Starting Dynare (version 6.4). Calling Dynare with arguments: parallel conffile=C:\Users\vinayak\Documents\MATLAB\dynare_local4.ini Starting preprocessing of the model file ... Substitution of endo leads >= 2: added 2 auxiliary variables and equations. Substitution of endo lags >= 2: added 3 auxiliary variables and equations. Found 28 equation(s). Evaluating expressions... Computing static model derivatives (order 1). Normalizing the static model... Finding the optimal block decomposition of the static model... 7 block(s) found: 6 recursive block(s) and 1 simultaneous block(s). the largest simultaneous block has 16 equation(s) and 16 feedback variable(s). Computing dynamic model derivatives (order 2). Normalizing the dynamic model... Finding the optimal block decomposition of the dynamic model... 7 block(s) found: 6 recursive block(s) and 1 simultaneous block(s). the largest simultaneous block has 16 equation(s) and 15 feedback variable(s). Preprocessing completed. Preprocessing time: 0h00m01s. [Warning: Some of the parameters have no value (pibar1) when using steady. If these parameters are not initialized in a steadystate file or a steady_state_model-block, Dynare may not be able to solve the model. Note that simul, perfect_foresight_setup, and perfect_foresight_solver do not automatically call the steady state file.] STEADY-STATE RESULTS: a 1 l 5.83838 pit 1.039 A 1 m 1 PI 1.039 Pit 1.039 pi 0 C 0.332454 N 0.333333 Yw 0.333333 Y 0.332454 w 0.831472 mcm 0.831472 x_aux_1 1.0566 x_aux_2 1.23751 Pi 1.00961 r 1.01367 dp 1.00265 pmstar 1.02457 y_obs 0 r_obs 0.0135727 pi_obs 1.00961 Initial value of the log posterior (or likelihood): 966.3786 Gradient norm 5786.7005 Minimum Hessian eigenvalue 0.11839 Maximum Hessian eigenvalue 55716502.5721 Iteration 1 Correct for low angle: 0.00445273 Predicted improvement: 47.506539557 lambda = 1; f = -966.3785670 lambda = 0.33333; f = -988.9578599 lambda = 0.64439; f = -966.3786301 lambda = 0.4339; f = -989.3469555 Norm of dx 3.2839 Predicted improvement: 16742951.205853291 lambda = 1; f = 305336.3013610 lambda = 0.33333; f = 32892.7673381 lambda = 0.11111; f = 2743.4928694 lambda = 0.037037; f = -571.1632525 lambda = 0.012346; f = -927.7827457 lambda = 0.0041152; f = -963.5216489 lambda = 0.0013717; f = -966.2385636 lambda = 0.00045725; f = -966.3782459 lambda = 0.00015242; f = -966.3689376 lambda = 5.0805e-05; f = -966.3777093 lambda = 1.6935e-05; f = -966.3785717 lambda = 5.645e-06; f = -966.3786301 lambda = 1.8817e-06; f = -928.4185564 lambda = 6.2723e-07; f = -971.3782442 lambda = 2.0908e-07; f = -984.9859401 lambda = 6.9692e-08; f = -988.2445468 lambda = 2.3231e-08; f = -989.0294197 lambda = 7.7435e-09; f = -989.2471582 lambda = 2.5812e-09; f = -989.3143817 lambda = -6.2723e-07 lambda = -6.2723e-07; f = -966.3786299 lambda = -2.0908e-07; f = -988.7447949 lambda = -6.9692e-08; f = -989.9332448 Norm of dx 5786.7 Predicted improvement: 0.128814193 lambda = 1; f = -990.0683744 Norm of dx 0.0018168 Done for param e1 = 0.0538; f = -990.0684 Predicted improvement: 2.688505587 lambda = 1; f = -993.4713034 Norm of dx 0.0023525 Done for param e2 = 0.0079; f = -993.4713 Predicted improvement: 1.368918172 lambda = 1; f = -995.1932169 Norm of dx 0.00051971 Done for param e3 = 0.0026; f = -995.1932 Predicted improvement: 5.201877544 lambda = 1; f = -995.8541622 lambda = 0.33333; f = -997.9645666 lambda = 0.64439; f = -998.7356508 Norm of dx 0.0015801 Done for param e4 = 0.0043; f = -998.7357 Predicted improvement: 12.932448225 lambda = 1; f = -1015.2607545 Norm of dx 0.010469 Done for param e5 = 0.0628; f = -1015.2608 Predicted improvement: 0.252441447 lambda = 1; f = -1015.5212572 Norm of dx 0.0076813 Done for param pibar = 1.0690; f = -1015.5213 Predicted improvement: 0.616138731 lambda = 1; f = -1016.0310699 Norm of dx 0.0016113 Done for param b = 0.9978; f = -1016.0311 Predicted improvement: 6.109216439 lambda = 1; f = -1024.0180497 Norm of dx 0.071444 Done for param h = 0.1644; f = -1024.0180 Predicted improvement: 14.568553427 lambda = 1; f = -987.3452431 lambda = 0.33333; f = -1030.3816447 Norm of dx 0.097805 Done for param theta = 0.7422; f = -1030.3816 Predicted improvement: 9.234503673 lambda = 1; f = -1034.2346401 lambda = 0.33333; f = -1035.3892155 lambda = 0.64439; f = -1037.4680498 Norm of dx 1.2746 Done for param phi_pi = 2.5740; f = -1037.4680 Predicted improvement: 3.370780531 lambda = 1; f = -1040.2996095 Norm of dx 0.14241 Done for param phi_y = 0.1199; f = -1040.2996 Predicted improvement: 0.300541730 lambda = 1; f = -1040.5141322 Norm of dx 0.02429 Done for param rhoa = 0.9673; f = -1040.5141 Predicted improvement: 3362241927172.405273438 lambda = 1; f = 6724483854231444389888.0000000 lambda = 0.33333; f = 747164872667190394880.0000000 lambda = 0.11111; f = 83018319176845918208.0000000 lambda = 0.037037; f = 9224257683517073408.0000000 lambda = 0.012346; f = 1024917519457736960.0000000 lambda = 0.0041152; f = 113879724073176224.0000000 lambda = 0.0013717; f = 12653302571124530.0000000 lambda = 0.00045725; f = 1405922473344544.7500000 lambda = 0.00015242; f = 156213596629427.6250000 lambda = 5.0805e-05; f = 17357062451597.4902344 lambda = 1.6935e-05; f = 1928561213862.5126953 lambda = 5.645e-06; f = 214284151825.8609314 lambda = 1.8817e-06; f = 23809207133.0890808 lambda = 6.2723e-07; f = 2645419196.9183240 lambda = 2.0908e-07; f = 293918806.5006458 lambda = 6.9692e-08; f = 32651519.5065207 lambda = 2.3231e-08; f = 3625332.3394161 lambda = 7.7435e-09; f = 401370.8945595 lambda = 2.5812e-09; f = 43543.1104419 lambda = -6.2723e-07 lambda = -6.2723e-07; f = 2645458554.8674564 lambda = -2.0908e-07; f = 293931925.5619906 lambda = -6.9692e-08; f = 32655892.2719365 lambda = -2.3231e-08; f = 3626789.6728556 lambda = -7.7435e-09; f = 401856.4173401 lambda = -2.5812e-09; f = 43704.6963363 Norm of dx 8.2003e+10 Done for param ra = 0.6913; f = -1040.5141 Sequence of univariate steps!! Actual dxnorm 0.62294 FVAL -1040.5141 Improvement 74.1355 Ftol 1e-05 Htol 1e-05 Elapsed time for iteration 0.55316 s. Iteration 2 Correct for low angle: 0.0018049 Predicted improvement: 72.513654316 lambda = 1; f = -1040.5138075 lambda = 0.33333; f = -1040.5141256 lambda = 0.11111; f = -1000.6174714 lambda = 0.037037; f = -1041.8226707 lambda = 0.012346; f = -1041.8664249 lambda = 0.023866; f = -1042.3283813 Norm of dx 5.9782 Predicted improvement: 25.512616365 lambda = 1; f = -1040.5030934 lambda = 0.33333; f = -1036.1727046 lambda = 0.11111; f = -1044.9043665 Norm of dx 1.2008 Predicted improvement: 0.398134953 lambda = 1; f = -1045.3354405 Norm of dx 0.0034655 Done for param e1 = 0.0608; f = -1045.3354 Predicted improvement: 0.027476631 lambda = 1; f = -1045.3643548 Norm of dx 0.00059317 Done for param e2 = 0.0097; f = -1045.3644 Predicted improvement: 0.094749173 lambda = 1; f = -1045.4426032 Norm of dx 0.0003953 Done for param e3 = 0.0031; f = -1045.4426 Predicted improvement: 0.019148140 lambda = 1; f = -1045.4620243 Norm of dx 5.0043e-05 Done for param e4 = 0.0039; f = -1045.4620 Predicted improvement: 1.143607083 lambda = 1; f = -1046.7414313 Norm of dx 0.0049009 Done for param e5 = 0.0601; f = -1046.7414 Predicted improvement: 0.012679860 lambda = 1; f = -1046.7540863 Norm of dx 0.0016622 Done for param pibar = 1.0692; f = -1046.7541 Predicted improvement: 0.057072691 lambda = 1; f = -1046.8151807 Norm of dx 0.00034026 Done for param b = 0.9976; f = -1046.8152 Predicted improvement: 0.001424292 lambda = 1; f = -1046.8166025 Norm of dx 0.0015167 Done for param h = 0.1701; f = -1046.8166 Predicted improvement: 2.378079242 lambda = 1; f = -1047.9426241 lambda = 0.33333; f = -1048.0655076 lambda = 0.64439; f = -1048.5162974 Norm of dx 0.025274 Done for param theta = 0.7628; f = -1048.5163 Predicted improvement: 1.722469979 lambda = 1; f = -1050.0011483 Norm of dx 0.48244 Done for param phi_pi = 2.3537; f = -1050.0011 Predicted improvement: 0.173610289 lambda = 1; f = -1050.1620350 Norm of dx 0.022935 Done for param phi_y = 0.0692; f = -1050.1620 Predicted improvement: 0.477973500 lambda = 1; f = -1050.6809941 Norm of dx 0.013941 Done for param rho_i = 0.8507; f = -1050.6810 Predicted improvement: 0.030366208 lambda = 1; f = -1050.7139405 Norm of dx 0.0036999 Done for param rhoa = 0.9707; f = -1050.7139 Predicted improvement: 3.376421024 lambda = 1; f = -1054.6521017 Norm of dx 0.13374 Done for param ra = 0.4946; f = -1054.6521 Sequence of univariate steps!! Actual dxnorm 0.30067 FVAL -1054.6521 Improvement 14.138 Ftol 1e-05 Htol 1e-05 Elapsed time for iteration 0.43014 s. Iteration 3 Correct for low angle: 0.0038099 Predicted improvement: 20.360061153 lambda = 1; f = -1054.5696526 lambda = 0.33333; f = -1053.9130095 lambda = 0.11111; f = -1043.2326974 lambda = 0.037037; f = -1054.4662513 lambda = 0.012346; f = -1054.9645109 Norm of dx 7.7265 Predicted improvement: 0.319450249 lambda = 1; f = -1055.3081207 Norm of dx 0.0033266 Done for param e1 = 0.0646; f = -1055.3081 Predicted improvement: 0.261066131 lambda = 1; f = -1055.5141764 Norm of dx 0.0019607 Done for param e2 = 0.0077; f = -1055.5142 Predicted improvement: 0.041895286 lambda = 1; f = -1055.5519476 Norm of dx 0.00023004 Done for param e3 = 0.0031; f = -1055.5519 Predicted improvement: 0.010720761 lambda = 1; f = -1055.5628290 Norm of dx 3.6795e-05 Done for param e4 = 0.0039; f = -1055.5628 Predicted improvement: 0.002338282 lambda = 1; f = -1055.5651482 Norm of dx 0.00028483 Done for param e5 = 0.0602; f = -1055.5651 Predicted improvement: 0.382407495 lambda = 1; f = -1055.9433306 Norm of dx 0.008104 Done for param pibar = 1.0612; f = -1055.9433 Predicted improvement: 0.002797369 lambda = 1; f = -1055.9461668 Norm of dx 8.0701e-05 Done for param b = 0.9975; f = -1055.9462 Predicted improvement: 0.949523507 lambda = 1; f = -1056.8949498 Norm of dx 0.043899 Done for param h = 0.2217; f = -1056.8949 Predicted improvement: 0.839043391 lambda = 1; f = -1057.6168327 Norm of dx 0.012815 Done for param theta = 0.7760; f = -1057.6168 Predicted improvement: 0.181918060 lambda = 1; f = -1057.7893026 Norm of dx 0.14078 Done for param phi_pi = 2.3074; f = -1057.7893 Predicted improvement: 0.080502403 lambda = 1; f = -1057.8636955 Norm of dx 0.014673 Done for param phi_y = 0.0565; f = -1057.8637 Predicted improvement: 0.328198097 lambda = 1; f = -1058.2175123 Norm of dx 0.012811 Done for param rho_i = 0.8420; f = -1058.2175 Predicted improvement: 0.065926842 lambda = 1; f = -1058.2736719 Norm of dx 0.0056677 Done for param rhoa = 0.9770; f = -1058.2737 Predicted improvement: 1.145755263 lambda = 1; f = -1059.5654243 Norm of dx 0.098076 Done for param ra = 0.3869; f = -1059.5654 Sequence of univariate steps!! Actual dxnorm 0.13018 FVAL -1059.5654 Improvement 4.9133 Ftol 1e-05 Htol 1e-05 Elapsed time for iteration 0.36053 s. Iteration 4 Predicted improvement: 14.511628208 lambda = 1; f = -1059.0271225 lambda = 0.33333; f = -1059.0917756 lambda = 0.11111; f = -1057.1395322 lambda = 0.037037; f = -1059.9417357 Norm of dx 7.4418 Predicted improvement: 0.226204954 lambda = 1; f = -1060.1819887 Norm of dx 0.0029691 Done for param e1 = 0.0691; f = -1060.1820 Predicted improvement: 0.124405643 lambda = 1; f = -1060.3179845 Norm of dx 0.00097932 Done for param e2 = 0.0089; f = -1060.3180 Predicted improvement: 0.030615967 lambda = 1; f = -1060.3461209 Norm of dx 0.00020196 Done for param e3 = 0.0032; f = -1060.3461 Predicted improvement: 0.000930145 lambda = 1; f = -1060.3470467 Norm of dx 1.1179e-05 Done for param e4 = 0.0039; f = -1060.3470 Predicted improvement: 0.052805071 lambda = 1; f = -1060.4016094 Norm of dx 0.0013824 Done for param e5 = 0.0642; f = -1060.4016 Predicted improvement: 0.116575755 lambda = 1; f = -1060.5191200 Norm of dx 0.0039818 Done for param pibar = 1.0577; f = -1060.5191 Predicted improvement: 0.025687630 lambda = 1; f = -1060.5458592 Norm of dx 0.00024276 Done for param b = 0.9974; f = -1060.5459 Predicted improvement: 0.464407680 lambda = 1; f = -1060.9859744 Norm of dx 0.033632 Done for param h = 0.2930; f = -1060.9860 Predicted improvement: 0.139641317 lambda = 1; f = -1061.1185279 Norm of dx 0.0047586 Done for param theta = 0.7823; f = -1061.1185 Predicted improvement: 0.639377016 lambda = 1; f = -1061.6995358 Norm of dx 0.28347 Done for param phi_pi = 2.2934; f = -1061.6995 Predicted improvement: 0.141633534 lambda = 1; f = -1061.8203579 Norm of dx 0.017723 Done for param phi_y = 0.0417; f = -1061.8204 Predicted improvement: 0.445973474 lambda = 1; f = -1062.3050387 Norm of dx 0.015402 Done for param rho_i = 0.8400; f = -1062.3050 Predicted improvement: 0.001817857 lambda = 1; f = -1062.3068237 Norm of dx 0.00068049 Done for param rhoa = 0.9800; f = -1062.3068 Predicted improvement: 0.562598708 lambda = 1; f = -1062.9035070 Norm of dx 0.085069 Done for param ra = 0.2603; f = -1062.9035 Sequence of univariate steps!! Actual dxnorm 0.14703 FVAL -1062.9035 Improvement 3.3381 Ftol 1e-05 Htol 1e-05 Elapsed time for iteration 0.33655 s. Iteration 5 Predicted improvement: 18.633114754 lambda = 1; f = -1060.0311277 lambda = 0.33333; f = -1062.7502741 lambda = 0.11111; f = -1059.7513287 lambda = 0.037037; f = -1063.5812151 Norm of dx 6.3276 Predicted improvement: 0.005280634 lambda = 1; f = -1063.5865536 Norm of dx 0.00051545 Done for param e1 = 0.0721; f = -1063.5866 Predicted improvement: 0.060882394 lambda = 1; f = -1063.6514380 Norm of dx 0.00077116 Done for param e2 = 0.0100; f = -1063.6514 Predicted improvement: 0.006366940 lambda = 1; f = -1063.6575883 Norm of dx 8.8732e-05 Done for param e3 = 0.0033; f = -1063.6576 Predicted improvement: 0.003321712 lambda = 1; f = -1063.6608802 Norm of dx 2.1173e-05 Done for param e4 = 0.0039; f = -1063.6609 Predicted improvement: 0.056535346 lambda = 1; f = -1063.7193373 Norm of dx 0.0016069 Done for param e5 = 0.0715; f = -1063.7193 Predicted improvement: 0.047473632 lambda = 1; f = -1063.7671974 Norm of dx 0.0024315 Done for param pibar = 1.0557; f = -1063.7672 Predicted improvement: 0.028568539 lambda = 1; f = -1063.7969969 Norm of dx 0.00026094 Done for param b = 0.9974; f = -1063.7970 Predicted improvement: 0.160656003 lambda = 1; f = -1063.9474820 Norm of dx 0.019299 Done for param h = 0.3784; f = -1063.9475 Predicted improvement: 0.038219324 lambda = 1; f = -1063.9847022 Norm of dx 0.0023789 Done for param theta = 0.7881; f = -1063.9847 Predicted improvement: 0.618860006 lambda = 1; f = -1064.5497802 Norm of dx 0.28029 Done for param phi_pi = 2.2255; f = -1064.5498 Predicted improvement: 0.023106456 lambda = 1; f = -1064.5712073 Norm of dx 0.005527 Done for param phi_y = 0.0352; f = -1064.5712 Predicted improvement: 0.328216354 lambda = 1; f = -1064.9259354 Norm of dx 0.013933 Done for param rho_i = 0.8383; f = -1064.9259 Predicted improvement: 0.006774178 lambda = 1; f = -1064.9324768 Norm of dx 0.0011948 Done for param rhoa = 0.9824; f = -1064.9325 Predicted improvement: 0.096866292 lambda = 1; f = -1065.0266783 Norm of dx 0.03508 Done for param ra = 0.1528; f = -1065.0267 Sequence of univariate steps!! Actual dxnorm 0.15363 FVAL -1065.0267 Improvement 2.1232 Ftol 1e-05 Htol 1e-05 Elapsed time for iteration 0.32616 s. Iteration 6 Predicted improvement: 24.363223519 lambda = 1; f = -1055.1223113 lambda = 0.33333; f = -1064.1736790 lambda = 0.11111; f = -1064.9850018 lambda = 0.037037; f = -1064.4317669 lambda = 0.012346; f = -1065.4450235 Norm of dx 5.8543 Predicted improvement: 0.000314364 lambda = 1; f = -1065.4453370 Norm of dx 0.0001316 Done for param e1 = 0.0737; f = -1065.4453 Predicted improvement: 0.000159890 lambda = 1; f = -1065.4454963 Norm of dx 4.4963e-05 Done for param e2 = 0.0101; f = -1065.4455 Predicted improvement: 0.000118523 lambda = 1; f = -1065.4456143 Norm of dx 1.0968e-05 Done for param e3 = 0.0032; f = -1065.4456 Predicted improvement: 0.007444138 lambda = 1; f = -1065.4529579 Norm of dx 3.1525e-05 Done for param e4 = 0.0038; f = -1065.4530 Predicted improvement: 0.059137729 lambda = 1; f = -1065.5141420 Norm of dx 0.0017689 Done for param e5 = 0.0771; f = -1065.5141 Predicted improvement: 0.022900698 lambda = 1; f = -1065.5374895 Norm of dx 0.0016837 Done for param pibar = 1.0539; f = -1065.5375 Predicted improvement: 0.006874447 lambda = 1; f = -1065.5445049 Norm of dx 0.00013422 Done for param b = 0.9973; f = -1065.5445 Predicted improvement: 0.055540538 lambda = 1; f = -1065.5985239 Norm of dx 0.010624 Done for param h = 0.4247; f = -1065.5985 Predicted improvement: 0.020635028 lambda = 1; f = -1065.6187660 Norm of dx 0.0017051 Done for param theta = 0.7928; f = -1065.6188 Predicted improvement: 0.065575137 lambda = 1; f = -1065.6820155 Norm of dx 0.081617 Done for param phi_pi = 2.0957; f = -1065.6820 Predicted improvement: 0.004159763 lambda = 1; f = -1065.6863043 Norm of dx 0.0017993 Done for param phi_y = 0.0313; f = -1065.6863 Predicted improvement: 0.025087691 lambda = 1; f = -1065.7119216 Norm of dx 0.0043915 Done for param rho_i = 0.8329; f = -1065.7119 Predicted improvement: 0.002298004 lambda = 1; f = -1065.7141737 Norm of dx 0.00065602 Done for param rhoa = 0.9831; f = -1065.7142 Predicted improvement: 0.009984586 lambda = 1; f = -1065.7244132 Norm of dx 0.0092194 Done for param ra = 0.1224; f = -1065.7244 Sequence of univariate steps!! Actual dxnorm 0.1415 FVAL -1065.7244 Improvement 0.69773 Ftol 1e-05 Htol 1e-05 Elapsed time for iteration 0.32257 s. Iteration 7 Predicted improvement: 11.083042980 lambda = 1; f = -976.7493998 lambda = 0.33333; f = -1064.2747036 lambda = 0.11111; f = -1065.6960873 lambda = 0.037037; f = -1062.5132540 lambda = 0.012346; f = -1065.6833300 lambda = 0.0041152; f = -1065.7828411 Norm of dx 12.759 Predicted improvement: 0.000570382 lambda = 1; f = -1065.7834135 Norm of dx 0.00017774 Done for param e1 = 0.0744; f = -1065.7834 Predicted improvement: 0.018572980 lambda = 1; f = -1065.8011375 Norm of dx 0.00050325 Done for param e2 = 0.0097; f = -1065.8011 Predicted improvement: 0.000179622 lambda = 1; f = -1065.8013161 Norm of dx 1.298e-05 Done for param e3 = 0.0031; f = -1065.8013 Predicted improvement: 0.002220858 lambda = 1; f = -1065.8035208 Norm of dx 1.6955e-05 Done for param e4 = 0.0038; f = -1065.8035 Predicted improvement: 0.069880793 lambda = 1; f = -1065.8762067 Norm of dx 0.0019787 Done for param e5 = 0.0804; f = -1065.8762 Predicted improvement: 0.009920261 lambda = 1; f = -1065.8861537 Norm of dx 0.0011163 Done for param pibar = 1.0526; f = -1065.8862 Predicted improvement: 0.000200510 lambda = 1; f = -1065.8863548 Norm of dx 2.3479e-05 Done for param b = 0.9973; f = -1065.8864 Predicted improvement: 0.017043144 lambda = 1; f = -1065.9031211 Norm of dx 0.0057043 Done for param h = 0.4403; f = -1065.9031 Predicted improvement: 0.016563475 lambda = 1; f = -1065.9193981 Norm of dx 0.0015105 Done for param theta = 0.7955; f = -1065.9194 Predicted improvement: 0.001894469 lambda = 1; f = -1065.9212823 Norm of dx 0.012967 Done for param phi_pi = 2.0324; f = -1065.9213 Predicted improvement: 0.008025900 lambda = 1; f = -1065.9296468 Norm of dx 0.0024413 Done for param phi_y = 0.0314; f = -1065.9296 Predicted improvement: 0.001560679 lambda = 1; f = -1065.9311985 Norm of dx 0.0011555 Done for param rho_i = 0.8318; f = -1065.9312 Predicted improvement: 0.001024057 lambda = 1; f = -1065.9322361 Norm of dx 0.000429 Done for param rhoa = 0.9826; f = -1065.9322 Predicted improvement: 0.009905385 lambda = 1; f = -1065.9423950 Norm of dx 0.0090859 Done for param ra = 0.1209; f = -1065.9424 Sequence of univariate steps!! Actual dxnorm 0.065356 FVAL -1065.9424 Improvement 0.21798 Ftol 1e-05 Htol 1e-05 Elapsed time for iteration 0.30848 s. Iteration 8 Predicted improvement: 1.788838810 lambda = 1; f = -1065.6459030 lambda = 0.33333; f = -1065.9325180 lambda = 0.11111; f = -1064.8722091 lambda = 0.037037; f = -1065.9430821 lambda = 0.012346; f = -1065.9725513 Norm of dx 2.4872 Predicted improvement: 0.003862396 lambda = 1; f = -1065.9764497 Norm of dx 0.00046386 Done for param e1 = 0.0753; f = -1065.9764 Predicted improvement: 0.013936149 lambda = 1; f = -1065.9898293 Norm of dx 0.00042165 Done for param e2 = 0.0092; f = -1065.9898 Predicted improvement: 0.000130798 lambda = 1; f = -1065.9899595 Norm of dx 1.0896e-05 Done for param e3 = 0.0031; f = -1065.9900 Predicted improvement: 0.001364713 lambda = 1; f = -1065.9913164 Norm of dx 1.3191e-05 Done for param e4 = 0.0038; f = -1065.9913 Predicted improvement: 0.037477392 lambda = 1; f = -1066.0298472 Norm of dx 0.0015178 Done for param e5 = 0.0831; f = -1066.0298 Predicted improvement: 0.003359177 lambda = 1; f = -1066.0332151 Norm of dx 0.00064102 Done for param pibar = 1.0517; f = -1066.0332 Predicted improvement: 0.000126110 lambda = 1; f = -1066.0333415 Norm of dx 1.8642e-05 Done for param b = 0.9973; f = -1066.0333 Predicted improvement: 0.008822443 lambda = 1; f = -1066.0420649 Norm of dx 0.0040252 Done for param h = 0.4528; f = -1066.0421 Predicted improvement: 0.012731522 lambda = 1; f = -1066.0546073 Norm of dx 0.0013089 Done for param theta = 0.7978; f = -1066.0546 Predicted improvement: 0.001794395 lambda = 1; f = -1066.0564127 Norm of dx 0.01232 Done for param phi_pi = 2.0165; f = -1066.0564 Predicted improvement: 0.007069817 lambda = 1; f = -1066.0637566 Norm of dx 0.0023639 Done for param phi_y = 0.0324; f = -1066.0638 Predicted improvement: 0.005971877 lambda = 1; f = -1066.0696609 Norm of dx 0.0022795 Done for param rho_i = 0.8331; f = -1066.0697 Predicted improvement: 0.001953877 lambda = 1; f = -1066.0716507 Norm of dx 0.00060952 Done for param rhoa = 0.9819; f = -1066.0717 Predicted improvement: 0.007676331 lambda = 1; f = -1066.0794969 Norm of dx 0.0080069 Done for param ra = 0.1207; f = -1066.0795 Sequence of univariate steps!! Actual dxnorm 0.020728 FVAL -1066.0795 Improvement 0.1371 Ftol 1e-05 Htol 1e-05 Elapsed time for iteration 0.35473 s. Iteration 9 Predicted improvement: 1.046182753 lambda = 1; f = -1066.0764606 lambda = 0.33333; f = -1064.3782831 lambda = 0.11111; f = -1066.0293934 lambda = 0.037037; f = -1066.1242881 Norm of dx 1.036 Predicted improvement: 0.006299188 lambda = 1; f = -1066.1306615 Norm of dx 0.00059772 Done for param e1 = 0.0764; f = -1066.1307 Predicted improvement: 0.001258011 lambda = 1; f = -1066.1319052 Norm of dx 0.00012014 Done for param e2 = 0.0089; f = -1066.1319 Predicted improvement: 0.011078913 lambda = 1; f = -1066.1424825 Norm of dx 0.00010727 Done for param e3 = 0.0031; f = -1066.1425 Predicted improvement: 0.001060086 lambda = 1; f = -1066.1435373 Norm of dx 1.1587e-05 Done for param e4 = 0.0038; f = -1066.1435 Predicted improvement: 0.019248916 lambda = 1; f = -1066.1631886 Norm of dx 0.0011315 Done for param e5 = 0.0857; f = -1066.1632 Predicted improvement: 0.000484186 lambda = 1; f = -1066.1636732 Norm of dx 0.00023769 Done for param pibar = 1.0510; f = -1066.1637 Predicted improvement: 0.000194497 lambda = 1; f = -1066.1638684 Norm of dx 2.3165e-05 Done for param b = 0.9973; f = -1066.1639 Predicted improvement: 0.003803490 lambda = 1; f = -1066.1676436 Norm of dx 0.0025957 Done for param h = 0.4643; f = -1066.1676 Predicted improvement: 0.006070841 lambda = 1; f = -1066.1736527 Norm of dx 0.00089138 Done for param theta = 0.7998; f = -1066.1737 Predicted improvement: 0.001814628 lambda = 1; f = -1066.1754572 Norm of dx 0.012766 Done for param phi_pi = 2.0403; f = -1066.1755 Predicted improvement: 0.000448932 lambda = 1; f = -1066.1759104 Norm of dx 0.00065223 Done for param phi_y = 0.0342; f = -1066.1759 Predicted improvement: 0.000038756 lambda = 1; f = -1066.1759491 Norm of dx 0.00017929 Done for param rho_i = 0.8363; f = -1066.1759 Predicted improvement: 0.003462496 lambda = 1; f = -1066.1794969 Norm of dx 0.00083742 Done for param rhoa = 0.9812; f = -1066.1795 Predicted improvement: 0.004116157 lambda = 1; f = -1066.1836786 Norm of dx 0.0058902 Done for param ra = 0.1201; f = -1066.1837 Sequence of univariate steps!! Actual dxnorm 0.026916 FVAL -1066.1837 Improvement 0.10418 Ftol 1e-05 Htol 1e-05 Elapsed time for iteration 0.3944 s. Iteration 10 Predicted improvement: 0.778872426 lambda = 1; f = -1066.1014988 lambda = 0.33333; f = -1066.1834818 lambda = 0.11111; f = -1065.6485742 lambda = 0.037037; f = -1066.1703770 lambda = 0.012346; f = -1066.1952306 Norm of dx 2.2261 Predicted improvement: 0.003791123 lambda = 1; f = -1066.1990565 Norm of dx 0.00047004 Done for param e1 = 0.0772; f = -1066.1991 Predicted improvement: 0.006741683 lambda = 1; f = -1066.2056109 Norm of dx 0.00027819 Done for param e2 = 0.0086; f = -1066.2056 Predicted improvement: 0.000466625 lambda = 1; f = -1066.2060760 Norm of dx 7.641e-06 Done for param e4 = 0.0037; f = -1066.2061 Predicted improvement: 0.010821966 lambda = 1; f = -1066.2170657 Norm of dx 0.00086982 Done for param e5 = 0.0874; f = -1066.2171 Predicted improvement: 0.000691407 lambda = 1; f = -1066.2177579 Norm of dx 0.00028109 Done for param pibar = 1.0505; f = -1066.2178 Predicted improvement: 0.000055242 lambda = 1; f = -1066.2178132 Norm of dx 1.2355e-05 Done for param b = 0.9973; f = -1066.2178 Predicted improvement: 0.002452489 lambda = 1; f = -1066.2202509 Norm of dx 0.0020623 Done for param h = 0.4715; f = -1066.2203 Predicted improvement: 0.006766626 lambda = 1; f = -1066.2269448 Norm of dx 0.00093467 Done for param theta = 0.8016; f = -1066.2269 Predicted improvement: 0.000832135 lambda = 1; f = -1066.2277805 Norm of dx 0.0084606 Done for param phi_pi = 2.0223; f = -1066.2278 Predicted improvement: 0.002240546 lambda = 1; f = -1066.2300684 Norm of dx 0.0014426 Done for param phi_y = 0.0346; f = -1066.2301 Predicted improvement: 0.002321924 lambda = 1; f = -1066.2323740 Norm of dx 0.001405 Done for param rho_i = 0.8367; f = -1066.2324 Predicted improvement: 0.000692486 lambda = 1; f = -1066.2330743 Norm of dx 0.00039042 Done for param rhoa = 0.9807; f = -1066.2331 Predicted improvement: 0.003440805 lambda = 1; f = -1066.2365641 Norm of dx 0.0053986 Done for param ra = 0.1206; f = -1066.2366 Sequence of univariate steps!! Actual dxnorm 0.019588 FVAL -1066.2366 Improvement 0.052885 Ftol 1e-05 Htol 1e-05 Elapsed time for iteration 0.3098 s. Iteration 11 Predicted improvement: 0.415305439 lambda = 1; f = -1058.6142891 lambda = 0.33333; f = -1065.4335649 lambda = 0.11111; f = -1066.1956898 lambda = 0.037037; f = -1066.2518831 Norm of dx 0.70235 Predicted improvement: 0.325564192 lambda = 1; f = -1066.2338809 lambda = 0.33333; f = -1065.6808270 lambda = 0.11111; f = -1066.2444468 lambda = 0.037037; f = -1066.2656829 Norm of dx 0.55011 Predicted improvement: 0.004149311 lambda = 1; f = -1066.2698722 Norm of dx 0.00050012 Done for param e1 = 0.0787; f = -1066.2699 Predicted improvement: 0.000126092 lambda = 1; f = -1066.2699987 Norm of dx 3.6083e-05 Done for param e2 = 0.0084; f = -1066.2700 Predicted improvement: 0.006776584 lambda = 1; f = -1066.2765378 Norm of dx 8.2242e-05 Done for param e3 = 0.0031; f = -1066.2765 Predicted improvement: 0.000729860 lambda = 1; f = -1066.2772646 Norm of dx 9.5347e-06 Done for param e4 = 0.0037; f = -1066.2773 Predicted improvement: 0.006322563 lambda = 1; f = -1066.2836631 Norm of dx 0.0006869 Done for param e5 = 0.0901; f = -1066.2837 Predicted improvement: 0.000085342 lambda = 1; f = -1066.2837485 Norm of dx 9.6499e-05 Done for param pibar = 1.0497; f = -1066.2837 Predicted improvement: 0.000397382 lambda = 1; f = -1066.2841477 Norm of dx 3.3107e-05 Done for param b = 0.9973; f = -1066.2841 Predicted improvement: 0.000478957 lambda = 1; f = -1066.2846254 Norm of dx 0.00089352 Done for param h = 0.4837; f = -1066.2846 Predicted improvement: 0.002354848 lambda = 1; f = -1066.2869654 Norm of dx 0.00054264 Done for param theta = 0.8042; f = -1066.2870 Predicted improvement: 0.000017769 lambda = 1; f = -1066.2869831 Norm of dx 0.001252 Done for param phi_pi = 2.0286; f = -1066.2870 Predicted improvement: 0.000206007 lambda = 1; f = -1066.2871904 Norm of dx 0.00045628 Done for param phi_y = 0.0354; f = -1066.2872 Predicted improvement: 0.000384023 lambda = 1; f = -1066.2875734 Norm of dx 0.00056606 Done for param rho_i = 0.8390; f = -1066.2876 Predicted improvement: 0.001203023 lambda = 1; f = -1066.2887944 Norm of dx 0.00052725 Done for param rhoa = 0.9801; f = -1066.2888 Predicted improvement: 0.004988131 lambda = 1; f = -1066.2938721 Norm of dx 0.0063924 Done for param ra = 0.1181; f = -1066.2939 Sequence of univariate steps!! Actual dxnorm 0.014769 FVAL -1066.2939 Improvement 0.057308 Ftol 1e-05 Htol 1e-05 Elapsed time for iteration 0.34736 s. Iteration 12 Predicted improvement: 0.165225195 lambda = 1; f = -1063.5182357 lambda = 0.33333; f = -1066.0138716 lambda = 0.11111; f = -1066.2845500 lambda = 0.037037; f = -1066.3008785 Norm of dx 0.31448 Predicted improvement: 0.001566238 lambda = 1; f = -1066.3024539 Norm of dx 0.00031136 Done for param e1 = 0.0793; f = -1066.3025 Predicted improvement: 0.000469925 lambda = 1; f = -1066.3029204 Norm of dx 7.0046e-05 Done for param e2 = 0.0082; f = -1066.3029 Predicted improvement: 0.002483114 lambda = 1; f = -1066.3053519 Norm of dx 4.8891e-05 Done for param e3 = 0.0031; f = -1066.3054 Predicted improvement: 0.000193613 lambda = 1; f = -1066.3055451 Norm of dx 4.8896e-06 Done for param e4 = 0.0037; f = -1066.3055 Predicted improvement: 0.002956606 lambda = 1; f = -1066.3085261 Norm of dx 0.00047554 Done for param e5 = 0.0908; f = -1066.3085 Predicted improvement: 0.000147359 lambda = 1; f = -1066.3086735 Norm of dx 0.00012527 Done for param pibar = 1.0494; f = -1066.3087 Predicted improvement: 0.000078913 lambda = 1; f = -1066.3087526 Norm of dx 1.4812e-05 Done for param b = 0.9973; f = -1066.3088 Predicted improvement: 0.000284418 lambda = 1; f = -1066.3090364 Norm of dx 0.00068624 Done for param h = 0.4856; f = -1066.3090 Predicted improvement: 0.001641113 lambda = 1; f = -1066.3106689 Norm of dx 0.0004503 Done for param theta = 0.8054; f = -1066.3107 Predicted improvement: 0.000629622 lambda = 1; f = -1066.3112961 Norm of dx 0.0075097 Done for param phi_pi = 2.0326; f = -1066.3113 Predicted improvement: 0.000036480 lambda = 1; f = -1066.3113326 Norm of dx 0.00019638 Done for param phi_y = 0.0361; f = -1066.3113 Predicted improvement: 0.001164884 lambda = 1; f = -1066.3125147 Norm of dx 0.00052866 Done for param rhoa = 0.9798; f = -1066.3125 Predicted improvement: 0.000688858 lambda = 1; f = -1066.3132078 Norm of dx 0.0024399 Done for param ra = 0.1202; f = -1066.3132 Sequence of univariate steps!! Actual dxnorm 0.0053373 FVAL -1066.3132 Improvement 0.019336 Ftol 1e-05 Htol 1e-05 Elapsed time for iteration 0.34045 s. Iteration 13 Predicted improvement: 0.137674864 lambda = 1; f = -1066.3130895 lambda = 0.33333; f = -1065.5645953 lambda = 0.11111; f = -1066.2598176 lambda = 0.037037; f = -1066.3143272 lambda = 0.012346; f = -1066.3156069 lambda = 0.023866; f = -1066.3160266 Norm of dx 0.86103 Predicted improvement: 0.118656475 lambda = 1; f = -1064.2957771 lambda = 0.33333; f = -1066.1638248 lambda = 0.11111; f = -1066.3093706 lambda = 0.037037; f = -1066.3184671 lambda = 0.012346; f = -1066.3173512 Norm of dx 0.25015 Predicted improvement: 0.000846236 lambda = 1; f = -1066.3193171 Norm of dx 0.00023195 Done for param e1 = 0.0803; f = -1066.3193 Predicted improvement: 0.000216618 lambda = 1; f = -1066.3195326 Norm of dx 4.6855e-05 Done for param e2 = 0.0081; f = -1066.3195 Predicted improvement: 0.000206974 lambda = 1; f = -1066.3197384 Norm of dx 1.3702e-05 Done for param e3 = 0.0031; f = -1066.3197 Predicted improvement: 0.000236021 lambda = 1; f = -1066.3199739 Norm of dx 5.3824e-06 Done for param e4 = 0.0037; f = -1066.3200 Predicted improvement: 0.001386043 lambda = 1; f = -1066.3213678 Norm of dx 0.0003318 Done for param e5 = 0.0923; f = -1066.3214 Predicted improvement: 0.000194269 lambda = 1; f = -1066.3215622 Norm of dx 0.00014234 Done for param pibar = 1.0488; f = -1066.3216 Predicted improvement: 0.000155411 lambda = 1; f = -1066.3217180 Norm of dx 2.0794e-05 Done for param b = 0.9973; f = -1066.3217 Predicted improvement: 0.000089276 lambda = 1; f = -1066.3218072 Norm of dx 0.00038045 Done for param h = 0.4926; f = -1066.3218 Predicted improvement: 0.001114764 lambda = 1; f = -1066.3229171 Norm of dx 0.0003681 Done for param theta = 0.8072; f = -1066.3229 Predicted improvement: 0.001440779 lambda = 1; f = -1066.3243664 Norm of dx 0.011139 Done for param phi_pi = 2.0156; f = -1066.3244 Predicted improvement: 0.000695737 lambda = 1; f = -1066.3250699 Norm of dx 0.00084332 Done for param phi_y = 0.0361; f = -1066.3251 Predicted improvement: 0.001271002 lambda = 1; f = -1066.3263343 Norm of dx 0.0010356 Done for param rho_i = 0.8403; f = -1066.3263 Predicted improvement: 0.000232187 lambda = 1; f = -1066.3265680 Norm of dx 0.00024179 Done for param rhoa = 0.9796; f = -1066.3266 Predicted improvement: 0.002403652 lambda = 1; f = -1066.3290007 Norm of dx 0.0044878 Done for param ra = 0.1188; f = -1066.3290 Sequence of univariate steps!! Actual dxnorm 0.018596 FVAL -1066.329 Improvement 0.015793 Ftol 1e-05 Htol 1e-05 Elapsed time for iteration 0.40256 s. Iteration 14 Predicted improvement: 0.198603516 lambda = 1; f = -1041.8997967 lambda = 0.33333; f = -1063.6089293 lambda = 0.11111; f = -1066.0127337 lambda = 0.037037; f = -1066.3011809 lambda = 0.012346; f = -1066.3290715 lambda = 0.0041152; f = -1066.3300940 Norm of dx 1.7339 Predicted improvement: 0.000618857 lambda = 1; f = -1066.3307152 Norm of dx 0.00019892 Done for param e1 = 0.0805; f = -1066.3307 Predicted improvement: 0.000448100 lambda = 1; f = -1066.3311601 Norm of dx 6.7268e-05 Done for param e2 = 0.0080; f = -1066.3312 Predicted improvement: 0.000080586 lambda = 1; f = -1066.3312404 Norm of dx 8.5563e-06 Done for param e3 = 0.0031; f = -1066.3312 Predicted improvement: 0.000899800 lambda = 1; f = -1066.3321444 Norm of dx 0.00026815 Done for param e5 = 0.0925; f = -1066.3321 Predicted improvement: 0.000132976 lambda = 1; f = -1066.3322774 Norm of dx 0.00011709 Done for param pibar = 1.0487; f = -1066.3323 Predicted improvement: 0.000034164 lambda = 1; f = -1066.3323116 Norm of dx 0.00023528 Done for param h = 0.4925; f = -1066.3323 Predicted improvement: 0.000824244 lambda = 1; f = -1066.3331328 Norm of dx 0.00031593 Done for param theta = 0.8075; f = -1066.3331 Predicted improvement: 0.000019967 lambda = 1; f = -1066.3331528 Norm of dx 0.0013266 Done for param phi_pi = 2.0240; f = -1066.3332 Predicted improvement: 0.000117321 lambda = 1; f = -1066.3332706 Norm of dx 0.00035489 Done for param phi_y = 0.0366; f = -1066.3333 Predicted improvement: 0.000130960 lambda = 1; f = -1066.3334014 Norm of dx 0.00032975 Done for param rho_i = 0.8410; f = -1066.3334 Predicted improvement: 0.000261177 lambda = 1; f = -1066.3336644 Norm of dx 0.0002592 Done for param rhoa = 0.9793; f = -1066.3337 Predicted improvement: 0.000143035 lambda = 1; f = -1066.3338078 Norm of dx 0.0011181 Done for param ra = 0.1205; f = -1066.3338 Sequence of univariate steps!! Actual dxnorm 0.0086414 FVAL -1066.3338 Improvement 0.0048072 Ftol 1e-05 Htol 1e-05 Elapsed time for iteration 0.34939 s. Iteration 15 Predicted improvement: 0.034727896 lambda = 1; f = -1065.3906101 lambda = 0.33333; f = -1066.2297544 lambda = 0.11111; f = -1066.3266878 lambda = 0.037037; f = -1066.3347032 Norm of dx 0.21119 Predicted improvement: 0.034016928 lambda = 1; f = -1065.6914715 lambda = 0.33333; f = -1066.2565095 lambda = 0.11111; f = -1066.3256855 lambda = 0.037037; f = -1066.3336815 lambda = 0.012346; f = -1066.3345867 lambda = 0.0041152; f = -1066.3346894 lambda = 0.0013717; f = -1066.3347014 lambda = 0.00045725; f = -1066.3347029 lambda = 0.00015242; f = -1066.3347031 lambda = 5.0805e-05; f = -1066.3347031 lambda = 1.6935e-05; f = -1066.3347032 lambda = 5.645e-06; f = -1066.3347032 lambda = 1.8817e-06; f = -1066.3347032 lambda = 6.2723e-07; f = -1066.3347032 lambda = 2.0908e-07; f = -1066.3347032 lambda = 6.9692e-08; f = -1066.3347032 lambda = 2.3231e-08; f = -1066.3347032 lambda = 7.7435e-09; f = -1066.3347032 lambda = 2.5812e-09; f = -1066.3347032 Norm of dx 0.10009 Predicted improvement: 0.000339268 lambda = 1; f = -1066.3350434 Norm of dx 0.00014798 Done for param e1 = 0.0807; f = -1066.3350 Predicted improvement: 0.000669316 lambda = 1; f = -1066.3357056 Norm of dx 2.4994e-05 Done for param e3 = 0.0031; f = -1066.3357 Predicted improvement: 0.000058146 lambda = 1; f = -1066.3357637 Norm of dx 2.6658e-06 Done for param e4 = 0.0037; f = -1066.3358 Predicted improvement: 0.000196146 lambda = 1; f = -1066.3359602 Norm of dx 0.00012598 Done for param e5 = 0.0928; f = -1066.3360 Predicted improvement: 0.000057500 lambda = 1; f = -1066.3360177 Norm of dx 7.6547e-05 Done for param pibar = 1.0485; f = -1066.3360 Predicted improvement: 0.000032572 lambda = 1; f = -1066.3360504 Norm of dx 9.5497e-06 Done for param b = 0.9972; f = -1066.3361 Predicted improvement: 0.000058809 lambda = 1; f = -1066.3361091 Norm of dx 0.00030841 Done for param h = 0.4934; f = -1066.3361 Predicted improvement: 0.000360464 lambda = 1; f = -1066.3364688 Norm of dx 0.00020828 Done for param theta = 0.8080; f = -1066.3365 Predicted improvement: 0.000169118 lambda = 1; f = -1066.3366375 Norm of dx 0.0038843 Done for param phi_pi = 2.0279; f = -1066.3366 Predicted improvement: 0.000128143 lambda = 1; f = -1066.3367663 Norm of dx 0.00018318 Done for param rhoa = 0.9792; f = -1066.3368 Predicted improvement: 0.000042246 lambda = 1; f = -1066.3368086 Norm of dx 0.00060984 Done for param ra = 0.1208; f = -1066.3368 Sequence of univariate steps!! Actual dxnorm 0.0041087 FVAL -1066.3368 Improvement 0.0030008 Ftol 1e-05 Htol 1e-05 Elapsed time for iteration 0.41393 s. Iteration 16 Predicted improvement: 0.034873624 lambda = 1; f = -1062.1342003 lambda = 0.33333; f = -1066.0092759 lambda = 0.11111; f = -1066.3079458 lambda = 0.037037; f = -1066.3353972 lambda = 0.012346; f = -1066.3372286 Norm of dx 0.58526 Predicted improvement: 0.012170806 lambda = 1; f = -1066.1971505 lambda = 0.33333; f = -1066.3253289 lambda = 0.11111; f = -1066.3368947 lambda = 0.037037; f = -1066.3375146 Norm of dx 0.077715 Predicted improvement: 0.000166500 lambda = 1; f = -1066.3376814 Norm of dx 0.00010411 Done for param e1 = 0.0810; f = -1066.3377 Predicted improvement: 0.000234000 lambda = 1; f = -1066.3379142 Norm of dx 4.8097e-05 Done for param e2 = 0.0079; f = -1066.3379 Predicted improvement: 0.000032418 lambda = 1; f = -1066.3379466 Norm of dx 1.9875e-06 Done for param e4 = 0.0037; f = -1066.3379 Predicted improvement: 0.000225346 lambda = 1; f = -1066.3381725 Norm of dx 0.00013565 Done for param e5 = 0.0933; f = -1066.3382 Predicted improvement: 0.000050082 lambda = 1; f = -1066.3382226 Norm of dx 7.1218e-05 Done for param pibar = 1.0483; f = -1066.3382 Predicted improvement: 0.000021146 lambda = 1; f = -1066.3382437 Norm of dx 7.7029e-06 Done for param b = 0.9972; f = -1066.3382 Predicted improvement: 0.000048087 lambda = 1; f = -1066.3382918 Norm of dx 0.000278 Done for param h = 0.4957; f = -1066.3383 Predicted improvement: 0.000303193 lambda = 1; f = -1066.3385944 Norm of dx 0.0001906 Done for param theta = 0.8085; f = -1066.3386 Predicted improvement: 0.000162535 lambda = 1; f = -1066.3387572 Norm of dx 0.0037786 Done for param phi_pi = 2.0221; f = -1066.3388 Predicted improvement: 0.000059681 lambda = 1; f = -1066.3388171 Norm of dx 0.00025516 Done for param phi_y = 0.0369; f = -1066.3388 Predicted improvement: 0.000080074 lambda = 1; f = -1066.3388970 Norm of dx 0.00025778 Done for param rho_i = 0.8415; f = -1066.3389 Predicted improvement: 0.000245288 lambda = 1; f = -1066.3391431 Norm of dx 0.0014609 Done for param ra = 0.1203; f = -1066.3391 Sequence of univariate steps!! Actual dxnorm 0.0062709 FVAL -1066.3391 Improvement 0.0023346 Ftol 1e-05 Htol 1e-05 Elapsed time for iteration 0.36081 s. Iteration 17 Predicted improvement: 0.019680651 lambda = 1; f = -1064.6924259 lambda = 0.33333; f = -1066.1386221 lambda = 0.11111; f = -1066.3184270 lambda = 0.037037; f = -1066.3377568 lambda = 0.012346; f = -1066.3393108 Norm of dx 0.39274 Predicted improvement: 0.006990276 lambda = 1; f = -1066.2869780 lambda = 0.33333; f = -1066.3371094 lambda = 0.11111; f = -1066.3402273 Norm of dx 0.059704 Predicted improvement: 0.000117936 lambda = 1; f = -1066.3403454 Norm of dx 8.8067e-05 Done for param e1 = 0.0814; f = -1066.3403 Predicted improvement: 0.000069312 lambda = 1; f = -1066.3404150 Norm of dx 2.5823e-05 Done for param e2 = 0.0079; f = -1066.3404 Predicted improvement: 0.000055847 lambda = 1; f = -1066.3404707 Norm of dx 7.1305e-06 Done for param e3 = 0.0031; f = -1066.3405 Predicted improvement: 0.000019093 lambda = 1; f = -1066.3404898 Norm of dx 1.5236e-06 Done for param e4 = 0.0037; f = -1066.3405 Predicted improvement: 0.000194051 lambda = 1; f = -1066.3406842 Norm of dx 0.00012643 Done for param e5 = 0.0937; f = -1066.3407 Predicted improvement: 0.000039806 lambda = 1; f = -1066.3407241 Norm of dx 6.3143e-05 Done for param pibar = 1.0481; f = -1066.3407 Predicted improvement: 0.000043761 lambda = 1; f = -1066.3407679 Norm of dx 1.1085e-05 Done for param b = 0.9972; f = -1066.3408 Predicted improvement: 0.000075632 lambda = 1; f = -1066.3408434 Norm of dx 9.4834e-05 Done for param theta = 0.8092; f = -1066.3408 Predicted improvement: 0.000027901 lambda = 1; f = -1066.3408714 Norm of dx 0.0015688 Done for param phi_pi = 2.0223; f = -1066.3409 Predicted improvement: 0.000036375 lambda = 1; f = -1066.3409077 Norm of dx 0.0001736 Done for param rho_i = 0.8420; f = -1066.3409 Predicted improvement: 0.000053289 lambda = 1; f = -1066.3409612 Norm of dx 0.00011965 Done for param rhoa = 0.9790; f = -1066.3410 Predicted improvement: 0.000150032 lambda = 1; f = -1066.3411116 Norm of dx 0.0011451 Done for param ra = 0.1205; f = -1066.3411 Sequence of univariate steps!! Actual dxnorm 0.0019333 FVAL -1066.3411 Improvement 0.0019684 Ftol 1e-05 Htol 1e-05 Elapsed time for iteration 0.37792 s. Iteration 18 Predicted improvement: 0.004169930 lambda = 1; f = -1066.0919908 lambda = 0.33333; f = -1066.3132869 lambda = 0.11111; f = -1066.3385532 lambda = 0.037037; f = -1066.3410299 lambda = 0.012346; f = -1066.3411710 Norm of dx 0.13128 Predicted improvement: 0.003713996 lambda = 1; f = -1066.1642039 lambda = 0.33333; f = -1066.3205335 lambda = 0.11111; f = -1066.3389463 lambda = 0.037037; f = -1066.3409630 lambda = 0.012346; f = -1066.3411616 lambda = 0.0041152; f = -1066.3411745 lambda = 0.0013717; f = -1066.3411729 lambda = 0.00045725; f = -1066.3411717 lambda = 0.00015242; f = -1066.3411712 lambda = 5.0805e-05; f = -1066.3411711 lambda = 1.6935e-05; f = -1066.3411710 lambda = 5.645e-06; f = -1066.3411710 lambda = 1.8817e-06; f = -1066.3411710 lambda = 6.2723e-07; f = -1066.3411710 lambda = 2.0908e-07; f = -1066.3411710 lambda = 6.9692e-08; f = -1066.3411710 lambda = 2.3231e-08; f = -1066.3411710 lambda = 7.7435e-09; f = -1066.3411710 lambda = 2.5812e-09; f = -1066.3411710 Norm of dx 0.090676 Predicted improvement: 0.000021136 lambda = 1; f = -1066.3411957 Norm of dx 3.7359e-05 Done for param e1 = 0.0815; f = -1066.3412 Predicted improvement: 0.000019809 lambda = 1; f = -1066.3412155 Norm of dx 1.3879e-05 Done for param e2 = 0.0079; f = -1066.3412 Predicted improvement: 0.000028596 lambda = 1; f = -1066.3412440 Norm of dx 5.0998e-06 Done for param e3 = 0.0031; f = -1066.3412 Predicted improvement: 0.000027577 lambda = 1; f = -1066.3412716 Norm of dx 4.7775e-05 Done for param e5 = 0.0937; f = -1066.3413 Predicted improvement: 0.000016811 lambda = 1; f = -1066.3412884 Norm of dx 4.0956e-05 Done for param pibar = 1.0480; f = -1066.3413 Predicted improvement: 0.000042859 lambda = 1; f = -1066.3413313 Norm of dx 7.1341e-05 Done for param theta = 0.8093; f = -1066.3413 Predicted improvement: 0.000019074 lambda = 1; f = -1066.3413504 Norm of dx 7.1936e-05 Done for param rhoa = 0.9790; f = -1066.3414 Sequence of univariate steps!! Actual dxnorm 0.0019991 FVAL -1066.3414 Improvement 0.00023881 Ftol 1e-05 Htol 1e-05 Elapsed time for iteration 0.42821 s. Iteration 19 Correct for low angle: 0.00497295 Predicted improvement: 0.003915401 lambda = 1; f = -1065.9562583 lambda = 0.33333; f = -1066.3031555 lambda = 0.11111; f = -1066.3377738 lambda = 0.037037; f = -1066.3411494 lambda = 0.012346; f = -1066.3413926 Norm of dx 0.20778 Predicted improvement: 0.000344070 lambda = 1; f = -1066.3377208 lambda = 0.33333; f = -1066.3411878 lambda = 0.11111; f = -1066.3414384 Norm of dx 0.00080599 Predicted improvement: 0.000010001 lambda = 1; f = -1066.3414484 Norm of dx 2.5727e-05 Done for param e1 = 0.0815; f = -1066.3414 Predicted improvement: 0.000013873 lambda = 1; f = -1066.3414623 Norm of dx 6.1394e-05 Done for param rhoa = 0.9790; f = -1066.3415 Predicted improvement: 0.000028940 lambda = 1; f = -1066.3414912 Norm of dx 0.00050468 Done for param ra = 0.1207; f = -1066.3415 Sequence of univariate steps!! Actual dxnorm 0.0025556 FVAL -1066.3415 Improvement 0.00014086 Ftol 1e-05 Htol 1e-05 Elapsed time for iteration 0.34756 s. Iteration 20 Predicted improvement: 0.001170573 lambda = 1; f = -1066.3334639 lambda = 0.33333; f = -1066.3411227 lambda = 0.11111; f = -1066.3416237 Norm of dx 0.017267 Predicted improvement: 0.000000605 lambda = 1; f = -1066.3416232 lambda = 0.33333; f = -1066.3416237 lambda = 0.11111; f = -1066.3416237 lambda = 0.037037; f = -1066.3416237 lambda = 0.012346; f = -1066.3416237 lambda = 0.0041152; f = -1066.3416237 lambda = 0.0013717; f = -1066.3416237 lambda = 0.00045725; f = -1066.3416237 lambda = 0.00015242; f = -1066.3416237 lambda = 5.0805e-05; f = -1066.3416237 lambda = 1.6935e-05; f = -1066.3416237 lambda = 5.645e-06; f = -1066.3416237 lambda = 1.8817e-06; f = -1066.3416237 lambda = 6.2723e-07; f = -1066.3416237 lambda = 2.0908e-07; f = -1066.3416237 lambda = 6.9692e-08; f = -1066.3416237 lambda = 2.3231e-08; f = -1066.3416237 lambda = 4.4909e-08; f = -1066.3416237 lambda = 3.0239e-08; f = -1066.3416237 lambda = 3.8338e-08; f = -1066.3416237 lambda = 3.325e-08; f = -1066.3416237 lambda = 2.8837e-08; f = -1066.3416237 lambda = 2.5011e-08; f = -1066.3416237 lambda = 2.3761e-08; f = -1066.3416237 lambda = 2.4503e-08; f = -1066.3416237 lambda = 2.4055e-08; f = -1066.3416237 lambda = 2.4323e-08; f = -1066.3416237 lambda = 2.4594e-08; f = -1066.3416237 Norm of dx 1.6988e-05 Predicted improvement: 0.000040526 lambda = 1; f = -1066.3416641 Norm of dx 6.0768e-06 Done for param e3 = 0.0031; f = -1066.3417 Predicted improvement: 0.000012243 lambda = 1; f = -1066.3416764 Norm of dx 1.2193e-06 Done for param e4 = 0.0037; f = -1066.3417 Predicted improvement: 0.000012579 lambda = 1; f = -1066.3416890 Norm of dx 3.2356e-05 Done for param e5 = 0.0940; f = -1066.3417 Predicted improvement: 0.000022265 lambda = 1; f = -1066.3417112 Norm of dx 0.00044244 Done for param ra = 0.1206; f = -1066.3417 Sequence of univariate steps!! Actual dxnorm 0.0018385 FVAL -1066.3417 Improvement 0.00021999 Ftol 1e-05 Htol 1e-05 Elapsed time for iteration 0.39579 s. Iteration 21 Predicted improvement: 0.001546889 lambda = 1; f = -1066.1414064 lambda = 0.33333; f = -1066.3211896 lambda = 0.11111; f = -1066.3396946 lambda = 0.037037; f = -1066.3415648 lambda = 0.012346; f = -1066.3417205 lambda = 0.0041152; f = -1066.3417207 lambda = 0.0079555; f = -1066.3417238 Norm of dx 0.14878 Predicted improvement: 0.000000226 lambda = 1; f = -1066.3417230 lambda = 0.33333; f = -1066.3417236 lambda = 0.11111; f = -1066.3417238 lambda = 0.037037; f = -1066.3417238 lambda = 0.012346; f = -1066.3417238 lambda = 0.0041152; f = -1066.3417238 lambda = 0.0013717; f = -1066.3417238 lambda = 0.00045725; f = -1066.3417238 lambda = 0.00015242; f = -1066.3417238 lambda = 5.0805e-05; f = -1066.3417238 lambda = 1.6935e-05; f = -1066.3417238 lambda = 5.645e-06; f = -1066.3417238 lambda = 1.8817e-06; f = -1066.3417238 lambda = 6.2723e-07; f = -1066.3417238 lambda = 2.0908e-07; f = -1066.3417238 lambda = 4.0418e-07; f = -1066.3417238 lambda = 7.8135e-07; f = -1066.3417238 lambda = 5.2612e-07; f = -1066.3417238 lambda = 3.5426e-07; f = -1066.3417238 lambda = 2.3854e-07; f = -1066.3417238 lambda = 3.0242e-07; f = -1066.3417238 lambda = 2.6229e-07; f = -1066.3417238 lambda = 2.4081e-07; f = -1066.3417238 lambda = 2.5348e-07; f = -1066.3417238 lambda = 2.6681e-07; f = -1066.3417238 lambda = 2.5873e-07; f = -1066.3417238 lambda = 2.6355e-07; f = -1066.3417238 lambda = 2.6065e-07; f = -1066.3417238 lambda = 2.5778e-07; f = -1066.3417238 Norm of dx 1.3571e-05 Sequence of univariate steps!! Actual dxnorm 0.0011836 FVAL -1066.3417 Improvement 1.2607e-05 Ftol 1e-05 Htol 1e-05 Elapsed time for iteration 0.38208 s. Iteration 22 Predicted improvement: 0.000870041 lambda = 1; f = -1066.2707431 lambda = 0.33333; f = -1066.3339366 lambda = 0.11111; f = -1066.3409760 lambda = 0.037037; f = -1066.3416832 lambda = 0.012346; f = -1066.3417336 Norm of dx 0.071872 Norm of dx 0 Sequence of univariate steps!! Try diagonal Hessian Predicted improvement: 0.000016584 lambda = 1; f = -1066.3417465 Norm of dx 7.0407e-05 Diagonal Hessian successful Actual dxnorm 0.00084952 FVAL -1066.3417 Improvement 2.2721e-05 Ftol 1e-05 Htol 1e-05 Elapsed time for iteration 0.29779 s. Iteration 23 Correct for low angle: 0.00369436 Predicted improvement: 0.002501846 lambda = 1; f = -1065.7059506 lambda = 0.33333; f = -1066.2808688 lambda = 0.11111; f = -1066.3356106 lambda = 0.037037; f = -1066.3411973 lambda = 0.012346; f = -1066.3417270 lambda = 0.0041152; f = -1066.3417581 Norm of dx 0.17868 Norm of dx 0 Sequence of univariate steps!! Actual dxnorm 0.0007353 FVAL -1066.3418 Improvement 1.1575e-05 Ftol 1e-05 Htol 1e-05 Elapsed time for iteration 0.23067 s. Iteration 24 Predicted improvement: 0.000317492 lambda = 1; f = -1066.3401467 lambda = 0.33333; f = -1066.3417200 lambda = 0.11111; f = -1066.3418009 Norm of dx 0.002894 Norm of dx 0 Sequence of univariate steps!! Actual dxnorm 0.00032156 FVAL -1066.3418 Improvement 4.279e-05 Ftol 1e-05 Htol 1e-05 Elapsed time for iteration 0.25765 s. Iteration 25 Correct for low angle: 0.00172198 Predicted improvement: 0.001330149 lambda = 1; f = -1065.9691031 lambda = 0.33333; f = -1066.3040465 lambda = 0.11111; f = -1066.3379036 lambda = 0.037037; f = -1066.3414372 lambda = 0.012346; f = -1066.3417825 lambda = 0.0041152; f = -1066.3418062 Norm of dx 0.079892 Norm of dx 0 Sequence of univariate steps!! Try diagonal Hessian Predicted improvement: 0.000018839 lambda = 1; f = -1066.3418128 lambda = 0.33333; f = -1066.3418126 Norm of dx 0.00010888 Actual dxnorm 0.00041127 FVAL -1066.3418 Improvement 1.1904e-05 Ftol 1e-05 Htol 1e-05 Elapsed time for iteration 0.23917 s. Iteration 26 Correct for low angle: 0.00238802 Predicted improvement: 0.002620932 lambda = 1; f = -1065.4734505 lambda = 0.33333; f = -1066.2377777 lambda = 0.11111; f = -1066.3302762 lambda = 0.037037; f = -1066.3406461 lambda = 0.012346; f = -1066.3417257 lambda = 0.0041152; f = -1066.3418175 lambda = 0.0013717; f = -1066.3418181 lambda = 0.0026518; f = -1066.3418197 Norm of dx 0.1313 Norm of dx 0 Sequence of univariate steps!! Try diagonal Hessian Predicted improvement: 0.000011096 lambda = 1; f = -1066.3418200 lambda = 0.33333; f = -1066.3418225 Norm of dx 0.0001359 Try gradient direction Predicted improvement: 0.003187826 lambda = 1; f = -1063.6031630 lambda = 0.33333; f = -1065.9831787 lambda = 0.11111; f = -1066.2993264 lambda = 0.037037; f = -1066.3369154 lambda = 0.012346; f = -1066.3412432 lambda = 0.0041152; f = -1066.3417478 lambda = 0.0013717; f = -1066.3418108 lambda = 0.00045725; f = -1066.3418201 lambda = 0.00015242; f = -1066.3418219 lambda = 5.0805e-05; f = -1066.3418223 lambda = 1.6935e-05; f = -1066.3418224 lambda = 5.645e-06; f = -1066.3418225 lambda = 1.8817e-06; f = -1066.3418225 lambda = 6.2723e-07; f = -1066.3418225 lambda = 2.0908e-07; f = -1066.3418225 lambda = 6.9692e-08; f = -1066.3418225 lambda = 2.3231e-08; f = -1066.3418225 lambda = 7.7435e-09; f = -1066.3418225 lambda = 2.5812e-09; f = -1066.3418225 lambda = -6.2723e-07 lambda = -6.2723e-07; f = -1066.3418225 Norm of dx 0.00079848 No further improvement is possible! Actual dxnorm 0.00038846 FVAL -1066.3418 Improvement 9.6931e-06 Ftol 1e-05 Htol 1e-05 Gradient norm 7.9848 Minimum Hessian eigenvalue 0.094798 Maximum Hessian eigenvalue 97089854.3925 Estimation successful. Final value of minus the log posterior (or likelihood):-1066.341823 ----------------- f at the beginning of new iteration, -1066.3418225079 Predicted improvement: 0.010344248 lambda = 1; f = -1028.8454779 lambda = 0.33333; f = -1063.9872679 lambda = 0.11111; f = -1066.1179297 lambda = 0.037037; f = -1066.3183284 lambda = 0.012346; f = -1066.3393251 lambda = 0.0041152; f = -1066.3415705 lambda = 0.0013717; f = -1066.3418026 lambda = 0.00045725; f = -1066.3418230 lambda = 0.00015242; f = -1066.3418234 lambda = 5.0805e-05; f = -1066.3418229 Norm of dx 0.0014383 ---- Improvement on iteration 1 = 0.000000939 ----------------- f at the beginning of new iteration, -1066.3418234472 Predicted improvement: 0.000062779 lambda = 1; f = -1066.3335107 lambda = 0.33333; f = -1066.3409260 lambda = 0.11111; f = -1066.3417264 lambda = 0.037037; f = -1066.3418133 lambda = 0.012346; f = -1066.3418225 lambda = 0.0041152; f = -1066.3418234 lambda = 0.0013717; f = -1066.3418235 lambda = 0.00045725; f = -1066.3418235 lambda = 0.00015242; f = -1066.3418235 lambda = 5.0805e-05; f = -1066.3418234 lambda = 1.6935e-05; f = -1066.3418234 lambda = 5.645e-06; f = -1066.3418234 lambda = 1.8817e-06; f = -1066.3418234 lambda = 6.2723e-07; f = -1066.3418234 lambda = 2.0908e-07; f = -1066.3418234 lambda = 6.9692e-08; f = -1066.3418234 Norm of dx 0.0001092 ---- Improvement on iteration 2 = 0.000000021 improvement < crit termination Final value of minus the log posterior (or likelihood):-1066.341823 MODE CHECK Fval obtained by the optimization routine: -1066.341823 RESULTS FROM POSTERIOR ESTIMATION parameters prior mean mode s.d. prior pstdev pibar 1.0630 1.0478 0.0118 gamm 0.0200 b 0.9900 0.9972 0.0010 beta 0.0050 h 0.6000 0.4988 0.0862 beta 0.1000 theta 0.6600 0.8097 0.0227 beta 0.1000 phi_pi 1.5000 2.0223 0.2784 norm 0.4000 phi_y 0.1250 0.0373 0.0272 gamm 0.0750 rho_i 0.7000 0.8423 0.0274 beta 0.1000 rhoa 0.8000 0.9789 0.0127 beta 0.1000 ra 0.5000 0.1204 0.0831 beta 0.2000 standard deviation of shocks prior mean mode s.d. prior pstdev e1 0.0500 0.0817 0.0138 invg 2.0000 e2 0.0100 0.0078 0.0029 invg 2.0000 e3 0.0100 0.0031 0.0007 invg 2.0000 e4 0.0100 0.0037 0.0003 invg 2.0000 e5 0.0500 0.0941 0.0194 invg 2.0000 Log data density [Laplace approximation] is 1013.470335. Estimation::mcmc: Multiple chains mode. Estimation::mcmc: Old mh-files successfully erased! Estimation::mcmc: Old metropolis.log file successfully erased! Estimation::mcmc: Creation of a new metropolis.log file. Estimation::mcmc: Searching for initial values... Estimation::mcmc: Initial values found! Estimation::mcmc: Write details about the MCMC... Ok! Estimation::mcmc: Details about the MCMC are available in n80/metropolis\n80_mh_history_0.mat C:\Users\vinayak\Documents\MATLAB>psexec -accepteula -d -W "C:\Users\vinayak\Documents\MATLAB" -a 0 -low "C:\Program Files\MATLAB\R2023b\bin\matlab.exe" -nosplash -nodesktop -minimize -singleCompThread -r "addpath('C:\dynare\6.4\matlab'), dynareroot = dynare_config(); fParallel(1,1,1,1,'posterior_sampler_core')" PsExec v2.43 - Execute processes remotely Copyright (C) 2001-2023 Mark Russinovich Sysinternals - www.sysinternals.com C:\Program Files\MATLAB\R2023b\bin\matlab.exe started with process ID 12568. C:\Users\vinayak\Documents\MATLAB>psexec -accepteula -d -W "C:\Users\vinayak\Documents\MATLAB" -a 1 -low "C:\Program Files\MATLAB\R2023b\bin\matlab.exe" -nosplash -nodesktop -minimize -singleCompThread -r "addpath('C:\dynare\6.4\matlab'), dynareroot = dynare_config(); fParallel(2,2,2,1,'posterior_sampler_core')" PsExec v2.43 - Execute processes remotely Copyright (C) 2001-2023 Mark Russinovich Sysinternals - www.sysinternals.com C:\Program Files\MATLAB\R2023b\bin\matlab.exe started with process ID 20156. C:\Users\vinayak\Documents\MATLAB>psexec -accepteula -d -W "C:\Users\vinayak\Documents\MATLAB" -a 2 -low "C:\Program Files\MATLAB\R2023b\bin\matlab.exe" -nosplash -nodesktop -minimize -singleCompThread -r "addpath('C:\dynare\6.4\matlab'), dynareroot = dynare_config(); fParallel(3,3,3,1,'posterior_sampler_core')" PsExec v2.43 - Execute processes remotely Copyright (C) 2001-2023 Mark Russinovich Sysinternals - www.sysinternals.com C:\Program Files\MATLAB\R2023b\bin\matlab.exe started with process ID 24488. C:\Users\vinayak\Documents\MATLAB>psexec -accepteula -d -W "C:\Users\vinayak\Documents\MATLAB" -a 3 -low "C:\Program Files\MATLAB\R2023b\bin\matlab.exe" -nosplash -nodesktop -minimize -singleCompThread -r "addpath('C:\dynare\6.4\matlab'), dynareroot = dynare_config(); fParallel(4,4,4,1,'posterior_sampler_core')" PsExec v2.43 - Execute processes remotely Copyright (C) 2001-2023 Mark Russinovich Sysinternals - www.sysinternals.com C:\Program Files\MATLAB\R2023b\bin\matlab.exe started with process ID 28280. Estimation::mcmc: Number of mh files: 3 per block. Estimation::mcmc: Total number of generated files: 12. Estimation::mcmc: Total number of iterations: 2000000. Estimation::mcmc: Current acceptance ratio per chain: Chain 1: 31.2871% Chain 2: 31.4196% Chain 3: 31.2446% Chain 4: 31.4003% Estimation::mcmc: Total number of MH draws per chain: 2000000. Estimation::mcmc: Total number of generated MH files: 3. Estimation::mcmc: I'll use mh-files 2 to 3. Estimation::mcmc: In MH-file number 2 I'll start at line 218751. Estimation::mcmc: Finally I keep 1000000 draws per chain. MCMC Inefficiency factors per block Parameter Block 1 Block 2 Block 3 Block 4 SE_e1 207.682 240.870 302.655 166.948 SE_e2 153.408 185.936 192.388 226.730 SE_e3 121.181 130.465 128.677 114.629 SE_e4 72.306 68.621 75.336 67.545 SE_e5 318.003 313.584 304.962 259.314 pibar 117.695 106.699 128.724 108.543 b 118.149 107.875 124.040 109.292 h 209.180 201.876 201.995 164.536 theta 194.289 184.511 216.141 163.158 phi_pi 96.274 90.225 96.816 82.706 phi_y 131.490 114.502 125.838 121.288 rho_i 131.979 123.013 127.203 114.946 rhoa 707.876 702.515 694.873 694.029 ra 119.320 111.744 113.311 117.928 Convergence diagnostics results for chain 1. Geweke (1992) Convergence Tests, based on means of draws 1000000 to 1200000 vs 1500000 to 2000000 for chain 1. p-values are for Chi2-test for equality of means. Parameter Post. Mean Post. Std p-val No Taper p-val 4% Taper p-val 8% Taper p-val 15% Taper SE_e1 0.093 0.018 0.000 0.156 0.172 0.177 SE_e2 0.008 0.003 0.000 0.586 0.585 0.519 SE_e3 0.004 0.001 0.000 0.211 0.215 0.208 SE_e4 0.004 0.000 0.000 0.127 0.127 0.064 SE_e5 0.109 0.027 0.000 0.610 0.625 0.629 pibar 1.040 0.013 0.000 0.075 0.081 0.071 b 0.997 0.001 0.000 0.349 0.386 0.403 h 0.522 0.094 0.000 0.441 0.456 0.456 theta 0.827 0.026 0.000 0.177 0.191 0.181 phi_pi 2.043 0.287 0.000 0.517 0.527 0.505 phi_y 0.060 0.035 0.000 0.046 0.034 0.023 rho_i 0.855 0.027 0.000 0.486 0.503 0.494 rhoa 0.906 0.108 0.000 0.789 0.802 0.806 ra 0.175 0.097 0.000 0.691 0.710 0.704 Convergence diagnostics results for chain 2. Geweke (1992) Convergence Tests, based on means of draws 1000000 to 1200000 vs 1500000 to 2000000 for chain 2. p-values are for Chi2-test for equality of means. Parameter Post. Mean Post. Std p-val No Taper p-val 4% Taper p-val 8% Taper p-val 15% Taper SE_e1 0.092 0.018 0.000 0.428 0.439 0.412 SE_e2 0.008 0.003 0.000 0.415 0.406 0.397 SE_e3 0.004 0.001 0.000 0.572 0.574 0.570 SE_e4 0.004 0.000 0.000 0.285 0.334 0.359 SE_e5 0.108 0.026 0.000 0.257 0.273 0.230 pibar 1.041 0.013 0.000 0.060 0.059 0.037 b 0.997 0.001 0.000 0.021 0.006 0.000 h 0.518 0.094 0.000 0.205 0.211 0.160 theta 0.825 0.025 0.000 0.154 0.166 0.137 phi_pi 2.049 0.285 0.000 0.144 0.159 0.137 phi_y 0.059 0.034 0.000 0.028 0.039 0.033 rho_i 0.854 0.027 0.000 0.057 0.067 0.046 rhoa 0.919 0.095 0.000 0.027 0.036 0.016 ra 0.172 0.095 0.000 0.166 0.211 0.218 Convergence diagnostics results for chain 3. Geweke (1992) Convergence Tests, based on means of draws 1000000 to 1200000 vs 1500000 to 2000000 for chain 3. p-values are for Chi2-test for equality of means. Parameter Post. Mean Post. Std p-val No Taper p-val 4% Taper p-val 8% Taper p-val 15% Taper SE_e1 0.093 0.019 0.000 0.413 0.405 0.378 SE_e2 0.008 0.003 0.000 0.186 0.169 0.118 SE_e3 0.004 0.001 0.000 0.147 0.109 0.062 SE_e4 0.004 0.000 0.000 0.670 0.677 0.623 SE_e5 0.110 0.027 0.000 0.557 0.553 0.521 pibar 1.040 0.013 0.000 0.743 0.734 0.714 b 0.997 0.001 0.000 0.695 0.667 0.636 h 0.523 0.094 0.000 0.459 0.441 0.394 theta 0.827 0.026 0.000 0.818 0.816 0.804 phi_pi 2.037 0.287 0.000 0.655 0.658 0.612 phi_y 0.060 0.035 0.000 0.745 0.760 0.768 rho_i 0.855 0.027 0.000 0.606 0.606 0.579 rhoa 0.907 0.102 0.000 0.547 0.554 0.513 ra 0.174 0.097 0.508 0.965 0.966 0.966 Convergence diagnostics results for chain 4. Geweke (1992) Convergence Tests, based on means of draws 1000000 to 1200000 vs 1500000 to 2000000 for chain 4. p-values are for Chi2-test for equality of means. Parameter Post. Mean Post. Std p-val No Taper p-val 4% Taper p-val 8% Taper p-val 15% Taper SE_e1 0.092 0.018 0.000 0.706 0.708 0.678 SE_e2 0.008 0.003 0.000 0.368 0.365 0.316 SE_e3 0.004 0.001 0.000 0.462 0.472 0.412 SE_e4 0.004 0.000 0.024 0.804 0.803 0.770 SE_e5 0.108 0.026 0.000 0.833 0.831 0.817 pibar 1.041 0.013 0.000 0.467 0.482 0.435 b 0.997 0.001 0.000 0.316 0.265 0.193 h 0.518 0.092 0.086 0.931 0.926 0.915 theta 0.825 0.025 0.119 0.942 0.943 0.938 phi_pi 2.049 0.286 0.002 0.839 0.845 0.832 phi_y 0.059 0.035 0.003 0.808 0.816 0.813 rho_i 0.854 0.027 0.000 0.787 0.804 0.806 rhoa 0.916 0.099 0.000 0.930 0.933 0.927 ra 0.173 0.096 0.000 0.748 0.771 0.768 Univariate convergence diagnostic, Brooks and Gelman (1998): C:\Users\vinayak\Documents\MATLAB>psexec -accepteula -d -W "C:\Users\vinayak\Documents\MATLAB" -a 0 -low "C:\Program Files\MATLAB\R2023b\bin\matlab.exe" -nosplash -nodesktop -minimize -singleCompThread -r "addpath('C:\dynare\6.4\matlab'), dynareroot = dynare_config(); fParallel(1,3,1,1,'mcmc_diagnostics_core')" PsExec v2.43 - Execute processes remotely Copyright (C) 2001-2023 Mark Russinovich Sysinternals - www.sysinternals.com C:\Program Files\MATLAB\R2023b\bin\matlab.exe started with process ID 19660. C:\Users\vinayak\Documents\MATLAB>psexec -accepteula -d -W "C:\Users\vinayak\Documents\MATLAB" -a 1 -low "C:\Program Files\MATLAB\R2023b\bin\matlab.exe" -nosplash -nodesktop -minimize -singleCompThread -r "addpath('C:\dynare\6.4\matlab'), dynareroot = dynare_config(); fParallel(4,6,2,1,'mcmc_diagnostics_core')" PsExec v2.43 - Execute processes remotely Copyright (C) 2001-2023 Mark Russinovich Sysinternals - www.sysinternals.com C:\Program Files\MATLAB\R2023b\bin\matlab.exe started with process ID 25996. C:\Users\vinayak\Documents\MATLAB>psexec -accepteula -d -W "C:\Users\vinayak\Documents\MATLAB" -a 2 -low "C:\Program Files\MATLAB\R2023b\bin\matlab.exe" -nosplash -nodesktop -minimize -singleCompThread -r "addpath('C:\dynare\6.4\matlab'), dynareroot = dynare_config(); fParallel(7,9,3,1,'mcmc_diagnostics_core')" PsExec v2.43 - Execute processes remotely Copyright (C) 2001-2023 Mark Russinovich Sysinternals - www.sysinternals.com C:\Program Files\MATLAB\R2023b\bin\matlab.exe started with process ID 23516. C:\Users\vinayak\Documents\MATLAB>psexec -accepteula -d -W "C:\Users\vinayak\Documents\MATLAB" -a 3 -low "C:\Program Files\MATLAB\R2023b\bin\matlab.exe" -nosplash -nodesktop -minimize -singleCompThread -r "addpath('C:\dynare\6.4\matlab'), dynareroot = dynare_config(); fParallel(10,14,4,1,'mcmc_diagnostics_core')" PsExec v2.43 - Execute processes remotely Copyright (C) 2001-2023 Mark Russinovich Sysinternals - www.sysinternals.com C:\Program Files\MATLAB\R2023b\bin\matlab.exe started with process ID 24704. marginal density: I'm computing the posterior mean and covariance... Done! marginal density: I'm computing the posterior log marginal density (modified harmonic mean)... Done! ESTIMATION RESULTS Log data density (Modified Harmonic Mean) is 1014.597367. parameters prior mean post. mean 90% HPD interval prior pstdev pibar 1.063 1.0403 1.0193 1.0613 gamm 0.0200 b 0.990 0.9966 0.9945 0.9988 beta 0.0050 h 0.600 0.5201 0.3682 0.6750 beta 0.1000 theta 0.660 0.8259 0.7835 0.8672 beta 0.1000 phi_pi 1.500 2.0442 1.5708 2.5051 norm 0.4000 phi_y 0.125 0.0595 0.0080 0.1091 gamm 0.0750 rho_i 0.700 0.8544 0.8105 0.8992 beta 0.1000 rhoa 0.800 0.9110 0.7476 0.9973 beta 0.1000 ra 0.500 0.1742 0.0257 0.3155 beta 0.2000 standard deviation of shocks prior mean post. mean 90% HPD interval prior pstdev e1 0.050 0.0922 0.0639 0.1195 invg 2.0000 e2 0.010 0.0079 0.0030 0.0125 invg 2.0000 e3 0.010 0.0037 0.0022 0.0051 invg 2.0000 e4 0.010 0.0037 0.0033 0.0042 invg 2.0000 e5 0.050 0.1087 0.0680 0.1490 invg 2.0000 C:\Users\vinayak\Documents\MATLAB>psexec -accepteula -d -W "C:\Users\vinayak\Documents\MATLAB" -a 0 -low "C:\Program Files\MATLAB\R2023b\bin\matlab.exe" -nosplash -nodesktop -minimize -singleCompThread -r "addpath('C:\dynare\6.4\matlab'), dynareroot = dynare_config(); fParallel(1,300,1,1,'prior_posterior_statistics_core')" PsExec v2.43 - Execute processes remotely Copyright (C) 2001-2023 Mark Russinovich Sysinternals - www.sysinternals.com C:\Program Files\MATLAB\R2023b\bin\matlab.exe started with process ID 2400. C:\Users\vinayak\Documents\MATLAB>psexec -accepteula -d -W "C:\Users\vinayak\Documents\MATLAB" -a 1 -low "C:\Program Files\MATLAB\R2023b\bin\matlab.exe" -nosplash -nodesktop -minimize -singleCompThread -r "addpath('C:\dynare\6.4\matlab'), dynareroot = dynare_config(); fParallel(301,600,2,1,'prior_posterior_statistics_core')" PsExec v2.43 - Execute processes remotely Copyright (C) 2001-2023 Mark Russinovich Sysinternals - www.sysinternals.com C:\Program Files\MATLAB\R2023b\bin\matlab.exe started with process ID 20052. C:\Users\vinayak\Documents\MATLAB>psexec -accepteula -d -W "C:\Users\vinayak\Documents\MATLAB" -a 2 -low "C:\Program Files\MATLAB\R2023b\bin\matlab.exe" -nosplash -nodesktop -minimize -singleCompThread -r "addpath('C:\dynare\6.4\matlab'), dynareroot = dynare_config(); fParallel(601,900,3,1,'prior_posterior_statistics_core')" PsExec v2.43 - Execute processes remotely Copyright (C) 2001-2023 Mark Russinovich Sysinternals - www.sysinternals.com C:\Program Files\MATLAB\R2023b\bin\matlab.exe started with process ID 29468. C:\Users\vinayak\Documents\MATLAB>psexec -accepteula -d -W "C:\Users\vinayak\Documents\MATLAB" -a 3 -low "C:\Program Files\MATLAB\R2023b\bin\matlab.exe" -nosplash -nodesktop -minimize -singleCompThread -r "addpath('C:\dynare\6.4\matlab'), dynareroot = dynare_config(); fParallel(901,1200,4,1,'prior_posterior_statistics_core')" PsExec v2.43 - Execute processes remotely Copyright (C) 2001-2023 Mark Russinovich Sysinternals - www.sysinternals.com C:\Program Files\MATLAB\R2023b\bin\matlab.exe started with process ID 4704. Estimation::mcmc: Smoothed variables Estimation::mcmc: Smoothed variables, done! Estimation::mcmc: Smoothed shocks Estimation::mcmc: Smoothed shocks, done! Estimation::mcmc: Trend_coefficients Estimation::mcmc: Trend_coefficients, done! Estimation::mcmc: Smoothed constant Estimation::mcmc: Smoothed constant, done! Estimation::mcmc: Smoothed trend Estimation::mcmc: Smoothed trend, done! Estimation::mcmc: Updated Variables Estimation::mcmc: Updated Variables, done! Total computing time : 4h32m21s Note: warning(s) encountered in MATLAB/Octave code