} by iteratively
plugging in
We will only encounter functions, but h could be a correspondence
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3.2 Solution concept Acemoglu (2008), Ch. 6.2

Getting the solution

There are two different solution techniques:
1. Dynamic programming (covered in Advanced Macro II)
2. Lagrange-based methods

Lagrange is typically more intuitive, but requires differentiability
Dynamic programming works with functions instead of sequences,
requiring bigger formal investments, but

it has computational advantages, particularly when the problem is not
differentiable
solution characteristics like existence, uniqueness, boundedness, etc.
are often easier to derive
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4.1 Lagrangian formulations Chow (1997), Ch. 2

The Lagrangian formulation
If everything is nicely differentiable, discrete time optimization
problems can also be solved by applying the Lagrange formulation
instead of dynamic programming via Bellman equations
The Lagrangian sequence problem formulation of the original problem
is

L =
∞∑

t=0
βt [r(xt, ut) + λ′

t (g(xt, ut) − xt+1)
]
, (75)

where x is an n-dimensional vector of states, λt is an n-dimensional
vector of Lagrange multipliers, and x0 is given
By convention: discounting applies to the Lagrange multiplier as well
We seek to maximize the Lagrange function by choosing sequences
{ut, xt+1}∞

t=0 (and λt)
Note that the Lagrange multiplier part in (75) is equivalent to
−λ′

t (xt+1 − g(xt, ut))
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4.1 Lagrangian formulations Chow (1997), Ch. 2

The first order conditions
The first-order necessary conditions at every point in time t are given
by the transversality constraint (TVC) and

0 =βt ∂r (xt, ut)
∂ut

+ βtλt
∂g(xt, ut)

∂ut
(76)

0 = − βtλt + βt+1 ∂r (xt+1, ut+1)
∂xt+1

+ βt+1λt+1
∂g(xt+1, ut+1)

∂xt+1
(77)

0 =g(xt, ut) − xt+1, (78)

where we used the vector calculus rule that ∂λ′a
∂a = λ (see e.g. Greene

2011, p.1009)
Due to the stationary problem, the FOCs are time-invariant
Simplifying gives

∂r (xt, ut)
∂ut

+ λt
∂g(xt, ut)

∂ut
= 0 (79)

β
∂r (xt+1, ut+1)

∂xt+1
+ βλt+1

∂g(xt+1, ut+1)
∂xt+1

= λt (80)

Adv. Macro II, Ch. II Dynamic optimization Lagrangian formulation Stoch. Dyn. Prog. Recurs. competitive RE EQ References 53/90



4.1 Lagrangian formulations Chow (1997), Ch. 2

The transversality condition
Starting from a finite horizon problem, if we let T → ∞, the terminal
condition for capital leads to the transversality condition

lim
T →∞

βT λ1,T kT +1 = 0 (81)

The transversality condition (81) is a necessary condition for the
maximization problem
We will repeatedly face infinite horizon problems leading to this type
of condition
This TVC essentially implies that the discounted value of wealth (i.e.,
capital) in terms of utility has to be zero for the limiting case where
time approaches infinity
TVCs serve as terminal conditions that have to be taken into account
when solving the set of first-order conditions (which will typically take
the form of vector difference equations)
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4.2 Example: the Brock and Mirman (1972) model Ljungqvist and Sargent (2012), Ch. 3.1.2

The neoclassical growth model
Consider a Ramsey (1928)-Cass (1965)-Koopmans (1965)-type model
with one representative household, supplying labor inelastically:
N = 1
Felicity is logarithmic in consumption:

u(Ct) = ln Ct (82)
and households have discount factor β ∈ [0, 1)
Production technology is Cobb-Douglas with capital share α ∈ (0, 1):

Yt = F (Kt, Nt) = AKα
t N1−α

t , (83)
with TFP A > 0 being exogenous
The law of motion for capital is given by

Kt+1 = (1 − δ)Kt + It , (84)
where δ ∈ (0, 1] is the depreciation rate
We assume a closed economy, i.e. the resource constraint is

Yt = Ct + It (85)
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4.2 Example: the Brock and Mirman (1972) model

Stock notations
The capital stock is a predetermined variable
There are two timing conventions in the literature:

1. the stock at the end of period notation uses the capital stock at the
end of the period when investment has already been added:

Kt =(1 − δ)Kt−1 + It (86)
Yt =AKα

t−1N1−α
t (87)

2. the stock at the beginning of period notation uses the capital stock
at the beginning of the current period, before current investment has
been added:

Kt+1 =(1 − δ)Kt + It (88)
Yt =AKα

t N1−α
t (89)

The stock at the end of period notation is typically more intuitive,
because it endows the capital stock with the timing at which it is
decided and makes the predeterminedness explicit
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4.2 Example: the Brock and Mirman (1972) model Ljungqvist and Sargent (2012), Ch. 3.1.2

The planner’s problem

Define lower-case letters as per capita variables, i.e. xt = Xt/Nt

Exercise 13: Assuming full deprecation δ = 1, show that

kt+1 = Akα
t − ct (90)

The social planner’s program then is:

max
{ct}∞

t=0

∞∑
t=0

βt ln ct

s.t. kt+1 = Akα
t − ct, (90)

k0 > 0 and TVC given

Variable classification
State variables: kt

Control variables: ct, kt+1
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4.3 Example

The Brock and Mirman (1972)-model
For the simple neoclassical growth model from above, the Lagrange
sequence problem reads

L =
∞∑

t=0
βt [ln ct + λt (Akα

t − ct − kt+1)] . (91)

The first-order conditions (79)-(80) are given by

λt = c−1
t , (92)

λt = βλt+1αAkα−1
t+1 , (93)

where we used that
∂r (xt+1, ut+1)

∂xt+1
= ∂ ln ct+1

∂kt+1
= 0 (94)

Eliminating the Lagrange multiplier yields the Euler equation:
ct+1
ct

= βαAkα−1
t+1 (95)
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4.3 Example Romer (2012), Ch. 2.2

Reminder: The Keynes-Ramsey rule I

The Euler, together with the transition law (90), implicitly
characterizes the optimal sequence of ct and kt for a given initial
value k0 (second order difference equation)
The Euler equation for consumption per worker yields the
Keynes-Ramsey rule

∆ct+1
ct

≈ log
(

ct+1
ct

)
= rt+1,t − ρ

σ
= (rt+1,t − ρ) × EOIS (96)

where we used:
the approximation log(1 + x) ≈ x for small x
β = 1/(1 + ρ), where ρ is the rate of time preference
CRRA preferences of the type (C1−σ

t − 1)/(1 − σ) with risk aversion
coefficient σ so that the intertemporal elasticity of substitution is
EOIS = 1/σ
rt+1,t = f ′(kt+1) + (1 − δ) = αAkα−1

t+1
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4.3 Example Romer (2012), Ch. 2.2

Reminder: The Keynes-Ramsey rule II
The Euler equation for consumption per worker yields the
Keynes-Ramsey rule

∆ct+1
ct

≈ log
(

ct+1
ct

)
= rt+1,t − ρ

σ
= (rt+1,t − ρ) × EOIS (96)

If r > ρ: Giving up one unit of consumption today and saving it yields
r, but the HH only discounts with ρ ⇒ HH shifts consumption to the
future, i.e. consumption path is increasing
Marginal utility in the future must be lower and consumption higher
than today to make RHS of (95) equal to LHS, given rt+1,t − ρ > 0
In EQ: shifting consumption in any direction at the margin does not
increase discounted marginal utility
The willingness to shift consumption intertemporally depends on the
EOIS 1/σ: the higher the EOIS the more consumption responds to a
given r − ρ
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4.4 Getting the solution Ljungqvist and Sargent (2012), Ch. 3.1.2

The method of undetermined coefficients
We are left with a problem: the Euler equation only implicitly
characterizes the solution
In general, it is impossible to immediately obtain the policy functions
from these equilibrium conditions
However: the Brock and Mirman (1972)-model due to its log-linear
structure has a simple analytical solution that can by guessed and
verified via the method of undetermined coefficients
Idea: guess a functional form for h but leave the coefficients
unknown; functional form should only depend on the state of the
system and be similar to the model structure
Plug this guess (repeatedly) into the FOCs and try to solve for the
unknown coefficient(s)
If we can find a value for the coefficients (i.e. a function of only
parameters, not variables) that satisfies the FOCs, we have found one
(of potentially many) solution
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4.4 Getting the solution Ljungqvist and Sargent (2012), Ch. 3.1.2

Getting the solution

Exercise 14: Use the guess of a constant savings rate

kt+1 = ϕAkα
t (97)

and show that ϕ = αβ solves the problem
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5.1 Setup Ljungqvist and Sargent (2012), Ch. 3.1.2

Intro

This section presents methods of dynamic optimization under
uncertainty, which will repeatedly be applied in this course
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5.1 Setup Ljungqvist and Sargent (2012), Ch. 3.1.2

Stochastic structure
We introduce random events st ∈ S where S is the finite set of
possible events S = {σa, σb, σc, ..., σn} that can happen in any period
t

The unconditional probability of an event is given by π(st) and∑
st∈S

π(st) = 1 (98)

The event history is given by st = (st, st−1, ..., s0) and summarizes
the realizations of all events from period 0 to period t.
The set of event histories is then St = S × S × ... × S, with st ∈ St

The probability of a particular event history st is given by π(st),
where π(st) > 0 for all st ∈ St and t

We could relax the assumption that the same set of events S can
realize with some strictly positive probability in each period, but

notation would be heavier
problem would not be time-invariant
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5.1 Setup Ljungqvist and Sargent (2012), Ch. 3.1.2

Probability of event history

The probability of a particular event history π(st) = π(st, st−1, ...s0)
is the joint probability of the events st, . . . , s0, where π(s0) = 1 for a
given initial state s0

Denote the conditional probability of state st and thus st given the
history st−1 at date t − 1 with π(st|st−1)
The joint probability can the be factored as

π(st) = π(st|st−1) · π(st−1|st−2) · . . . · π(s1|s0) · π(s0)
= π(st|st−1) · π(st−1|st−2) · . . . · π(s1|s0) ,

(99)

where we used that π(s0) = 1.
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5.2 Markov processes Ljungqvist and Sargent (2012), Ch. 3.1.2

Markov processes

In general the probability of a particular event st occuring at time t
depends on the complete history of past events
That makes general processes hard to work with, because past events
become states that need to be tracked
Life becomes easier when working with Markov processes that only
require keeping track of some history

Definition 3 (nth-order Markov process)
st is generated by an nth-order Markov process if the distribution of st

conditional on n lags is the same as the distribution of st conditional on all
lags:

π
(
st|st−1

)
= π (st|st−1, ..., st−n) (100)
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5.2 Markov processes Ljungqvist and Sargent (2012), Ch. 3.1.2

First-order Markov processes

A first-order Markov process is then characterized by

π (st|st−1) = π
(
st|st−1

)
(101)

The probability of a particular event only depends on the last event,
but not on the entire history of earlier events
The probability of event history st,

π(st) = π(st, st−1, ..., s0) (102)

for a given initial state s0 then simplifies to

π(st) = π(st|st−1) · π(st−1|st−2) · . . . · π(s1|s0)
= π (st|st−1) · π (st−1|st−2) · . . . · π (s1|s0)

(103)
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5.2 Markov processes Ljungqvist and Sargent (2012), Ch. 3.1.2

Example
Consider a 2-state Markov process: each period the event is
st ∈ S = {σa, σb} with s0 = σ being a given fixed event ∈ S

The history of events up to t is then

st = (st, s t−1, . . . , s0) ∈ St = St × St−1 × . . . × S0 (104)

Thus, for the periods t = 0, 1, 2 the sets of event histories are

S0 = σ (105)
S1 = {(σa, σ) , (σb, σ)} (106)
S2 = {(σa, σa, σ) , (σa, σb, σ) , (σb, σa σ) , (σb, σb, σ)} (107)

The unconditional probability for event history π(s2) is given by

π(s2) = π(s2|s1) · π(s1|s0) · π(s0)
= π(s2|s1) · π(s1|s0) · π(s0)

(108)
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5.2 Markov processes Ljungqvist and Sargent (2012), Ch. 3.1.2

Example continued

The unconditional probability for the particular history
s2 = (σb, σa , σ) is given by

π((σb, σa , σ)) = π(σb|σa) · π(σa|σ) , (109)

where we used that π(s0) = π(σ) = 1.
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5.3 Stochastic concave programming Ljungqvist and Sargent (2012), Ch. 3.1.2

A stochastic concave programming problem
Consider a problem with a time-separable differentiable and concave
return function r(xt, yt) and discount factor β ∈ (0, 1)
The sequence of control variables yt is chosen to maximize an
intertemporal objective, subject to a set of constraints on the
evolution of the endogenous state variables xt

xt+1 = g(xt, yt) (110)

The set {(xt+1, xt) : xt+1 ≤ g(xt, yt)} is convex and compact for
admissible yt

We assume events st realize at the beginning of each period, i.e. after
yt−1 has been chosen, but before yt

Controls yt will generally depend on event history st, i.e. yt(st), while
state variables xt will depend on history st−1, i.e. xt(st−1)
Note that they might depend on more than the random events
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5.3 Stochastic concave programming Ljungqvist and Sargent (2012), Ch. 3.1.2

Stochastic maximization problem
Stochastic problems typically involve the maximization of an
expected sum of discounted returns (e.g. von
Neumann-Morgenstern utility), subject to set of constraints that
has to hold for each state of the world:

max
{yt(st),xt+1(st)}∞

t=0

∞∑
t=0

∑
st∈St

βtπ(st)r
(
xt(st−1), yt(st)

)
, (111)

s.t. xt+1(st) = g
(
xt(st−1), yt(st), st

)
,

where initial values x0 and s0 are given and random events s are
generated by a first-order Markov process
The Lagrangian for this problem is given by

L (x0, s0) =
∞∑

t=0

∑
st∈St

βtπ(st)
[
r
(
(xt(st−1), yt(st)

)
+ λ′

t(st)
(
g
(
xt(st−1), yt(st), st

)
− xt+1

(
st
))] (112)

Adv. Macro II, Ch. II Dynamic optimization Lagrangian formulation Stoch. Dyn. Prog. Recurs. competitive RE EQ References 71/90



5.3 Stochastic concave programming Ljungqvist and Sargent (2012), Ch. 3.1.2

The first order conditions
The first-order conditions with respect to yt(st) ∀st, st+1 ∈ St are

0 = βtπ(st)∂r
(
xt(st−1), yt(st)

)
∂yt(st) +βtπ(st)λt(st)∂g

(
xt(st−1), yt(st), st

)
∂yt(st) ,

(113)
The FOCs with respect to xt+1(st) are

π(st)λt(st) =
∑

st+1|st

βπ(st+1)∂r
(
(xt+1(st), yt+1(st+1)

)
∂xt+1(st)

+
∑

st+1|st

βπ(st+1)λt+1(st+1)∂g
(
xt+1(st), yt+1(st+1), st+1

)
∂xt+1(st) ,

(114)

where we sum over all possible histories st+1, conditional on the
realization of a particular history st

In addition, the FOC w.r.t. to λ, i.e. the constraint, has to hold
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5.4 Recursive solutions Ljungqvist and Sargent (2012), Ch. 3.1.2

History-dependence vs. time-invariance

Solutions for yt and xt+1 that satisfy the two sets of conditions,
(113)-(114) and the set of constraints

xt+1(st) = g
(
xt(st−1), yt(st), st

)
(115)

are generally history-dependent
That is, objects are in principle time-varying functions of the history
of events st

However, we aim at deriving time-invariant functions for yt and xt+1
that do not depend on the entire history, but on a limited set of
relevant information.
At each point in time this information is summarized in the state,
which includes the random event st, i.e. the exogenous state and
the endogenous state xt
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5.4 Recursive solutions Ljungqvist and Sargent (2012), Ch. 3.1.2

Recursive solutions

Suppose there exists a solution for the current control yt that can be
written as a time-invariant function of the current endogenous state
xt and the current event st rather than of the entire history st.

yt = h(xt, st) (116)

In this case, the constraint requires the endogenous state to satisfy

xt+1 = g (xt, yt, st) = g (xt, h(xt, st), st) (117)

The endogenous state, like the exogenous state, is then generated by
a first-order Markov process
→ the solutions for yt and xt+1 inherit the Markov property
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5.4 Recursive solutions Ljungqvist and Sargent (2012), Ch. 3.1.2

Rewriting the FOCs
We can use the Markov property to rewrite the first order conditions
(113) as

0 = ∂r (xt, yt(xt, st))
∂yt(xt, st)

+ λt(xt, st)
∂g (xt, yt(xt, st), st)

∂yt(xt, st)
(113’)

→ λt is also a function of xt and st.
Using the Markov property and π(st+1)

π(st) = π (st+1|st), we can write
(114) as

λt(st) =
∑

st+1|st

βπ (st+1|st)
∂r (xt+1, yt+1(xt+1, st+1))

∂xt+1

+
∑

st+1|st

βπ(st+1|st)λt+1(xt+1, st+1)∂g (xt+1, yt+1(xt+1, st+1), st+1)
∂xt+1

(114’)
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5.4 Recursive solutions Ljungqvist and Sargent (2012), Ch. 3.1.2

Rewriting the FOCs II

Introducing the expectations operator Et conditional on information
in period t (for any vector z of random variables)

Etzt+1 =
∑

st+1|st

π(st+1|st)zt+1(st+1), (118)

allows to rewrite the conditions as

0 = ∂r (xt, yt)
∂yt

+ λt
∂g (xt, yt, st)

∂yt
(113”)

λt = βEt
∂r (xt+1, yt+1)

∂xt+1
+ βEtλt+1

∂g (xt+1, yt+1, st+1)
∂xt+1

(114”)

xt+1 = g (xt, yt, st) (117)
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5.4 Recursive solutions Ljungqvist and Sargent (2012), Ch. 3.1.2

Inspecting the solution

These conditions have to be satisfied by sequences {yt}∞
t=0 and

{xt+1}∞
t=0, for a given sequence for st and x0

If such solutions exist, yt and xt+1 are time-invariant functions of the
current states xt and st, i.e. identical functions ∀ t ≥ 0
Note that yt and xt+1 might further depend on the properties of the
distribution of the random event
If the system is linear, only the first moment of st will affect the
solution (certainty equivalence)
Otherwise, higher moments might also affect the solution
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5.5 A macroeconomic example Ljungqvist and Sargent (2012), Ch. 3.1.2

A stochastic Brock and Mirman (1972) model

Consider the planner problem for a Brock and Mirman (1972) model
with a random exogenous state variable st generated by a first order
finite state Markov process

max
{ct(st),kt+1(st)}∞

t=0

∞∑
t=0

∑
st∈St

βtπ(st)u(ct(st))

s.t. kt+1(st) + ct(st) = f(kt(st−1), st),
(119)

where u denotes a standard concave utility function, c consumption of
a representative household, and k capital per capita
The production function f exhibits neoclassical properties and output
(per capita) depends on a random event via stochastic total factor
productivity
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5.5 A macroeconomic example Ljungqvist and Sargent (2012), Ch. 3.1.2

The Lagrangian sequence problem

The Lagrangian sequence problem is then given by

L =
∞∑

t=0

∑
st∈St

βtπ(st)u(ct(st))

+
∞∑

t=0

∑
st∈St

βtπ(st)λt(st)
(
f(kt(st−1), st) − kt+1(st) − ct(st)

)
(120)

The FOCs for ct and kt+1 for given histories st and st+1 are

π(st)uc(ct(st)) − π(st)λt(st) = 0 (121)
π(st)λt(st) −

∑
st+1|st

βπ(st+1)λt+1(st+1)f ′(kt+1(st), st+1) = 0 (122)
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5.5 A macroeconomic example Ljungqvist and Sargent (2012), Ch. 3.1.2

Deriving the Euler equation
The FOCs (121)-(122) can be simplified to

uc(ct(st)) = λt(st) (123)

λt(st) =
∑

st+1|st

β
π(st+1)
π(st) λt+1(st+1)f ′(kt+1(st), st+1) (124)

Now use that st follows a Markov process π(st+1)
π(st) = π (st+1|st) and

suppose there exists a solution that can be written as functions of the
current states, but does not depend on the previous history of events
Then we end up with the Euler equation

uc(ct(st)) =
∑

st+1|st

βπ (st+1|st) uc(ct+1(st+1))f ′(g(kt, st), st+1)

(125)
or more compactly

uc(ct(st)) = Etβ
[
uc(ct+1(st+1))f ′(g(kt, st), st+1)

]
(126)
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5.5 A macroeconomic example Ljungqvist and Sargent (2012), Ch. 3.1.2

The equilibrium
The Euler equation implies that ct(st) depends on current states
(st, kt)
Consumption will also in general depend on the first and higher
moments of the random variable st

Given that consumption does not depend on the history of states, we
can write the constraint as

kt+1(kt, st) = f(kt, st) − ct(st, kt), (127)

showing that capital is a function of the current states kt and st

We have demonstrated that a recursive solution might exist
But we have not shown that it actually exists or whether it is unique
In principle, there might even be non-recursive solutions to the
problem, leading to a non-Markov evolution of the state
We will disregard these types of solutions throughout the course
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5.5 A macroeconomic example

Certainty Equivalence I
Exercise 15: Consider the stochastic Brock and Mirman (1972) model
with log utility and stochastic TFP At:

yt = Atk
α
t (128)

Show that the solution is given by

kt+1 = αβAtk
α
t (129)

Due to log utility, full depreciation, and Cobb-Douglas: distribution of
shock process does not affect solution
Regarding the variance, a mean-preserving spread to At would not
alter the agents’ choice
Certainty equivalence: people make decisions under uncertainty by
acting as if future stochastic variables were sure to turn out equal to
their expected values (Obstfeld and Rogoff 1996, p. 81)
This also implies the absence of precautionary behavior, because
people act as if the expected value would occur with 100% certainty
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5.5 A macroeconomic example

Certainty Equivalence II

As in this special case, certainty equivalence is a property of the
model
But: certainty equivalence can also be an artifact of a particular
solution technique, although the underlying model does not feature
it
For example, Jensen’s inequality effects cannot arise with linear
solutions (more on this later)
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Ljungqvist and Sargent (2012), Ch. 7.3

Equilibria with several agents

In the Brock and Mirman (1972)-model we had a central planner
directly choosing the state
But: in most macroeconomic models, the law of motion for the
relevant endogenous state variables will not only depend on the
decisions of one agent
Agents will e.g. interact via markets where they are price-takers
We will thus require an equilibrium concept where the plans of
different agents are combined in a consistent way
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Ljungqvist and Sargent (2012), Ch. 7.3

Setup
Let xt be the vector of state variables under the control of the agent
and Xt the vector of the same variables resulting from “markets”
Denote with Zt the vector of exogenous states
The agents problem then takes the form

V (xt, Xt, Zt) = max
ut

{r (xt, Xt, Zt, ut) + βV (xt+1, Xt+1, Zt+1)}

s.t.

xt+1 = g (xt, Xt, Zt, ut) (130)
Xt+1 = G (Xt, Zt) (131)
Zt+1 = F (Zt) (132)

The function g describes the effect of the agents control variable on
his own state
The functions G and F are the perceived law of motion and
describe the agent’s beliefs about the evolution of aggregate states
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Ljungqvist and Sargent (2012), Ch. 7.3

The solution

The solution of the problem will take the form

ut = h(xt, Xt, Zt) (133)

In a representative agent framework, we will have xt = Xt in the
solution so that

Xt+1 ≡ GA(Xt, Zt) = g(Xt, Xt, Zt, h(Xt, Xt, Zt)) (134)

Note: symmetry/representativeness is always imposed after
computing the individual policy functions
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Ljungqvist and Sargent (2012), Ch. 7.3

Recursive competitive rational expectations equilibrium

Definition 2 (Recursive competitive rational expectations equilibrium)
A recursive competitive rational expectations equilibrium consists of a
policy function h, an actual aggregate law of motion GA, and a perceived
aggregate law G such that

i) given the perceived law G, the policy function h solves the agent’s
optimization problem

ii) the policy function h implies that GA = G, i.e. the perceived and
actual law of motion are consistent

Although terminologically imprecise, shorthand names found in the
literature are recursive competitive equilibrium or rational
expectations equilibrium
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