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1. Introduction
The Promes toolbox solves Dynamic Stochastic General Equilibrium models
using projection methods. Promes is an acronym for Projection method solver.
The toolbox is written for Matlab, and tested with Matlab 2016b and 2019a.

The toolbox offers several algorithms to solve a model. The policy function
can be approximated with either a spline, a complete Chebyshev polynomial,
a Smolyak polynomial1, or a complete polynomial based on monomials. The
toolbox is both fast2 and accurate. For example, for a standard Real Business
Cycle (RBC) model a maximum error of 10−6 can be achieved in less than
0.05 seconds with each of the basis functions. A maximum error of 10−13 can
be achieved in 0.3 seconds with a complete Chebyshev polynomial. Due to
the curse of the dimensionality, computation times do increase strongly with
the number of state variables. For example, a model with four continuous state
variables and two policy variables is solved in 5 seconds with a spline (Duineveld,
2021)3.

1.1 Core of the toolbox
Three functions form the core of the Promes toolbox. The first function is
prepgrid, which constructs a grid taking the grid parameters and the algorithm
as input. The second is get_pol_var, which evaluates the policy function taking
the state variables as input. This function simplifies programming the model
file and simulations. The third is solve_proj, which solves the model, given the
algorithm, an initial guess, and the grid. The initial guess for the policy function
should give the policy variable(s) at the gridpoints. The toolbox will internally
construct the appropriate policy function, either a spline or a polynomial. These
three functions are the only functions the modeler has to call directly when
solving and simulating a model. The functions are placed in the main folder
‘PROMES_v05.0.0’, and are explained in Part III.

With these three functions solving a DSGE model with projection methods
becomes relatively easy. The main task of the modeler is to program the model
function. The model function has to compute the residuals of the objective
function, given a grid and the policy function. The requirements for a model

1The Smolyak algorithm is implemented with the code written by Rafa Valero (2021).
Smolyak Anisotropic Grid (https://www.mathworks.com/matlabcentral/fileexchange/50963-
smolyak-anisotropic-grid), MATLAB Central File Exchange. Retrieved November 5, 2021.
The algorithm is described in Judd et al. (2014).

2All reported computation times are on a Windows 10 PC with Matlab 2019a and a Ryzen
2700x processor, and without any parallel computing.

3This manuscript is included in the folder ‘Documentation’.
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file are explained in Chapter 8. One has to pay special attention to the formats
for evaluating the policy function (see Section 8.1).

1.2 Getting started
To get started with the toolbox it is recommended to go through the
examples. The code of these examples can be found in the folder
‘PROMES_v05.0.0\Examples’. Chapter 2 gives an introduction to projection
methods, and explains the basic features of the toolbox. It describes a very
simple non-recursive model, which is solved in the program main_exp_proj.
This example plots the exact solution and the projection approximation.

For those familiar with projection methods it is recommended to start with
Chapter 3, which describes a 6-step procedure to solve a model with the Promes
toolbox. This procedure is explained with a very simple recursive model, the
deterministic Brock-Mirman model. The program main_det_bm_proj solves
this model following the six steps. This program also plots the policy function,
and the errors.

A more detailed step-by-step guide can be found in Chapter 4, which is
based on a standard Real Business Cycle (RBC) model with stochastic shocks.
The code for this model is the script main_stnd_rbc_proj. As in the previous
example the program will plot the policy function. In addition it will plot two
stochastic simulations, and compute the errors.

The last example is the program main_housing_proj, which shows how to
solve a model with multiple policy functions. It is an RBC model with housing
as an extra asset.

In Part II the algorithms are described theoretically. In Part III the technical
and coding details of the toolbox are discussed. In Part IV the equations of the
example models are derived.

1.3 Installation
For the installation download the ‘Promes_v05.0.0.a.zip’ file from
https://www.promestoolbox.com/4, and unpack the file in a folder. This will
add the folders ‘PROMES_v05.0.0’ and ‘TOOLS’ to the destination folder.
The folders and files of the Promes toolbox are in the folder
‘PROMES_v05.0.0’ and are shown in Figure 1.1.

In order to use the Promes toolbox one needs to add the folder
‘PROMES_v05.0.0’ and the subfolders ‘grid_subfun’ and ‘smolyak_subfun’ to
the search path. After unpacking the zip file in the folder ‘C:\Myfolder’ one
can add ‘PROMES_v05.0.0’ and all its subfolders to the searchpath with the
Matlab command:

4Older versions are available at https://github.com/saduineveld/Promes_toolbox. The
latest release is also found on https://www.saduineveld.com/tools.
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Figure 1.1: PROMES folders and files

Folder: PROMES_v05.0.0
get_pol_var.m

prepgrid.m

solve_proj.m

Folder: grid_subfun
chebnodes.m

constr_grid.m

constr_univar_basis.m

constr_vecs.m

get_poly_ani.m

gridstruct.m

gridstruct_smolyak.m

poly_elem_ani.m

sc_cheb_dw.m

sc_cheb_up.m

sc_mat_dw.m

sc_mat_up.m

Folder: smolyak_subfun
Smolyak_Elem_Anisotrop.m

Smolyak_Elem_Isotrop.m

Smolyak_Grid.m

Smolyak_Polynomial.m

Folder: Examples
grid_example.m

main_det_bm_proj.m

main_housing.m

main_exp_proj.m

main_stnd_rbc_proj.m

Folder: STND_RBC_mod
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1 addpath ( genpath ('C:\ Myfolder \ PROMES_v05 .0.0 '));

The folder ‘PROMES_v05.0.0’ also has a subfolder ‘Examples’ which
contains five examples:

• main_exp_proj is used to explain the basics of projection methods, and
the main features of the toolbox in Chapter 2;

• grid_example illustrates the construction of the grid, and is explained in
Chapter 10;

• main_det_bm_proj demonstrates a basic procedure to use to toolbox as
described in Chapter 3 with a very simple model, the deterministic Brock-
Mirman model;

• main_stand_rbc_proj demonstrates some details of the toolbox as
described in Chapter 4 with a standard RBC model with stochastic
shocks. The subfolder ‘STND_RBC_mod’ contains additional functions
needed to obtain the results;

• main_housing_proj shows how to solve a model with multiple policy
functions as described in Chapter 5 with an RBC model that includes
housing as an extra asset.

The examples main_stand_rbc_proj and main_housing_proj require the
addition of the folder ‘TOOLS’ to the searchpath. This folder contains the
function hernodes, and the perturbation toolbox CSD. The latter can be used
to obtain an initial guess for the policy function.

1.4 Algorithms
This section gives a brief overview of the algorithms. More details are described
in Chapter 7. Projection method algorithms consist of three main choices5: the
basis functions, the projection condition and the solution method. An overview
of the implemented algorithms and their three choices is given in Table 1.1.
The basis functions are used for the approximation of the policy function. The
basis functions in this toolbox are splines, complete polynomials, and Smolyak-
Chebyshev polynomials.

The algorithms starting with 'spl' use a spline6 with equidistant nodes.
A spline is a piece-wise polynomial. The algorithm names starting with
'mono', and 'cheb' approximate the policy function with complete
polynomials. The one called 'mono_mse' uses equidistant nodes, and
monomial basis functions (1, x, x2, x3, . . .), whereas the ones called 'cheb' use
complete Chebyshev polynomials with Chebyshev nodes. The algorithms

5Gaspar and Judd (1997, Table 3) mention a fourth choice, which is the integration method
to compute the expected value of future states of the economy.

6Splines are determined by Matlab’s griddedInterpolant.
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Table 1.1: Overview of algorithms

Algorithm Basis function Proj. Cond. Solution Meth.
'spl_dir' Spline Collocation Direct Comp.
'spl_tmi' Spline Collocation Time Iteration
'cheb_gal' Compl. Chebyshev polyn. Galerkin Newton type
'cheb_tmi' Compl. Chebyshev polyn. Min. Sq. Err. Time Iteration
'cheb_mse' Compl. Chebyshev polyn. Min. Sq. Err. Trust-Region
'mono_mse' Monomials (compl. polyn.) Min. Sq. Err. Trust-Region
'smol_dir' Smolyak-Chebyshev polyn. Collocation Direct Comp.
'smol_tmi' Smolyak-Chebyshev polyn. Collocation Time Iteration

starting with 'smol' use Smolyak’s algorithm, which relies on a sparse grid
and a sparse Chebyshev polynomial7.

The second choice is the projection condition. This toolbox includes
collocation, Galerkin’s method, and minimization of the squared errors.
Collocation solves the model at the gridpoints. With Galerkin’s method the
residual function is orthogonal to the basis functions, similar to the Method of
Moments (Judd, 1998). Minimization of the squared errors is used to obtain
the coefficients of a polynomial that is overidentified.

The third choice is the solution method for the objective function. The
toolbox uses four methods. The first is a Newton-type of non-linear equation
solver. When a Newton-type of solver is used to solve the model at the gridpoints
we call this Direct Computation. The third method is Time Iteration, which
is specifically designed to solve recursive dynamic optimization problems. The
fourth method uses a Trust-Region algorithm to solve least squares problems.

The toolbox does not (yet) include the Fixed Point algorithm (Miranda and
Helmberger, 1988), because it requires a different format of the model file than
the other algorithms. The current format requires the model file to compute the
Euler residuals as output. This contrasts with the Fixed Point algorithm, which
requires the policy variables as output (Gaspar and Judd, 1997). Initial tests
showed that performance improvements are possible with Fixed Point Iteration
compared to Time Iteration, so Fixed Point Iteration is planned for the next
release8.

The algorithm using a spline with Time Iteration ('spl_tmi') is the most
robust, because splines preserve the shape of the policy function well, and
Time Iteration is the only solution method that should theoretically converge
to the saddle path stable solution (Judd, 1998). A spline with Direct
Computation should be preferred over Time Iteration when the number of
gridpoints is relatively low, and convergence is not an issue.

7See Footnote 1.
8Tests with splines for the model with Habits in consumption and Investment Adjustment

costs (HIA) (Duineveld, 2021) indicated that Time Iteration is more robust than Fixed Point
Iteration. Without tweaking the dampening parameter Fixed Point Iteration either performed
worse, or only slightly better. After tweaking the dampening parameter computation times
could be reduced with 20% to 50%.
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For small, well-behaved models complete Chebyshev polynomials with the
Galerkin projection condition ('cheb_gal') might be preferred as this algorithm
performs best for the Standard RBC model described later. For models with a
high number of state variables the Smolyak algorithm is recommended, because
it is very effective at tackling the curse of the dimensionality. For the Smolyak
algorithm the number of gridpoints grows only polynomially in the number of
state variables, while it grows exponentially for the other algorithms.

The algorithms using Minimization of the Squared Errors ('mse') are not
recommended for two reasons. The first is that Minimization of the Squared
Errors can get stuck in a local minimum (Judd, 1992). The second reason is
that the gradients of the residual function can be highly correlated, which makes
it difficult to get an accurate result (Judd, 1992).

Monomial basis functions in the algorithm 'mono_mse' are only included
for demonstration purposes, although they might perform very well for low
order approximations of simple models. Monomial basis functions are not
recommended for two reasons (Fernández-Villaverde, Rubio-Ramírez, and
Schorfheide, 2016). The first is that they are highly collinear, especially for
high order approximations. The second reason is that monomials are not
scaled to have a similar magnitude.

The algorithm 'cheb_tmi' is not recommended either, unless there is a
specific reason not to use splines. It will in general be outperformed by splines
with Time Iteration ('spl_tmi'). The reason is that complete Chebyshev
polynomials are overidentified when rectangular grids are used9. This means
the polynomial will not go through the solution at the gridpoints, while a
spline will go through these points. In general, for small scale problems
'cheb_gal' will outperform 'cheb_tmi', but for larger problems 'cheb_tmi'
is the better choice.

For complete polynomials we recommend to set the number of nodes equal
to the order plus 1 (see also Fernández-Villaverde, Rubio-Ramírez, and
Schorfheide, 2016). This is the minimum number of gridpoints for the
algorithms using complete Chebyshev polynomials. For splines a low number
of nodes usually suffices for reasonable accuracy. For example for the Standard
RBC model only 3 nodes in each dimension results in errors of similar
magnitude as the third order perturbation solution.

The accuracy of the results depends on the stopping criteria, especially with
Time Iteration. For Time Iteration tighter stopping criteria will reduce the
errors at the gridpoints, and can improve the accuracy significantly. This is
discussed in more detail in Section 4.7 for the Standard RBC model.

9The number of gridpoints grows exponentially but the number of coefficients grows
polynomially.
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1.5 Remarks

Matlab toolboxes
All methods require Matlab’s Optimization toolbox. We use fsolve for the
algorithms with Time Iteration ('tmi'), Direct Computation ('dir'), or
Galerkin ('gal'). We use lsqnonlin for the algorithms using Minimization of
Squared Errors ('mse'). Alternatively one could use his/her own equation
solver or minimization routine. This requires replacing the functions fsolve
and lsqnonlin in the function solve_proj.

Notes on typesetting
Names in general are referred to by single quotations, like a folder name
‘Myfolder’. Variables, cell arrays, structure names, fields of structures, objects,
and properties of objects in Matlab are referred to in the text with the
mathematical font of Latex, for example variable x, structure par or the field
of a structure par.alpha. In general we use double letters in our code such as
xx, because this makes it easier to find them. In this manual we generally
refer to variables by the single letter (x). Strings in Matlab code will be
referred to in Matlab typesetting, for example 'thisstring'. Names referring
to toolboxes, code, functions or scripts are in Typewriter font, as in
myfunction, where the .m extension of functions and scripts will be omitted.

Scripts versus functions
There are two main differences between a function and a script in Matlab. The
first is that one cannot define a subfunction in a script. The second is that a
script will use the current workspace, while a function has its own workspace,
which is empty unless input arguments are defined or global variables are used10.
With a function one can evaluate the variables in the workspace by placing a
breakpoint.

The toolbox consists of functions, and most examples are also functions,
except the files grid_example and main_stnd_rbc_proj. For the latter
example all subfunctions are stored in the subfolder ‘STND_RBC_mod’. For
the other examples all subfunctions are included in the main file.

Update to v05.0.0 from v04.3
The update from Promes v04.3 to Promes v05.0.0 is not backwards
compatible. The necessary changes to run code written for Promes v04.3 with
Promes v5.0.0 are however minimal. In Promes v05.0.0 it is not be possible
to evaluate a policy function obtained with Promes v04.3. Also some default
settings changed, which might affect the results. The changes are discussed in
more detail in Chapter 11.

10Global variables are not recommended for Matlab.
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Feedback & questions
All feedback and questions are welcome at s.a.duineveld@outlook.com.

2. Introduction to
projection methods
Projection methods are used to approximate an unknown function. We will
explain the basic principles with a simple 2-period life-cycle model, called the
Simple Life Cycle model. This simple model has C (x) = ex as its solution12.
The program that solves this model is the function main_exp_proj in the folder
‘PROMES_v05.0.0/Examples’.

2.1 Simple Life Cycle model
The objective of the agent is to maximize utility derived from consumption C
and C2:

max
C,C2

U (C) + U (C2)

The optimization is subject to the budget constraint:

C2 = 2ex − C (2.1)

where x is the capital stock at the beginning of the first period.
With the Constant Relative Risk Aversion (CRRA) utility function U (C) =

C1−ν
t −1
1−ν and restricting C ≥ 0, C2 ≥ 0, and ν > 0 the First Order Conditions

(FOC) are sufficient to define a unique solution13. The FOCs yield14:
12Judd (1998) also approximates ex, but he derives it from a differential equation and

imposes an initial condition. We use a simple discrete time model. It should be emphasized
that the model does not have the recursive structure of infinite horizon problems, which
oversimplifies some aspects. The other examples in this manual have the recursive structure.

13In most economic problems the model is restricted to be convex such that the First Order
Conditions are sufficient to obtain a unique solution. Note however that dynamic models are
usually saddle path stable, which means they have both a stable and an unstable solution.

14We do not use the standard formulation C−ν = C−ν
2 , because in that case the relative

errors are larger for higher levels of consumption. From the perspective of the agent it would
be optimal to allow for larger errors when consumption is high, due to the risk aversion.
However, we take the modeler’s perspective and prefer more equally distributed errors. To
analyze the effect on the approximation one can change the residual function to C−ν = C−ν

2 ,
and use a second order polynomial for the approximation (by setting POL.order = 2). The
plots will show that the errors will be large for high levels of consumption.

13
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(
C

C2

)−ν
= 1 (2.2)

The system of equations consisting of (2.2) and (2.1) has the explicit solution
C (x) = ex.

2.2 Projection explained
In general projection methods approximate a policy variable as a function of the
state variables. The state variables describe the current state of the economy,
and are sufficient to determine the future behavior of the system15. In this
example x is the state variable, and we choose consumption C as the policy
or choice variable. The objective of projection methods is to approximate the
exact policy function C (x) with Ĉ (x; θ), where θ is a vector of parameters that
defines a polynomial or a spline.

The objective of projection methods is to find the policy function that solves
the dynamic optimization problem. We need a residual function R (x; θ) that
computes the errors in the dynamic equation (2.2) for a given approximation
of the policy function. Given some policy Ĉ (x; θ) we can compute C2 with the
budget restriction (2.1). The residuals are:

R (x; θ) =
(

Ĉ (x; θ)
2ex − Ĉ (x; θ)

)−ν
− 1 (2.3)

The objective of projection methods is to find the approximation that minimizes
the residual function R by setting θ.

First we have to choose some interval x ≤ x ≤ x of the state variable, where
we want to approximation to be good. We select a set of q gridpoints on this
interval:

x =
[
x1 x2 · · · xq

]ᵀ (2.4)

We call this vector the initial grid, and it will be assigned to GRID.xx by the
function prepgrid. We want to emphasize that the modeler does not have to
construct the grid. He/she only has to supply the inputs for the grid, consisting
of the number of state variables n, the lower and upper bounds lb (x) and ub
(x), and the algorithm algo. One can specify further options with the optional
input argument algo_spec. The function prepgrid will construct the required
fields in the structure GRID using the default settings with a simple call:

1 GRID = prepgrid (nn ,lb ,ub ,algo);

15See https://en.wikipedia.org/wiki/State_variable.
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After constructing the grid we need to calculate the residuals for which we
use the model function res_exp. This subfunction takes the parameters par,
the structure GRID and the structure with the policy function POL as inputs,
and gives the residuals RES as output:

1 %% Residual function Simple Life Cycle model
2 function [RES] = res_exp (par ,GRID ,POL)
3
4 % Initial grid of state variable :
5 xx = GRID.xx;
6
7 % Evaluate policy function ,
8 % at the initial grid:
9 if ~( strcmp (POL.algo ,'spl_tmi ') || ...
10 strcmp (POL.algo ,'smol_tmi ') || ...
11 strcmp (POL.algo ,'cheb_tmi '))
12
13 % standard : log(C) from policy function
14 CC = get_pol_var (POL ,xx ,GRID);
15 else
16 % time iteration : solver directly sets C_i
17 % (at gridpoint x_i)
18 CC = POL.YY;
19 end
20
21 % Budget constraint gives C2:
22 C2 = 2* exp(xx) - CC;
23
24 % Euler residuals :
25 RES = (CC./C2).^- par.nu - 1;
26
27 end

To compute the residuals we evaluate the approximation of the policy
variable Ĉ(x) at the initial grid GRID.xx, for a given policy function in POL.
There are two options for this. For all algorithms except those using Time
Iteration ('tmi') we call get_pol_var with the state vector x as input (Line
14). For the solution method 'tmi' we directly evaluate the policy variable at
the gridpoints, which is stored in POL.Y Y by the toolbox (Line 18). After
calculating C2 from the budget constraint in Line 19 we can compute the
residuals RES as in equation (2.3). The function solve_proj computes the
policy function that minimizes these residuals. The function solve_proj will
assign the policy function to the structure POL.

For all algorithms an initial guess for the policy function needs to be supplied
to the solver solve_proj. The initial guess Y 0 is the policy function at the
initial grid. For our initial guess we use a third order Taylor series of the exact
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solution C (x) = ex around some point x∗:

C0 (x) = C (x∗) + (x− x∗) ex
∗

+ (x− x∗)2

2 ex
∗

+ (x− x∗)3

6 ex
∗

(2.5)

Note that in general we approximate an unknown function, which prevents us
from directly computing a Taylor series approximation. However, we can obtain
a good initial guess for most models using perturbation methods, which gives
us a Taylor series approximation of a dynamic system of equations.

2.3 Spline methods
Two algorithms use a spline, 'spl_dir' and 'spl_tmi'. For both methods we
use collocation, which solves the policy variable Ĉi = C (xi) at the initial grid
(2.4). Given Ĉi the residual R at gridpoint i = 1, . . . , q is:

R
(
xi, Ĉi

)
=
(

Ĉi

2exi − Ĉi

)−ν
− 1 (2.6)

The objective (in vector notation) is:

R (x,C) = 0 (2.7)

This is a system of q independent equations for q unknowns Ĉi. We use q = 4
equidistant nodes in the interval 0 ≤ x ≤ 3. This results in gridpoints x =
[0, 1, 2, 3]ᵀ. We fit a spline through the solution at these gridpoints with Matlab’s
griddedInterpolant, and the interpolation method set to 'spline'.

The resulting policy function is plotted in Figure 2.1. We used 4 equidistant
nodes and a cubic spline. The maximum error in Ĉ (x) is 0.26. The reason for
this relatively large error is the small number of grid points. For comparison
we have also included the third order Taylor series approximation (see equation
(2.5)) around the point x∗ = 1.5, which we used as an initial guess for the policy
function. It is clear from the figure that the projection solution does well over
the whole domain, while the Taylor series is inaccurate far away from the point
x∗ = 1.5. The maximum error for the third order Taylor series is 3.8.

2.4 Monomial basis function
The algorithm 'mono_mse' uses monomial basis functions to approximate the
policy function. This algorithm is not recommended, but is a stepping stone to
explaining approximation with Chebyshev polynomials. In our example we use
the default order 3 monomial. The third order monomial basis functions consists
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Figure 2.1: Spline approximation
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of the terms Φ =
[

1 x x2 x3 ]. The third order polynomial approximation
of C (x) is:

Ĉ (x; θ) = θ1 + θ2x+ θ3x
2 + θ4x

3 (2.8)

which means θ consists of p = 4 coefficients. We use q = 4 equidistant gridpoints
on the interval 0 ≤ x ≤ 3. As with the spline this results in the initial grid
x = [0, 1, 2, 3]ᵀ, which the function prepgrid assigns to the field GRID.xx.

Having set the gridpoints we can evaluate the residual function (2.3) at those
points using the approximation (2.8). The objective of the algorithm 'mono_mse
' is to minimize the sum of the squared residuals at the gridpoints:

min
θ

q∑
i=1

R (xi; θ)2 (2.9)

where q is the total number of gridpoints. The function solve_proj minimizes
the sum of the squared errors by setting θ, which is assigned to POL.theta.
The solver uses Matlab’s lsqnonlin of the Optimization Toolbox to find the
optimal values of θ. As the system is exactly identified the error at the gridpoints
will be (close to) zero.

The resulting third order approximation is plotted in Figure 2.2. The
maximum error in Ĉ (θ) on the interval 0 ≤ x ≤ 3 is 0.26. This error is of
similar magnitude as the error in the spline approximation.
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Figure 2.2: 3rd order monomial approximation
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2.5 Chebyshev polynomials
The algorithms 'cheb_gal','cheb_tmi', and 'cheb_mse' use complete
Chebyshev polynomials. Chebyshev polynomials differ from monomial basis
function in two aspects16.

The first aspect is that for Chebyshev polynomials variables need to be scaled
to the interval [−1, 1]. The linear scaling down of variables from the interval
[x, x] (lower and upper bound) to the interval [−1, 1] is:

x̃ (x) = 2x
x− x,

− x,+x
x− x,

(2.10)

where x̃ is the scaled down variable.
The second difference is that Chebyshev nodes are used instead of equidistant

nodes. In our example the number of nodes is set at q = 4. The Chebyshev
nodes on the interval [−1, 1] are:

x̃ =
[
−0.924 −0.383 0.383 0.924

]ᵀ (2.11)

This vector is stored in GRID.xx_dw (see Section 10.13). The scaled up values
(see Section 10.11) in the interval [0, 3] are:

16Both aspects are taken care of by the toolbox, so the user does not need any knowledge
of Chebyshev polynomials.
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x =
[

0.114 0.926 2.074 2.89
]ᵀ

which is assigned to GRID.xx. Note that these nodes are not linearly spaced.
As we use a third order approximation (ord_vec = 3). The third order

Chebyshev polynomial with one variable consists of p = 4 terms:

Ĉ (x; θ) = θ1 + θ2x̃ (x) + θ3

(
2x̃ (x)2 − 1

)
+ θ4

(
4x̃ (x)3 − 3x̃ (x)

)
(2.12)

where x̃ (x) is the scaled down variable. We can write in short-hand notation:

Ĉ (x; θ) =
p∑
j=1

θjΩj (x̃ (x)) (2.13)

Alternatively we can write the polynomial as a matrix of polynomial terms:

Ω (x̃ (x)) =
[

1 x̃ (x) 2x̃ (x)2 − 1 4x̃ (x)3 − 3x̃ (x)
]

which is a q× p matrix, where q is the number of datapoints. This allows us to
formulate (2.13) using matrix multiplication:

Ĉ (x; θ) = Ω (x̃ (x)) θ (2.14)

There are three algorithms with complete Chebyshev polynomials. The
first is 'cheb_mse', which has the same objective (2.9) as with monomials.
The second algorithm 'cheb_gal' uses Galerkin projection. This means each
coefficient θj for j = 1, . . . , p is set such that the residuals (2.3) are orthogonal
to the corresponding polynomial term Ωj (x̃ (x)) in equation (2.13). Using
matrix notation we have to solve a system of equations:

0 = R (x; θ)ᵀ Ω (x̃ (x)) (2.15)

whereR (x; θ) is the q×1 residual vector at the gridpoints. This gives us a system
of p equations in p unknowns. An alternative formulation of the objective for
each θj is to solve the equation:

0 =
q∑
i=1

R (xi; θ) Ωj (x̃ (xi)) (2.16)

The third algorithm is 'cheb_tmi'. For this algorithm we use Time
Iteration, meaning that we first solve the policy variable at the gridpoints
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Figure 2.3: 3rd order Chebyshev approximation
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Ĉi = Ĉ (xi) for i = 1, . . . , q as we did in for splines in Section 2.3, using
residual function (2.6) and objective (2.7).

The second step of 'cheb_tmi' is to fit the complete polynomial through
the solution at the gridpoints. This is done by solving the linear system of
equations:

θ = Ω (x̃ (x))−1
Ĉ (2.17)

The result for the third order approximation with 'cheb_gal' is plotted in
Figure 2.3. The maximum error in Ĉ (θ) on the interval 0 ≤ x ≤ 3 is 0.18.
As before the number of parameters θ and the number of nodes are the same
(p = q = 4) resulting in (close to) zero errors at the gridpoints.

2.6 Smolyak algorithm
The Smolyak algorithm uses a sparse grid and sparse polynomial to approximate
the policy function. The grid is constructed using nested sets with a special
format. For this reason the only grid parameter than can be set is µ, which
determines the total number of gridpoints, which is equal to the number of
coefficients of the polynomial.

In the one dimension case the number of nodes is qµ = 2µ+1, and the degree
of the Chebyshev polynomial is 2µ. The nodes correspond to the extrema of a
univariate Chebyshev polynomial. For given µ with i = 1, . . . , qµ the gridpoints
are (Judd et al., 2014):
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xi =
{

0 for µ = 0
− cos

(
i−1
qµ−1π

)
for µ > 0

We set µ = 2 which results in m = 5 gridpoints, and an order 4 polynomial
(with p = 5 coefficients). The nodes are:

x =
[

0 −1 1 −0.707 0.707
]

The m× p matrix with polynomial terms is:

Ω (x̃ (x)) =
[

1 x̃ (x) 2x̃ (x)2 − 1 4x̃ (x)3 − 3x̃ (x) 8x̃ (x)4 − 8x̃ (x)2 + 1
]

With 'smol_tmi' we use collocation. We solve for the policy variable Ĉi
at the gridpoints i using residual function (2.6) and objective (2.7) as with the
spline algorithms and 'cheb_tmi'. Given the solution Ĉ at the gridpoints the
coefficients θ can be determined with equation (2.17) using matrix inversion.
With 'smol_dir' we directly solve for the coefficients θ using the objective (in
vector notation):

R (x; θ) = 0

The results are plotted in Figure 2.4. The maximum absolute error is 0.04
for an order four polynomial (µ = 2). This error is considerably smaller than
with third order polynomials.

3. Basic Procedure
To set up, solve and evaluate a model with the Promes toolbox one typically
needs to take 6 steps:

1. Set the parameters and solve the steady state;

2. Set the grid parameters, choose the algorithm, and construct the grid
using the function prepgrid;

3. Create the model function, and function handle;

4. Make an initial guess for the policy function;

5. Solve the model, using the function solve_proj;

6. Evaluate the solution using the function get_pol_var.
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Figure 2.4: Smolyak approximation
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To explain the above steps we use a very simple deterministic macroeconomic
model, which we solve with the default settings of each algorithm. We describe
the model in Section 3.1, define the approximated solution in Section 3.2, and the
program code in Section 3.3. The program is the function main_det_bm_proj,
which can be found in the folder ‘PROMES_v05.0.0/Examples’.

3.1 Deterministic Brock-Mirman model
The Brock-Mirman model that we use is a special case of the deterministic,
representative agent growth problem described by Judd (1998)17. The model is
discussed in more detail in Chapter 12. The deterministic version of the model
has only one state variable, which is capital Kt. The advantage of this model is
that there exists an analytical solution to which we can compare the numerical
solution.

The representative agent maximizes his/her discounted utility:

max
∞∑
t=1

βt−1 log (Ct)

subject to:

Kt+1 + Ct = Kα
t (3.1)

17Example in 16.4 starting on page 549.
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where Ct is consumption in period t, β is the discount factor, Kt is the capital
stock at the beginning of the period, and Kα

t is the production function.
Applying the recursive formulation and taking the first order conditions with
respect to Kt+1 and Ct we obtain the Euler equation:

1
Ct

= β
1

Ct+1
αKα−1

t+1 (3.2)

3.2 Approximation of the policy function
The objective is to find the policy function for consumption as a function of the
state variable capital. The two equations (3.1) and (3.2) are sufficient to solve
the model with projection methods.

We approximate the policy function for consumption as a function of capital
Ct = C (Kt). We use either a polynomial or a spline Ĉt = Ĉ (Kt; θ)18, where
θ is a vector of coefficients determining the spline or polynomial.. To indicate
the parameterization of the j-th iteration we write θj . To obtain the solution
we minimize the residuals of the Euler equation (3.2) for a finite number of
gridpoints.

To calculate the Euler residuals at these gridpoints we first calculate next
period’s capital stock using (3.1):

K̂t+1 = Kα
t − Ĉ (Kt; θq) (3.3)

where we used policy θq for period t choices. Next we substitute Kt+1 into the
Euler equation (3.2) and compute period t+ 1 consumption Ĉ

(
K̂t+1; θp

)
.

Finally we multiply both sides of the equation with Ĉ (Kt; θq) to normalize
the Euler residuals19. The Euler residuals R are:

R (Kt; θ) = β
Ĉ (Kt; θq)

Ĉ
(
K̂t+1; θp

)αK̂α−1
t+1 − 1 (3.4)

Note that we use parameterization θq for period t choices, and θp for period
t+1 choices. This distinction is only relevant for algorithms using Time Iteration
('tmi'). For the other algorithms these two parameterizations are the same,
meaning θq = θp.

18In practice we use both consumption and capital in logs ĉt = ĉ (kt; θ), where smaller cases
indicate logs.

19This scaling ensures that errors are more equally distributed. If we would not normalize
the Euler residuals the errors in consumption would be larger for high levels of consumption,
due to the risk aversion of the agent.
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3.3 Basic Procedure
To solve a model with the toolbox one needs to go through the 6 steps
described above. In this section we describe these steps in the example code
main_det_bm_proj in the folder ‘PROMES_v05.0.0/Examples’. This file is a
function, which includes all the subfunctions of the model. These subfunctions
calculate the Euler residual (det_bm_res), the steady state (det_bm_ss) and
auxiliary variables (det_bm_aux). Each of the 6 steps of the example program
are described in the following Subsections.

Step 0: Matlab settings
Before running the example we set some general Matlab settings, and add the
relevant folders of the toolbox to the searchpath.

Step 1: Initial block
The initial block consists of two substeps, which are shown in Listing 3.1. In
Step 1.A we set the parameters of the model, and in Step 1.B we solve the
steady state20.

Listing 3.1: Step 1 main_det_bm_proj
1 function main_det_bm_proj ( sol_meth )
2 % Function gives projection solution for
3 % deterministic version of Brock - Mirman model ,
4 % using default settings of Promes toolbox
5
6 %% STEP 1: INITIAL BLOCK
7 % STEP 1.A: Set parameters of the model
8 par.alpha = 0.33; % production : K^alpha
9 par.beta = 0.96; % discount factor
10
11 % STEP 1.B: Solve steady state
12 SS = det_bm_ss (par);

Step 2: Construct the grid
The construction of the grid is shown in Listing 3.2. In this step one needs to
set the parameters of the grid, which is explained in more detail in Chapter
10. The first three inputs are set as fields in the temporary structure gin.
These are the number of state variables n, and the lower bound and upper
bound of the state variables, lb and ub respectively. When constructing the grid
with prepgrid one also needs to set the algorithm in POL.algo, because the
algorithm determines the type of grid that is constructed. We use the default

20See Chapter 12 for the derivation of the steady state.
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settings for each algorithm, but one can specify algorithm specific parameters
in the optional field algo_spec (see for example Section 4.4).

Listing 3.2: Step 2 main_det_bm_proj
1 %% STEP 2: Construct the grid
2 % STEP 2.A: Set parameters & bounds of grid , in log(K)
3 gin.nn = 1;% number of state variables
4
5 % Boundaries of grid at steady state +/- 20%:
6 gin.lb (1) = -0.2 + log(SS.Kss);% lower bound
7 gin.ub (1) = 0.2 + log(SS.Kss);% upper bound
8
9 % STEP 2.B: Choose algorithm :
10 % 'cheb_gal ','cheb_tmi ','cheb_mse '
11 % 'spl_tmi ','spl_dir '
12 % 'smol_tmi ','smol_dir '
13 % 'mono_mse '
14 POL.algo = 'cheb_gal ';
15
16 % STEP 2.C: Construct the grid
17 % with default settings
18 GRID = prepgrid (gin.nn ,gin.lb ,gin.ub ,POL.algo);

The function prepgrid will assign all the necessary properties to the
structure GRID, given the algorithm. The structure GRID includes the
initial grid xx, which is a m× n matrix, where every column is a state variable
(or dimension), and every row a unique gridpoint. The explanation of the grid
structure is found in Chapter 10 with an example in Section 10.4. It should be
emphasized that the structure GRID is specific for each algorithm. For
example, a spline uses equidistant nodes, while complete Chebyshev
polynomials use Chebyshev nodes. For polynomials the structure GRID also
includes the polynomial of the initial grid.

Step 3: Model function
The model function should calculate the Euler residuals, given the initial grid
and the policy function. The model is shown in Listing 3.3. The file takes the
structure with the parameters par, the grid structure GRID, and the policy
structure POL as input arguments. Note that the modeler does not have to
specify the policy function in the model file, because the function solve_proj
will assign the appropriate policy function (a spline or polynomial) to the
structure POL. More details on constructing a model file can be found in
Chapter 8.

First the model function retrieves the state variable capital in logs kt, which
is LK in the code. Since there is only one state variable, it is the first and only
column of the initial grid GRID.xx, as shown in Line 5. Next we evaluate the
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policy function given the state variable: ĉt = c (kt; θ). For all algorithms except
those using Time Iteration ('tmi') the policy function is evaluated by calling
the function get_pol_var as shown in Line 13 of Listing 3.3. This call takes
the policy function POL, the state variable in period t (LK) and the structure
GRID as inputs. For the solution method 'tmi' the solver directly sets the
policy function cit at all gridpoints i. These values are assigned to POL.Y Y as
shown in Line 18.

Next we calculate kt+1, given kt and ĉt as in equation (3.3) (Line 22), and
finally we need to calculate ĉt+1 = c (kt+1; θ). For all algorithms except those
with 'tmi' we evaluate the policy function using the function get_pol_var with
kt+1 as input argument (Line 29). For the solution method 'tmi' we need to
use the policy function of the old iteration θp. To ensure the old policy function
is used for next period’s choices the input argument spec_opt has to be set to
'old_pol' (Line 33 and 34). With ĉt, ĉt+1 and k̂t+1 known we can compute
the vector of Euler residuals as in (3.4) (Lines 38, 41, and 44).

Listing 3.3: Model function main_det_bm_proj
1 %% Deterministic B-M model file , or residual function :
2 function [RES] = det_bm_res (par ,GRID ,POL)
3
4 % Initial grid is stored in GRID.xx:
5 LK = GRID.xx;%log(K_t)
6
7 % Evaluate the policy function log(C):
8 if ~( strcmp (POL.algo ,'spl_tmi ') || ...
9 strcmp (POL.algo ,'smol_tmi ') || ...
10 strcmp (POL.algo ,'cheb_tmi '))
11
12 % standard : log(C) from policy function
13 LC = get_pol_var (POL ,LK ,GRID);
14
15 else
16 %tmi: solver directly sets log(C)
17 % at grid points
18 LC = POL.YY;
19 end
20
21 % Capital in next period (log):
22 LK_n = log( exp(par.alpha*LK) - exp(LC) );
23
24 % log(C_t +1) from policy function , given log(K_t +1):
25 if ~( strcmp (POL.algo ,'spl_tmi ') || ...
26 strcmp (POL.algo ,'smol_tmi ') || ...
27 strcmp (POL.algo ,'cheb_tmi '))
28
29 LC_n = get_pol_var (POL ,LK_n ,GRID);
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30
31 else% for 'tmi ':
32 % use old policy function
33 spec_opt_next = 'old_pol ';
34 LC_n = get_pol_var (POL ,LK_n ,GRID ,[], spec_opt_next );
35 end
36
37 % log(RR_t +1): marginal prod. of capital (logs)
38 LR_n = log(par.alpha) + (par.alpha -1)*LK_n;
39
40 % RHS of Euler equation :
41 RHS = par.beta * exp(-LC_n) .* exp(LR_n);
42
43 % Euler residual ( scaled by C^-1):
44 RES = exp(LC).* RHS - 1;
45
46 end

Finally, we need to create a function handle to the model function, which
takes the structure POL as input argument:

Listing 3.4: Create function handle
1 %% STEP 3: Handle for objective function
2 % (ie. the model file)
3 fun_res = @( POL) det_bm_res (par ,GRID ,POL);

This function handle is used as input for the solver solve_proj. The function
solve_proj will assign the policy function to the structure POL.

Step 4: Initial guess
The initial guess Y 0 for the policy function should give the value of the policy
variable at the initial grid. This initial guess is an input argument for the solver
solve_proj. For this simple model all algorithms will converge to the correct
solution from a relatively poor initial guess. As the initial guess we use steady
state consumption plus a small linear term in capital:

1 %% STEP 4: Initial guess policy function of log(c)
2 % steady state consumption + small linear term in [

log(K)-log(Kss)]:
3
4 Y0 = log(SS.Css) + 0.01*( GRID.xx -log(SS.Kss));

For more complex models one could use the perturbation solution as initial
guess. Initial guesses are discussed in more detail in Section 4.6.
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Step 5: Solve the model
To solve the model the function solve_proj is called. It takes as inputs the grid
structure GRID, the policy structure POL, the function handle to the residual
function fun_res, and the initial guess Y 0.

1 %%% STEP 5: Solve the model
2 POL = solve_proj (GRID ,POL ,fun_res ,Y0);
3 clear Y0;

The structure POL at this points only needs to contains the algorithm in the
field POL.algo. The function solve_proj will assign the appropriate policy
function (spline or polynomial) to the structure POL. For the polynomial
algorithms this will be the coefficients in the field POL.theta. For the spline
algorithms the policy function is assigned to the field POL.pp_y. The spline
pp_y is constructed with Matlab’s griddedInterpolant.

Step 6: Evaluate the solution
To evaluate the solution we call the function get_pol_var with inputs POL,
the state variables, and the structure GRID. In the example file we evaluate
the policy at the initial grid:

1 %% STEP 6: Evaluate policy function :
2 LK = GRID.xx; % = initial grid
3 LC = get_pol_var (POL ,LK ,GRID);

In Section 4.8 we give an example of a simulation where get_pol_var is used
to evaluate the policy function.

In our example we also plot the policy function. In addition we plot the error,
which is the difference between the numerical solution ĉ (kt; θ) and analytical
solution c (kt). The maximum absolute errors are small, and range between the
order 10−7 to 10−13 with the default settings. Smaller errors can be achieved
by changing the stopping criteria as explained in Section 4.7.

4. Detailed Procedure
In this Chapter we discuss the procedure to solve a model in more detail. We
use the example of a standard RBC model with stochastic shocks in Total
Factor Productivity, which we call the ‘Standard RBC example’. We first
briefly describe the model in Section 4.1. The main program is the script
main_stnd_rbc_proj in the folder ‘PROMES_v05.0.0/Examples’. That script
solves the model, and simulates time series. All model specific function are
found in the subfolder ‘STND_RBC_mod’. Each step in the process is
described in more detail in Sections 4.3 to 4.8.
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4.1 Standard RBC model
The model consists of two state variables, capital Kt and Total Factor
Productivity (TFP) Zt. Capital is determined endogenously, while TFP
follows a stochastic process. We choose consumption Ct as policy variable,
which we approximate as a function of the state variables. The model is
captured by four equations21:

Ct +Kt+1 = ZtK
α
t H

1−α
t + (1− δ)Kt (4.1)

χH
1
η

t = C−νt Zt (1− α)Kα
t H
−α
t (4.2)

C−νt = βEt
{
C−νt+1

[
Zt+1αK

α−1
t+1 H

1−α
t+1 + 1− δ

]}
(4.3)

zt = ρzzt−1 + σzεt (4.4)

where smaller cases indicate logs, ie. zt = log (Zt). The autocorrelation
coefficient is ρz , and the shocks are scaled by σz. The shocks are standard
normally distributed, ie. εt ∼ N (0, 1).

4.2 Step 0: Matlab Settings
The only function of Step 0 is to prepare Matlab for running the script. It
includes clearing all variables in the workspace, and adding folders to the
searchpath.

Clearing and set breakpoint

When using a script you typically want to clear all variables from the workspace
using clearvars, which is not needed if a function is used. In the initial block
of our program we close all figures (close all), clear the command prompt
(clc), and ensure that we can access all local variables at the time an error
occurs by setting dbstop if error.

Adding folders

Next, we need to add the folders ‘PROMES_v05.0.0’, and its subfolders
‘grid_subfun’, and ‘smolyak_subfun’ to the searchpath. In addition we add
the folder ‘TOOLS’ and its subfolders ‘CSD_v02.4.0’ and
‘CSD_v02.4.0\subfun’ to the searchpath. We need the folder ‘TOOLS’ for the
calculation of the Gauss-Hermite nodes with the function hernodes. We need
the ‘CSD_v02.4.0’ folders to obtain the perturbation solution with the CSD
toolbox.

Our model specific files are stored in the folder
‘PROMES_v05.0.0\Examples\STND_RBC_mod’. These files include the

21See Chapter 13 for details.
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model function STND_RBC_proj. The other relevant subfunctions of this model
are stnd_rbc_ss which calculates the steady state, stnd_rbc_aux which
calculates auxiliary variables of the model, and stnd_rbc_sim which is used to
run simulations.

In our main program file main_stnd_rbc_proj Step 0 is:

1 % Solves standard RBC model with projection
2 % for a single variable policy function
3
4 %% STEP 0: Matlab settings
5 clearvars ;
6 close all; %close all figures
7 clc; %clear command prompt
8 dbstop if error;%acces workspace if error
9
10 restoredefaultpath ;
11 clear RESTOREDEFAULTPATH_EXECUTED ;
12
13 % Add relevant folders of Promes toolbox :
14 addpath ('.. ');
15 addpath ('..\ grid_subfun ');
16 addpath ('..\ smolyak_subfun ');
17
18 % Add relevant folders of TOOLS
19 addpath ('..\..\ TOOLS ');
20 addpath ('..\..\ TOOLS\ CSD_v02 .4.0 ');
21 addpath ('..\..\ TOOLS\ CSD_v02 .4.0\ subfun ');

4.3 Step 1: Initial Block
The Initial Block consists of two parts:

A. Set parameters

B. Solve steady state

In our function main_stnd_rbc_proj we store all parameters in a structure
called par. The steady state values are stored in a structure SS. The structure
SS is used for the determination of the lower and upper bound of the capital
stock, the initialization of the policy function, and the function that plots the
policy function.

Step 1.A: Set parameters
We assign all the parameters of the model to the structure par. Using this
structure as input argument of a function gives access to all parameters of the
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model. In our example we will use Gauss-Hermite quadrature (see the chapter
on Numerical Integration in Judd, 1998), and we add the Gauss-Hermite nodes
(par.her.xi) and its weights (par.her.wi) to the parameters.

In our example script main_stnd_rbc_proj Step 1.A is:

1 % STEP 1.A: Set parameters of the model
2 par.alpha = 0.36; % capital share income
3 par.beta = 0.985; % discount factor
4 par.delta = 0.025; % deprec . of capital
5 par.nu = 2; % risk aversion
6 par.eta = 4; % el. of lab. supply
7 par.chi = 1; % scalar disut. work
8
9 par.rho_z = 0.95; % autocorr . coeff. TFP
10 par. sigma_z = 0.01; % standard dev. shocks in TFP
11
12 par.her. gh_nod = 5;% number of Gauss - Hermite nodes
13 [par.her.xi ,par.her.wi] = hernodes (par.her. gh_nod );
14 % xi are roots , wi are weights

Step 1.B: Solve steady state
We want a good approximation of the policy function on a particular interval
of the state variables, which is usually centered around the steady state. For
this reason we compute the steady state. For our Standard RBC example we
created the function stnd_rbc_ss that calculates the steady state analytically
(see Section 13.3). This function takes the parameters and the steady state Total
Factor Productivity (Zss = 1) as inputs. In the script main_stnd_rbc_proj our
call to the steady state function is:

1 %% STEP 1.B: Solve steady state
2 SS = stnd_rbc_ss (par ,1);
3 % the 1 is steady state TFP

4.4 Step 2: Construct the grid
The construction of the grid is done using the following substeps:

A. Set basic grid parameters

B. Set algorithm & algorithm specific parameters

C. Construct grid

The grid parameters, and also the grid itself will be stored in the structure
GRID. In Step 2.A three basic parameters of the grid need to be set. The
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algorithm has to be assigned to the structure POL in Step 2.B, before
constructing the grid. In Step 2.B algorithm specific grid parameters can be
set, such as the order of the polynomial or the number of nodes.

These inputs are fed into the function prepgrid (Step 2.C). This function
constructs the structure GRID, and assigns all the required fields of the
selected algorithm. More details on how the grid is constructed can be found
in Chapter 10. That chapter also includes an example code, grid_example,
that demonstrates the construction of a grid.

Step 2.A: Set basic grid parameters
The prepgrid function has the following inputs:

• nn: number of variables in the grid (scalar);

• lb: vector of lower bounds in each dimension (1 x nn vector);

• ub: vector of upper bounds in each dimension (1 x nn vector);

• algo: the algorithm, which is discussed in Step 2.B.

• algo_spec (optional): algorithm specific grid parameters

The first four inputs are necessary to create the structure GRID. In our model
we have two state variables, capital (K) and Total Factor Productivity (Z). For
the construction of the grid we use the logarithm of both variables. We set the
lower and upper bound for each state variable symmetrically around this steady
state. For capital we use the steady state in logs ±0.1275, and for Total Factor
Productivity we use 2.6 standard deviations around steady state.

1 %% STEP 2: Construct the grid
2 %Step 2.A: Initialize the grid
3 gin.nn = 2;% number of state variables (K,Z)
4
5 %Set lower and upper bound for capital :
6 gin. lk_dev = 0.1275; % deviation from kss
7 gin.lb (1) = -gin. lk_dev + log(SS.kss);
8 gin.ub (1) = gin. lk_dev + log(SS.kss);
9
10 % Set lower and upper bound for log(z)
11 gin. lz_fac = 2.6;%in multiple of stnd. deviation
12 gin.lb (2) = -gin. lz_fac *...
13 sqrt( par. sigma_z ^2 / (1- par.rho_z ^2) );
14 gin.ub (2) = gin. lz_fac *...
15 sqrt( par. sigma_z ^2 / (1- par.rho_z ^2) );
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Step 2.B: Set algorithm
The algorithm algo is set as a field in the structure POL. One can choose
from eight algorithms to approximate the policy function. The algorithms are
discussed in more detail in Chapter 7. The eight algorithms are based on four
types of basis functions. These are splines, complete Chebyshev polynomials,
Smolyak polynomials, and complete polynomials based on monomials.

• Splines: splines are used with the collocation projection condition. The
objective is to set the residuals at each gridpoint to zero. The spline is
defined by Matlab’s griddedInterpolant. The interpolation method
can be specified in the field POL.meth_spl. The two available solution
methods are Time Iteration ('spl_tmi') and Direct Computation
('spl_dir');

• Complete Chebyshev polynomials: three algorithms are available. The
first uses Galerkin’s method ('cheb_gal'), which sets the residuals
orthogonal to the polynomial terms. The second uses Time Iteration
('cheb_tmi') to solve the policy variable at the gridpoints, and fits a
spline to these points. The third uses Minimization of the Squared
Errors ('cheb_mse') to minimize the errors at the gridpoints;

• Smolyak polynomial: Smolyak’s algorithm constructs a sparse grid, and
sparse Chebyshev polynomial. The algorithm ensures that the number of
nodes and coefficients grows only polynomially in the number of state
variables, while the number of nodes grows exponentially for the other
methods. The two available solution methods are Time Iteration
('smol_tmi') and Direct Computation ('smol_dir');

• Monomial basis functions ('mono_mse'): the coefficients of a complete
polynomial are determined by Minimization of the Squared Errors of the
residual function at the gridpoints.

In general 'spl_tmi' is a very robust choice. For simple, well-behaved models
'cheb_gal' is a good alternative. For a large number of state variables '
smol_tmi' is advised. In Section 7 under Algorithms more details are discussed.

The input algo_spec of the function prepgrid can be used to set algorithm
specific grid parameters. These parameters are:

• qq (for all basis functions except Smolyak’s algorithm): number of nodes
in each dimension (1× nn vector). This parameter allows for asymmetric
grids with a different amount of gridpoints in each dimension;

• ord_vec (Chebyshev & monomials only): the order of the polynomial in
each dimension (1 × nn vector). This parameter allows for asymmetric
polynomials;

• mu_vec (Smolyak’s algorithm only): the accuracy of the approximation
in each dimension (1× nn vector). This parameter allows for asymmetric
grids and polynomials.
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Example Standard RBC model

In our example we set POL.algo to 'cheb_gal', but this can be set to any of
the other algorithms. In our example main_stnd_rbc_proj the code of Step
2.B is:

1 % STEP 2.B: Set algorithm :
2 POL.algo = 'cheb_gal ';

We set the following algorithm specific grid parameters:

1 % ( OPTIONAL ) Algorithm specific parameters
2 % CHEYBSHEV :
3 if strncmp (POL.algo ,'cheb ' ,4)
4 %order of polyn. in each dim.
5 algo_spec . ord_vec = 5* ones (1, gin.nn);
6 %# nodes in each dim .:
7 algo_spec .qq = POL. meth_spec . ord_vec +1;
8
9 % SPLINES :
10 elseif strncmp (POL.algo ,'spl ' ,3)
11 %# nodes in each dim .:
12 algo_spec .qq = 7* ones (1, gin.nn);
13
14 % SMOLYAK :
15 elseif strncmp (POL.algo ,'smol ' ,4)
16 % accuracy param. in each dim .:
17 algo_spec . mu_vec = 3* ones (1, gin.nn);
18
19 % MONOMIALS :
20 elseif strncmp (POL.algo ,'mono ' ,4)
21 %order of polyn. in each dim .:
22 algo_spec . ord_vec = 3* ones (1, gin.nn);
23 %# nodes in each dim .:
24 algo_spec .qq = POL. meth_spec . ord_vec +1;
25
26 else
27 error('Invalid algo ');
28 end

Step 2.C: Construct the grid
The construction of the grid is carried out by the function prepgrid, which
requires at least four inputs. This function and all its subfunctions are explained
in Chapter 10. Our call of the function prepgrid is:

1 % STEP 2.C: Construct the grid
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2 GRID = prepgrid (gin.nn ,gin.lb ,gin.ub ,POL.algo ,
algo_spec );

The function prepgrid will assign all the necessary fields to the structure
GRID. The most important of these is the initial grid GRID.xx, which is an
m× n matrix, where m is the total number of gridpoints, and n the number of
state variables. Each row is a unique gridpoint, and every column represents a
state variable. The first column GRID.xx (:, 1) contains capital in logs, and the
second GRID.xx (:, 2) Total Factor productivity in logs. For the polynomial
algorithms also the polynomial of the initial grid will be assigned to either
XX_poly (for monomials) or in scaled down variables to XX_poly_dw (for
Chebyshev and Smolyak algorithms).

It should be noted that the grid structure is specific to the algorithm. If
one changes the algorithm a new grid structure should be constructed with
prepgrid22.

4.5 Step 3: Model function and handle
Step 3 consists of two parts:

A. Program model function

B. Create handle to model function

The creation of the model function is the crucial step. The model function
should return a column vector with residuals as output. To solve the model
with the solver solve_proj a function handle of this model function has to be
created. This function handle should take the structure POL as input.

Step 3A: Program model function
The model function, which has to be programmed by the modeler, should
calculate the Euler residuals at each gridpoint, given the policy function. It
should be noted that the modeler does not have to specify the policy function.
The toolbox will assign the policy function to POL. The model file should at
least take the grid structure GRID, and the structure with the policy POL as
inputs. Other inputs are also allowed. In our example we use the structure
with the parameters par as additional input.

For the Standard RBC model the model function is STND_RBC_proj, which
is shown in Listing 4.1. This file is found in the subfolder ‘STND_RBC_mod’.
The output are the residuals of the Euler equation (4.3), which are computed
for a given policy function and initial grid. The code is explained further below.

22To be more more precise, the grid is specific to the basis function, which is either a spline,
a Chebyshev polynomial, a Smolyak polynomial, or based on monomials.
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Listing 4.1: Model function STND_RBC_proj
1 function [RES] = STND_RBC_proj (par ,GRID ,POL)
2 % Calculates Euler residuals for standard RBC model
3
4 LK = GRID.xx (: ,1);%first state variable , log(K_t)
5 LZ = GRID.xx (: ,2);% second state variable , log(Z_t)
6
7 % policy variable , log(C_t):
8 if ~( strcmp (POL.algo ,'spl_tmi ') || ...
9 strcmp (POL.algo ,'smol_tmi ') ||...
10 strcmp (POL.algo ,'cheb_tmi ') )
11
12 %use initial grid for polynomials
13 % (or ignore for spl_dir )
14 spec_opt = 'ini_grid ';
15 LC = get_pol_var (POL ,[LK ,LZ],GRID ,[], spec_opt );
16
17 else%for 'spl_tmi ','cheb_tmi ','smol_tmi ':
18
19 %LC is set directly for Time Iteration
20 LC = POL.YY;
21 end
22
23 % Capital in next period :
24 LK_n = stnd_rbc_aux (par ,LK ,LZ ,LC);
25
26
27 if strcmp (POL.algo ,'spl_tmi ') || ...
28 strcmp (POL.algo ,'smol_tmi ') ||...
29 strcmp (POL.algo ,'cheb_tmi ')
30
31 % use old policy function in t+1
32 % for Time Iteration
33 % ( pp_y_old or theta_old )
34 spec_opt_next = 'old_pol ';
35 else
36 spec_opt_next = [];
37 end
38
39 % Allocate empty matrix for RHS of Euler equation :
40 rhs_l = NaN(size(LK ,1) ,par.her. gh_nod );
41
42 for ll = 1: par.her. gh_nod
43 % Shock to TFP (using Gauss - Hermite nodes):
44 EPS_n = sqrt (2)*par.her.xi(ll);
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45
46 %log(Z_t +1):
47 LZ_n = par.rho_z*LZ + par. sigma_z *EPS_n;
48
49 %log(C_t +1)
50 LC_n = get_pol_var (POL ,[LK_n ,LZ_n],GRID ,[],

spec_opt_next );
51
52 %log(MPK_t +1) ( marginal prod. of capital )
53 [~, LMPK_n ] = stnd_rbc_aux (par ,LK_n ,LZ_n ,LC_n);
54
55 % RHS of Euler equation ,
56 % weighted by Gauss - Hermite weights
57 rhs_l (:,ll) = par.her.wi(ll)/sqrt(pi)*par.beta*...
58 exp(-par.nu*LC_n) .* ...
59 (exp( LMPK_n )+1 - par.delta);
60 end
61
62 %Right hand side of Euler equation :
63 RHS = sum(rhs_l ,2);
64
65 % Euler residuals ( scaled by C^-nu):
66 RES = RHS ./ exp(-par.nu *LC) - 1;
67
68 end

Evaluating the policy function
In our code the policy and state variables are all defined in logs. The policy
function is ĉ = ĉ (k, z; θ), where small cases indicate logs. For simplicity we
ignore the log transformation, and write Ĉ (K,Z; θ) = exp [ĉ (k, z; θ)].

To evaluate the policy function we differentiate between the solution method
Time Iteration ('tmi') and the other solution methods (see Chapter 8 for more
details). In period t the policy variable is:

Ĉt =
{
Ĉjt if sol. meth. is ‘tmi’
Ĉ (Kt, Zt; θ) else

(4.5)

where Ĉjt is the solution at the initial grid GRID.xx. These values are assigned
to POL.Y Y by the solve_proj, and can be evaluated directly (Line 20).

For the other solution methods we explicitly evaluate the policy using
GRID.xx, where the column vectors are capital and productivity (in logs) as
shown in Line 4 and 5. For the algorithms using polynomials we save
computation time by evaluating the period t policy function with the
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polynomial of the initial grid. This is done by setting spec_opt = 'ini_grid'
in Line 14. This option is ignored for the algorithm 'spl_dir'.

To evaluate the policy function in period t+ 1 we use:

Ĉt+1 =
{
Ĉ
(
Kt+1, Zt+1; θj−1) if sol. meth. is ‘tmi’

Ĉ (Kt+1, Zt+1; θ) else
(4.6)

For Time Iteration we use the policy function of the previous iteration θj−1,
which we achieve by setting spec_opt_next = 'old_pol' when calling
get_pol_var, as shown in Lines 34 and 50. For the other solution methods
the field spec_opt_next' is left empty (Line 36).

In what follows we ignore the differences in (4.5) and (4.6), and use the more
general notation Ĉt = Ĉ

(
Kt, Zt; θj

)
and Ĉt+1 = Ĉ

(
Kt+1, Zt+1; θj−1).

Auxiliary variables
In the model function we need to calculate the capital stock in the next period
Kt+1, and the marginal productivity of capital MPKt = αKα−1

t H1−α
t , for a

given state [Kt, Zt] and consumption Ct. To obtain these variables we compute
the labor supply. The labor supplyH is an explicit function of the state variables
K and Z, and consumption C:

Ht =
[

1− α
χ

C−νt ZtK
α
t

] η
1+αη

= H (Kt, Zt, Ct) (4.7)

After substituting out Ht the capital stock in t+ 1 is a function of Kt, Zt and
Ct as well:

Kt+1 = ZtK
α
t H (Kt, Zt, Ct)1−α + (1− δ)Kt − Ct

= K (Kt, Zt, Ct) (4.8)

The function stnd_rbc_aux computes these three variables Ht, MPKt and
Kt+1 (in logs):

1 function [LK_n ,LMPK ,LH] = stnd_rbc_aux (par ,LK ,LZ ,LC)
2 % Get log(K_t +1) , log(MPK_t) and log(H_t)
3 % for standard RBC model
4
5 %Hours worked (in logs):
6 LH = par.eta /(1+ par.alpha*par.eta) * ...
7 ( -log(par.chi) -par.nu*LC + ...
8 log (1- par.alpha) + LZ + par.alpha*LK );
9
10 % Marginal productivity of capital (in logs):
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11 LMPK = log(par.alpha) + LZ + (par.alpha -1) *(LK -LH);
12
13 % Capital in next period (in logs):
14 LK_n = log(exp(LZ + par.alpha*LK + (1- par.alpha)*LH)...
15 - exp(LC) + (1- par.delta)*exp(LK));
16
17 end

This function is called twice in the model function. The first time to calculate
Kt+1 in Line 24 of Listing 4.1, and a second time to calculate the marginal
productivity in t+ 1 in Line 53.

Formally the approximation of the labor supply and capital stock in the next
period are:

Ĥt = H
(
Kt, Zt, Ĉ

(
Kt, Zt; θj

))
(4.9)

K̂t+1 = K
(
Kt, Zt, Ĉ

(
Kt, Zt; θj

))
(4.10)

Expected value and Gauss-Hermite quadrature
Next we need to evaluate the right-hand side of the Euler equation (4.3), which
consists of time t + 1 variables. Using (4.7) we define a function G for the
right-hand side of the Euler equation:

G (Kt+1, Zt+1, Ct+1) = βC−νt+1

[
Zt+1αK

α−1
t+1 H (Kt+1, Zt+1, Ct+1)1−α + 1− δ

]
The approximation of G is:

Φ̂
(
Kt+1, Zt+1; θj−1) = G

(
Kt+1, Zt+1, Ĉ

(
Kt+1, Zt+1; θj−1)) (4.11)

The right-hand side of the Euler equation (4.3) includes an expectation
operator. We use Gauss-Hermite quadrature to approximate the expected
value. Assume we have a function f (zt+1, x) and zt+1 is governed by (4.4)
with standard normally distributed shocks εt+1. The Gauss-Hermite
approximation is then:

Etf (zt+1, x) ≈
L∑
l=1

ωl√
π
f
(
ρzzt + σz

√
2ζl, x

)
(4.12)

where ζl are the Gauss-Hermite nodes, and ωl are the Gauss-Hermite weights
(see Section 13.2 for the derivation).

These nodes and weights were set in Step 1A of our code (see Section 4.3)
as par.her.xi(ll) and par.her.wi(ll), respectively.
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We use the Gauss-Hermite formula (4.12), and capital in t + 1 (4.10) to
compute the approximation of the expected value of (4.11):

Ψ (Kt, Zt; θ) ≈ Et
{

Φ̂
(
K
(
Kt, Zt, Ĉ

(
Kt, Zt; θj

))
, Zt+1; θj−1

)}
=

L∑
l=1

ωl√
π

Φ̂
(
K
(
Kt, Zt, Ĉ

(
Kt, Zt; θj

))
, exp

(
ρz log (Zt) + σz

√
2ζl
)

; θj−1
)

(4.13)

In our code Listing 4.1 the Gauss-Hermite quadrature (4.13) is calculated
as follows. We loop over the shocks and weights l in Line 42 till 60. In Line 63
we sum over the nodes and weights to obtain the right-hand-side of the Euler
equation.

Euler residuals
After substituting (4.13) for the right-hand side of the Euler equation (4.3) the
residuals R are a function that depends on Kt, Zt and the parameters θ:

R (Kt, Zt; θ) = Ψ (Kt, Zt; θ) /Ĉ
(
Kt, Zt; θj

)−ν − 1 (4.14)

We have divided both sides of the Euler equation by Ĉ−νt to ensure that
the approximation is good over the whole interval. Without this scaling the
normalized Euler residuals will be larger for high levels of consumption. This
is due to the risk aversion, which makes the absolute errors in equation (4.3)
smaller for high levels of consumption.

Step 3B: Create function handle
The function handle of the model file needs to be passed as the argument
fun_res to the function solve_proj, which solves the model (see Step 5 in
Section 4.7). In our example we create the handle with:

1 %% STEP 3: Handle for objective function
2 % (ie. the model file)
3 fun_res = @( POL) STND_RBC_proj (par ,GRID ,POL);

It should be noted that after a function handle has been created any changes
to the inputs arguments (other than the variable POL) will not change the
function handle when it is called. For example in our program we created the
function handle fun_res. When we change par.alpha to par.alpha = 0.5
after the handle has been created then the function handle fun_res will still
use the original value par.alpha = 0.36.
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4.6 Step 4: Initial guess for the policy function
The initial guess for the policy function Y 0 should be the policy variable on the
initial grid. The values Y 0 are an input for the solver solve_proj:

• Y 0: the initial value of the policy variable on the initial grid in GRID.xx.

Good starting values are valuable for two reasons. The first is that most
algorithms are not guaranteed to find a solution, although Time Iteration
should converge to the solution when the shape of the policy function is
preserved sufficiently23. The second reason is that good starting values will
significantly reduce computation time.

There are four methods for the initialization of a policy function which
usually ensure convergence:

• Perturbation methods;

• Gradually changing parameters;

• Gradually increasing the grid size;

• Increasing the order of the approximation.

Perturbation solution

For most models an initialization of the policy function using a linear
perturbation solution will be sufficient for convergence. Perturbation solutions
can be obtained easily as a wide range of software packages are available. In
addition the computation time is relatively short, so perturbation methods are
the natural choice for an initial guess. It should be noted that models
featuring an attracting limit cycle can also be solved with perturbation
methods (Galizia, 2018)24.

Gradually changing parameters

For some models we can easily obtain the solution by shutting a particular
mechanism down, for example by setting a parameter to 0 or 1. A loop has to
be added that gradually changes the parameter value.

Gradually increasing the size of the grid

It might be difficult to get a solution when the size of the grid is large. We could
start with a small grid around the steady state such that a solution is found.
The grid size can then be increased using a loop. Note that for Chebyshev
polynomials (including Smolyak’s algorithm) changing the boundaries affects
the coefficients POL.theta, due to the scaling down of the variables to [−1, 1].

23See Judd (1998), page 554 and 555).
24The CSD toolbox in the folder ‘TOOLS’ can solve saddle cycle models. The essential part

is the code InvSubGen written by Dana Galizia.
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Increasing the accuracy of the approximation

We can increase the number of nodes or the order of polynomials in a multi-step
approach. This is especially useful for the algorithms that rely on Chebyshev
polynomials, since the Chebyshev basis functions are orthogonal to each other.
For example, Fernández-Villaverde, Rubio-Ramírez, and Schorfheide (2016) use
this approach.

Example Standard RBC model

In our example function main_stnd_rbc_proj we initialize the policy function
using the first order perturbation solution. The (log) linear perturbation
solution is:

ĉ (kt, zt) = c+Hy,k

(
kt − k

)
+Hy,z (zt − z)

The coefficient Hy,k and Hy,z are the first and second entry in PERT.Hy_w
of our code. The initial guess for the policy function is:

1 % Initial policy function (for given grid):
2 Y0 = log(SS.css) + ...
3 PERT.Hy_w (1 ,1) *( GRID.xx (: ,1) -log(SS.kss)) + ...
4 PERT.Hy_w (1 ,2) *( GRID.xx (: ,2) -log(SS.zss));

We have included two options to determine the coefficient in PERT.Hy_w,
which are chosen by setting par.opt.get_pert_sol to either 0 or 1.

If par.opt.get_pert_sol == 0 the initial guess is based on a poor
estimation of the perturbation solution with Hy_w = [0.25, 0.25], while the
first order perturbation solution is Hy_w = [0.3456, 0.3525]. In our code:

1 if par.opt. get_pert_sol == 0
2 %Poor estimation :
3 PERT.Hy_w = [0.25 ,0.25];

If par.opt.get_pert_sol == 1 the program obtains the coefficients Hy,k

and Hy,z by solving the model with perturbation techniques. In our code we
obtain the first order perturbation solution using the CSD toolbox, which is
included in the folder ‘TOOLS’. One could calculate these coefficients with other
software packages, such as Dynare. The model file for the perturbation solution
is the function STND_RBC_pert in the folder ‘Examples\STND_RBC_mod’.

When this option is chosen the code executes:

1 else% Solve model with perturbation
2 % Symbolic model file:
3 MOD = STND_RBC_pert ;
4
5 % Vector of parameters :
6 MOD. par_val = [par.alpha ,par.beta ,...
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7 par.delta ,par.eta ,par.nu ,par.chi ];
8
9 % Vector of steady states :
10 MOD. SS_vec = [log(SS.kss),log(SS.zss),log(SS.css)];
11
12 % Get solution :
13 PERT = pert_ana_csd (MOD ,par.rho_z ,1, par. sigma_z );
14
15 clear MOD;
16 end

4.7 Step 5: Solving the policy function
The model is solved in Step 5. The function solve_proj minimizes the Euler
residuals, and will assign the optimal policy function to the structure POL. The
function requires the inputs GRID, POL, the function handle of the model file
fun_res , and the initial guess for the policy function Y 0. In our example Step
5 is:

1 %% STEP 5: Solve the model
2 POL = solve_proj (GRID ,POL ,fun_res ,Y0);

The function solve_proj internally assigns the policy function to POL.
This policy function will be a spline or a polynomial depending on the algorithm.
It uses an iterative scheme to find the policy function that minimizes the Euler
residuals.

For all solution methods except Time Iteration we solve the objective
function directly with either fsolve or lsqnonlin of the Optimization
Toolbox. For Time Iteration an updating technique is used that is especially
useful for recursive dynamic problems. More details on the algorithms can be
found in Chapter 7.

Optional: stopping criteria for solvers
All algorithms use either fsolve or lsqnonlin. The toolbox uses the default
stopping criteria of these solvers, but they can be adjusted by setting the
input options of solve_proj as shown below. When the solution method
Time Iteration is used one can additionally adjust the tolerances res_tol and
diff_tol (see Chapter 9 for more details). In our example code one can
choose the default accuracy by setting par.opt_acc =, or choose a higher
accuracy by setting par.opt_acc =. The latter will reproduce the results in
Table 4.1 in Section 4.9.

1 % ( OPTIONAL ) Set stopping criteria :
2 par. options = [];
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3 par. opt_acc = 1;%0: default accuracy ; 1: higher
accuracy

4 if par. opt_acc == 1
5 if strcmp (POL.algo ,'spl_tmi ') ||...
6 strcmp (POL.algo ,'cheb_tmi ') || ...
7 strcmp (POL.algo ,'smol_tmi ')
8 % For Time Iteration :
9 par. tmi_tol = 1e -12;
10 POL. res_tol = par. tmi_tol ;
11 POL. diff_tol = par. tmi_tol ;
12 else
13 par.tol = 1e -12;
14 par. options . OptimalityTolerance = par.tol;
15 par. options . FunctionTolerance = par.tol;
16 par. options . StepTolerance = par.tol;
17 end
18 end

4.8 Step 6: Evaluating the policy function
The policy function can be evaluated with the function get_pol_var, which we
also used in the model function in Step 4. The input variables are the structure
GRID, the policy function POL, and an m×n matrix with the state variables
(xx). Each of the n column represents a state variable, and is m is the number
of data points. The output is the policy variable in a column vector (m× 1).

In the script main_stnd_rbc_proj we plot the policy function using the
model specific plotting function plot_pol_stnd_rbc. The graphs show that
the approximated policy function is close to log linear, also outside the grid.

We also evaluate the policy function in a stochastic simulation. The
simulation is carried out by the function stnd_rbc_sim. We call this function
in the following block:

1 %% Step 6: Evaluate policy function (in simulation )
2 opt_sim .TT = 1500; % # periods in simulation
3 opt_sim .T_ini = 10; % ini. periods at steady state
4 opt_sim .rws = 2; % number of simulated series
5
6 [SIM] = stnd_rbc_sim (par ,SS ,POL ,GRID , opt_sim );

In this code opt_sim is a structure which sets the number of periods in the
simulation (TT ), the number of series to simulate (rws), and also the initial
number of periods at the deterministic steady state (T_ini).

The function stnd_rbc_sim loops over time, and evaluates the policy
function in each period:
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Listing 4.2: Simulation in main_stnd_rbc_proj
1 % loop over time :
2 for it = T_ini +1: T_ini+TT
3
4 % Calculate TFP (add shock)
5 LZ(:,it) = par.rho_z * LZ(:,it -1) + par. sigma_z *

epsilon (:,it);
6
7 % Calculate policy variable :
8 LC(:,it) = get_pol_var (POL ,[LK(:,it),LZ(:,it)],GRID)

;
9
10 % Calculate K_t +1 and H_t:
11 [LK(:,it +1) ,~,LH(:,it)] = stnd_rbc_aux (par ,LK(:,it)

,LZ(:,it),LC(:,it));
12
13 end

The loop first calculates Total Factor Productivity (LZ), which takes
normally distributed shocks epsilon as input. Next it evaluates the policy
function for consumption (LC) given the state variables LK(:, it) and
LZ(:, it). Finally it computes capital in the next period LK(:, it + 1), and the
auxiliary variable hours worked LH(:, it) using the function stnd_rbc_aux,
which we discussed in Section 4.5.

4.9 Performance
In this section we review the computation time and accuracy for 5 algorithms.
We review splines with Direct Computation ('spl_dir') and Time Iteration
('spl_tmi'), Chebyshev with Galerkin’s method ('cheb_gal'), Smolyak’s
algorithm with Direct Computation ('smol_dir'), and monomials with
minimization of squared errors ('mono_mse).

The computation time is the time needed to solve the model, excluding the
computation of the errors. The errors are the normalized Euler Equation Errors
calculated in consumption equivalent unit as in Judd (1992):

EEE (Kt, Zt; θ) =Ψ (Kt, Zt; θ)−1/ν

Ĉ (Kt, Zt; θ)
− 1 (4.15)

where Ψ (Kt, Zt; θ) is defined in equation 4.13. We compute the errors on the
initial grid (on grid), and on a grid with 1,000 equidistant nodes in each
dimension (off grid). When on grid and off grid errors are of similar
magnitude for splines and Smolyak algorithms then the accuracy can be
improved by using tighter stopping criteria (see Section 4.7). For complete
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polynomials it might not be possible to achieve higher accuracy by tighter
stopping criteria, because complete polynomials are overidentified as the
number of gridpoints is higher than the number of parameters25.

The results are shown in Table 4.1. It should first be noted that computation
times are low. For all basis functions a maximum (off grid) error of 10−6 can
obtained in less than 0.05 seconds. In fact, projection can be faster and more
accurate than perturbation when we solve a model only once.

A Spline with Direct Computation ('spl_dir') is fast and accurate for a low
number of gridpoints, but computation times increase rapidly with the number
of nodes. The reason is that the algorithm has to numerically approximate an
m×m Jacobian matrix, for m total gridpoints. Due to the high non-linearity26

of the system no solution is found for 25 and 50 nodes in each dimension. For
larger grids Time Iteration ('spl_tmi') is faster. With splines the error decay
up to 50 nodes27 is O

(
q−4), where q is the number of nodes in each dimension.

This is an accordance with De Boor (1978).
The Chebyshev polynomial with Galerkin’s method ('cheb_gal') is both

fast and accurate. An maximum error of −7.1 (in log10) is achieved in 0.04
seconds, and an error of −13 (in log10) in less than 0.3 seconds. Smolyak’s
algorithm with Direct Computation ('smol_dir') is also fast and accurate.
To achieve a certain accuracy level Smolyak’s algorithm is slower than a
Chebyshev polynomial with Galerkin’s method. The main reason is that
Smolyak’s polynomial is less effective in reducing errors. For example with
µ = 4 the polynomial is of degree 16 and there are 65 gridpoints, which
achieves an error of −12.8 (in log10). For a complete Chebyshev polynomial of
degree 7 we need 64 gridpoints, and the error is -13.4 in log10.

Monomial basis functions with minimization of squared errors
('mono_mse') is faster and more accurate than Chebyshev polynomials up to
order 4. For higher order approximations monomials are inaccurate. In fact,
the error increases with the order of the approximation above order 4. This is
due to the collinearity of monomials, and scaling issues as discussed in Section
7.3. We increased the number of nodes for the order 4 and 5 monomials, which
has little effect on the accuracy. This will be the case in general, also for
complete Chebyshev polynomials as Fernández-Villaverde, Rubio-Ramírez,
and Schorfheide (2016) confirm.

We plot the errors as a function of the capital stock in Figure 4.1. The
figure shows that the errors within the boundaries are relatively constant for
projection methods. With perturbation methods errors increase further from
the steady state.

25The exception are policy functions with one state variable and the number of nodes set
to the order plus 1. These are exactly identified.

26Changing the solution at one gridpoint will change the spline. This will affect the solution
at other gridpoints in a non-linear way.

27The error decay will be lower when the inaccuracy of the solution at the gridpoints comes
into play.
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Table 4.1: Performance for Standard RBC model

Spline, Direct Computation
Nodes per dim. 3 5 7 10 15
Total Nodes 9 25 49 100 225
Comp. time 0.05 0.06 0.12 0.27 0.73
EEE, off grid -6.3 -8.9 -9.5 -10.1 -10.8
EEE, on grid -15.4 -15.4 -14.9 -14.5 -14.1

Spline, Time Iteration
Nodes per dim. 3 5 7 10 15 25 50
Total Nodes 9 25 49 100 225 625 2500
Comp. time 0.81 0.85 0.90 0.99 1.21 2.05 5.00
EEE, off grid -6.3 -8.9 -9.5 -10.1 -10.8 -11.7 -12.3
EEE, on grid -12.3 -12.3 -12.3 -12.3 -12.3 -12.3 -12.3

Complete Chebyshev poly., Galerkin
Order 1 2 3 4 5 6 7
Total Nodes 4 9 16 25 36 49 64
Comp. time 0.04 0.02 0.04 0.07 0.11 0.18 0.28
EEE, off grid -3.4 -5.6 -7.1 -8.8 -10.8 -12.0 -13.4
EEE, on grid -3.9 -6.0 -7.4 -9.2 -10.9 -12.3 -13.7

Smolyak, Direct Computation
Accuracy (µ) 1 2 3 4
Total Nodes 5 13 29 65
Comp. time 0.04 0.04 0.15 0.64
EEE, off grid -3.7 -7.5 -11.1 -12.8
EEE, on grid -15.6 -15.5 -15.1 -12.8

Monomials, min. of squared errors
Order 1 2 3 4 4 5 5
Total Nodes 4 9 16 25 121 36 121
Comp. time 0.04 0.02 0.02 0.05 0.06 0.06 0.07
EEE, off grid -3.6 -5.9 -7.2 -9.0 -8.7 -8.4 -8.3
EEE, on grid -3.6 -5.9 -7.2 -9.0 -8.7 -8.4 -8.3

Perturbation
Order 1 2 3
Comp. time 0.15 0.18 0.30
EEE (off grid) -3.32 -4.44 -6.38
Computation times in seconds. Errors are the maximum Euler Equation
Errors, in absolute values and log10. ‘Off grid’ refers to the equidistant
grid with 1 million nodes, while ‘on grid’ refers to the initial grid used to
solve the model.

4.10 Sensitivity Gauss-Hermite quadrature
To investigate the effect of the number of Gauss-Hermite nodes on the policy
function we plot the policy function for different number of Gauss-Hermite
nodes. In Figure 4.2 the difference with the solution for 5 Gauss-Hermite
nodes is plotted. The other state variable, capital, is set at its non-stochastic
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Figure 4.1: Euler Equation Errors for RBC model (at Z = 1)
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steady state. The differences are of the order 10−7 for σz = 0.01. We included
the most extreme differences (10 and 8 nodes). For other numbers of nodes the
differences are smaller, for example for 6, 7, 9, 11, 15, 20, 30 and 40 nodes (not
shown). Given the small differences we may conclude that the policy function
is relatively insensitive to the number of Gauss-Hermite nodes as long as more
than 1 node is chosen. With one node the differences are of the order 10−4.

5. Multiple policy variables
This chapter illustrates how a model with multiple policy variables can be
solved. We use a simple RBC model with an extra asset, housing. This
‘Housing Model’ (see Chapter 14 for more model details) is solved in the
program main_housing_proj in the folder ‘Examples’. This chapter focuses on
the two main differences between solving a model with one policy variable and
multiple policy variables.

The first difference is that each policy variable gets an index. The index is
determined by the column of the variable in the initial guess. For example if
we have two policy variables a and b, and the initial guess is Y 0 = [a0, b0] then
variable a gets index i_pol = 1 and variable b index i_pol = 2. The index i_pol
is used when evaluating the policy function with get_pol_var.

The second difference is that the residuals of the model function need to
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Figure 4.2: Difference with 5 Gauss-Hermite nodes (at K = Kss)
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be grouped. Assume each policy variable can be linked to a specific residual
vector, Ra and Rb, each with length m. The output of the model function
needs to be the vector R = [Ra;Rb], which has dimensions 2m × 1. Stacking
the residual vectors vertically ensures that row i and row i + m in R refer to
the same gridpoint. In addition, when policy variable a affects Ra directly, and
b affects Rb directly, then Ra and Rb should be stacked vertically in the same
order as a and b were stacked horizontally in Y 0.

5.1 Housing model
The model consists of three state variables, which are capital Kt, housing Dt

and Total Factor Productivity Zt. We use two policy variables, which are capital
in the next period, Kt+1 and current period consumption Ct28. The model is
captured by five equations (see Section 14 for details):

28Using Dt+1 as second policy variable will result in worse convergence for most algorithms,
since the marginal utility of consumption λ will be affected directly by both Kt+1 and Dt+1
through the budget constraint. With Ct (instead of Dt+1) as policy variable the marginal
utility of consumption in t+ 1 will only be affected indirectly by Kt+1. This helps solving the
model more effectively.
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Ct +Kt+1 +Dt+1 ≤ ZtKα
t + (1− δk)Kt + (1− δd)Dt (5.1)

C−νt = λt (5.2)
λt = βEt

{
λt+1

[
Zt+1αK

α−1
t+1 + 1− δk

]}
(5.3)

λt = βEt
{
%D−ηt+1 + λt+1 (1− δd)

}
(5.4)

zt = ρzzt−1 + σzεt (5.5)

where smaller cases indicate logs, ie. zt = log (Zt). Housing is D, capital is
K, consumption is C, the multiplier on the budget constraint is λ, productivity
is Z, the autocorrelation coefficient ρz , and the shocks are scaled by σz. The
shocks are standard normally distributed, ie. εt ∼ N (0, 1). Note that equation
(5.3) is the Euler equation for capital, and (5.4) the Euler equation for housing.

5.2 Policy function
The model consists of three state variables, Kt, Dt and Zt. We solve the
model by approximating the policies for Kt+1 and Ct. The policy function for
capital in the next period is Kt+1 = K̂

(
Kt, Ht, Zt; θ1) = exp

[
k̂
(
kt, ht, zt; θ1)].

The policy function for consumption is
Ct = Ĉ

(
Kt, Ht, Zt; θ2) = exp

[
ĉ
(
kt, ht, zt; θ2)]. The superscript j in θj is the

index of the policy variable. This index is determined by the column index of
the initial guess Y 0. To ensure capital gets index i_pol = 1 we put capital in
the first column of Y 0, and housing in the second column. The initial guess is
based on the first order perturbation solution:

1 %pre - allocate dimensions
2 Y0 = NaN(GRID.mm ,2);
3
4 % Initial guess for capital :
5 Y0 (: ,1) = log(SS.Kss) + ...
6 0.9608*( GRID.xx (: ,1) -log(SS.Kss)) +...
7 0.0540*( GRID.xx (: ,2) -log(SS.Dss)) +...
8 0.0829*( GRID.xx (: ,3) -log(SS.Zss));
9
10 % Initial guess for consumption :
11 Y0 (: ,2) = log(SS.Css) + ...
12 0.4722*( GRID.xx (: ,1) -log(SS.Kss)) +...
13 0.0266*( GRID.xx (: ,2) -log(SS.Dss)) +...
14 0.3865*( GRID.xx (: ,3) -log(SS.Zss));

With Y 0 we have determined the indices i_pol of the policy variables. When
calling get_pol_var the fourth argument has to be set to i_pol = 1 to obtain
capital Kt+1 and i_pol = 2 to obtain consumption Ct. For Time Iteration the
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policy variables are the columns in POL.Y Y in the same order as in Y 0. In our
example we evaluate the policy function at the initial grid as follows:

1 LK = GRID.xx (: ,1);%first state variable , log(K_t)
2 LD = GRID.xx (: ,2);% second state variable , log(D_t)
3 LZ = GRID.xx (: ,3);%third state variable , log(Z_t)
4
5 % policy variables , log(K_t +1) and log(C_t):
6 if ~( strcmp (POL.algo ,'spl_tmi ') || ... strcmp

(POL.algo ,'smol_tmi ') ||...
7 strcmp (POL.algo ,'cheb_tmi ') )
8
9 %use initial grid for polynomials
10 % (or ignore for spl_dir )
11 spec_opt = 'ini_grid ';
12 % fourth entry is index for policy variable (i_pol)
13 LK_n = get_pol_var (POL ,[LK ,LD ,LZ],GRID ,1,

spec_opt );
14 LC = get_pol_var (POL ,[LK ,LD ,LZ],GRID ,2, spec_opt );
15
16 else %for 'spl_tmi ','cheb_tmi ','smol_tmi ':
17
18 %Pol. variables in columns of POL.YY for 'tmi ':
19 LK_n = POL.YY (: ,1);
20 LC = POL.YY (: ,2);
21 end

5.3 Residuals
The Euler residuals are calculated similarly to the standard RBC example
discussed in Chapter 4. For given policies for Kt+1 and Ct we can determine
housing Dt+1 from the budget constraint:

D̂t+1 = ZtK
α
t + (1− δk)Kt + (1− δd)Dt − K̂

(
Kt, Ht, Zt; θk

)
− Ĉ (Kt, Ht, Zt; θc)

The multiplier λt is defined by (5.2).
As in the other models we need to evaluate next period’s policy functions.

Next period’s choice determines Ĉt+1, and enables us to calculate the two
residual functions R1 and R2, corresponding to (5.3) and (5.4), respectively29:

29See Step 3A in Section 4.5 for details on how to approximate the expected value using
Gauss-Hermite quadrature.
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R1 = βEt

{
λ̂t+1

[
Zt+1αK̂

α−1
t+1 + 1− δk

]}
/λ̂t − 1

R2 = βEt

{
%D̂−ηt+1 + λ̂t+1 (1− δd)

}
/λ̂t − 1

where we divided both sides of the Euler equation with λ to get more equally
distributed normalized errors as explained in Section 4.5. In our model function
we stack the residual vectors vertically, such that RES is a 2m× 1 vector:

1 % Euler residuals
2 RES1 = sum(rhs_j1 ,2)/ lambda - 1;
3 RES2 = sum(rhs_j2 ,2)/ lambda - 1;
4
5 % RES1 and RES2 are mm by 1 vectors
6 % concatenated vertically :
7 RES = [RES1;RES2 ];

Note that the first residual vector RES1 is more directly linked with the first
policy variable Kt+1. This requires that the residual vector RES1 comes first
when stacking the residual vectors vertically, because Kt+1 was also the first
policy variables (i_pol = 1)30.

30This ordering is required for Galerkin’s algorithm, because the coefficients of each policy
function are set such that the corresponding residuals are orthogonal to the polynomial terms.
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Part II

Theoretical description of
algorithms
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6. General Approach
The goal of each of the algorithms is to numerically approximate a policy
function that solves a recursive dynamic optimization problem. A policy
function gives the control (or policy) variable Y as a function of the state
variables x. If the exact policy function is Y (x) the algorithm approximates
this function with Ŷ (x; θ) where θ is a vector of parameters of the basis
function, either a spline or a polynomial.

The objective of projection methods is to find the policy function that solves
the dynamic optimization problem. The algorithms require a function that
computes the Euler residuals for a given approximation of the policy function.
In practice the residual function R (x; θ) is a function with the model equations,
which is discussed in Chapter 8. These residuals are computed on the initial
grid, which consists of gridpoints of the n state variables. The construction of
the grid is discussed in Section 6.1. Next we discuss obtaining the Solution at
the gridpoints in Section 6.2. We solve a model at the gridpoints using either
Direct Computation or Time Iteration, which are the most intuitive solution
methods. The approaches using Minimization of Squared Error (least squares)
and Galerkin’s method are discussed in the next Chapter 7.

The remainder of this Chapter is mostly copied from Duineveld (2021). We
explain the general approach with the Deterministic Brock-Mirman model used
in Chapter 3. We use a slightly more formal approach as in that chapter.

The relevant equations are the resource constraint and the First Order
Condition:

Kt+1 + Ct = Kα
t

C−1
t = βC−1

t+1αK
α−1
t+1 (6.1)

We choose consumption Ct as the policy variable, which is a function of
the state variable capital Kt. There exists a policy function Ct = C (Kt),
which exactly solves this dynamic optimization problem. Instead we numerically
approximate the policy function with Ĉ (Kt; θ). The approximation Ĉ (Kt; θ)
will not exactly solve this dynamic system, and we need to compute the errors
with a residual function.

Given the approximation of consumption we can compute next period’s
variables:

K̂t+1 = K̂
(
Kt; θj

)
= Kα

t − Ĉ
(
Kt; θj

)
(6.2)

Ĉt+1 = Ĉ
(
K̂t+1; θj−1

)
(6.3)
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where superscript j indicates the current period choices, and j−1 next period’s
choices, although this difference is only relevant for Time Iteration.

The residuals in the Euler equation (6.1) as a result of the approximation
are:

R (Kt; θ) = βĈ
(
K̂
(
Kt; θj

)
; θj−1

)−1
αK̂

(
Kt; θj

)α−1 − Ĉ
(
Kt; θj

)−1 (6.4)

The objective is to find the policy function that minimizes the residuals on
a specified interval of the state variables. This interval is determined by a lower
and upper bound of each state variable. Within this interval discrete points, or
gridpoints, are chosen, where we evaluate the Euler residuals.

6.1 Defining a grid
The policy function is set such that the residuals on the gridpoints are
minimized. The grid is defined over an interval of each of the n state variables
where we want the approximation to be good. The intervals are defined by the
lower and upper bounds

[
xi, xi

]
for i = [1, . . . , n].

For all methods except Smolyak’s algorithm31 we use a Cartesian product
to construct the grid. For each state variable i a set of qi nodes
Xi =

{
xi1, x

i
2, . . . , x

i
qi

}
are defined on the interval between the lower and

upper bound. For splines and monomials we use equidistant nodes, and for
complete Chebyshev polynomials we use the Chebyshev nodes. We call the
Cartesian product of these sets the initial grid:

X = X1 × . . .×Xn (6.5)

This set consists of m =
∏n
i=1 q

i points where the residual function is evaluated.
The toolbox constructs the grid with the function prepgrid. The set of

nodes Xi are assigned to the cell array GRID.gridV ecs. The initial grid (6.5)
is the field GRID.xx. Each column in GRID.xx represents a state variable.

6.2 Solution at gridpoints
For several algorithms32 we solve the model at the m gridpoints with either
Direct Computation or Time Iteration. With Direct Computation we solve a
system of equations with a non-linear equation solver based on a Newton-type
of algorithm. This methods numerically estimates the m×m Jacobian matrix
of the system equations. Time Iteration is specifically designed to solve a
recursive dynamic system of equations. The algorithms chooses the period t
policy variable at the gridpoints, while holding the period t+ 1 policy function

31See Section 7.5 for the construction of the grid with Smolyak’s algorithm.
32All algorithms using collocation, and for Chebyshev polynomials with Time Iteration.
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constant. This ensures that the m × m Jacobian matrix of the system of
equations is sparse with only entries on the diagonal. Each iteration is
therefore computationally less intensive, but also less effective than with
Direct Computation.

For both Direct Computation and Time Iteration the solution at the
gridpoints uniquely defines the coefficients θ of the basis function, either a
spline or a polynomial. Assume the algorithms finds the solution Ỹ at the
gridpoints x ∈ X . The coefficients of the basis function θ can be determined
by some function:

θ = Γ
(
x, Ỹ

)
(6.6)

Direct Computation
For Direct Computation the residuals can be written as a function of either
the coefficients θ or the choice variable C̃ at the gridpoints. In equation (6.4)
the residuals were a function of the coefficients θ. Using (6.6) the alternative
formulation of (6.4) in terms of choice variable C̃ is:

R
(
Kt, C̃t

)
= R

(
Kt;Γ

(
Kt, C̃t

))
(6.7)

The objective is to set the residual equal to 0 at all m gridpoints33. In the
original formulation:

0 = R
(
Kt;Γ

(
Kt, C̃t

))
(6.8)

This system of equations can be solved with a Newton-type of non-linear
equation solver34. This type of solver will converge at least quadratically close
to the solution (Judd, 1998). Note that a change in C̃i,t at gridpoint i affects
the coefficients θ, which also affects the solution at other gridpoints j 6= i.
This necessitates the numerical approximation of the dense m × m Jacobian.
As the Jacobian has m2 elements each iteration is computationally expensive
for a large number of gridpoints m. This makes the solution method is less
efficient than Time Iteration for large grids. For highly non-linear systems
Direct Computation might have convergence issues35.

Time Iteration
The Time Iteration algorithm is described by Judd (1998). Compared to
Direct Computation it economizes on the iteration step. In iteration j the

33See equation (6.5).
34By default the toolbox uses Matlab’s fsolve with the ‘trust-region-dogleg’ algorithm for

Direct Computation.
35The algorithm will locally linearize the system of equations, which might be a poor

approximation far away from the solution.
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algorithm solves for period t choices C̃t
j , while using the coefficients of the

previous iteration θj−1 for period t + 1 choices. For the simple example we
replace (6.2) and (6.3) with:

K̂t+1 = Kα
t − C̃

j
t = K̂

(
Kt, C̃

j
t

)
Ĉt+1 = Ĉ

(
K̂t+1; θj−1

)
= Ĉ

(
K̂
(
Kt, C̃

j
t

)
; θj−1

)
This gives us the residual function:

R
(
Kt, C̃

j
t ; θj−1

)
= βĈ

(
K̂
(
Kt, C̃

j
t

)
; θj−1

)−1
αK̂

(
Kt, C̃

j
t

)α−1
−
(
C̃jt

)
−1

(6.9)

Equation (6.9) defines a system of m non-linear equations in as many
unknowns C̃jt . We solve the system of equations R

(
Kt, C̃

j
t ; θj−1

)
= 0 with a

Newton-type of algorithm36. As the residual at gridpoint i only depends on
C̃ji,t the Jacobian matrix is sparse with entries on the diagonal only37. In
addition, we do not have to recompute the spline or polynomial when
numerically approximating the Jacobian. This makes the algorithm efficient
for recursive dynamic problems. After solving the system of equations (6.9) for
the policy variable C̃jt we update the coefficients θ using (6.6), and repeat the
process until convergence.

We use two stopping criteria, which both have to be satisfied. The first
criterion is the maximum absolute difference in the policy variable between
iterations, which has to satisfy max

∣∣Ỹ j − Ỹ j−1
∣∣ ≤ εd. The second criterion is

the maximum Euler residual at the gridpoints when using the updated policy
θj for both current and next period’s policy. Formally this stopping criterion is
max

∣∣R (x, Ỹ j ; θj)∣∣ ≤ εr , where x are the state variables.

7. Algorithms
In this Chapter we discuss all the algorithms. This chapter is also mostly copied
from Duineveld (2021).

36By default the toolbox uses Matlab’s fsolve with the ‘trust-region’ algorithm for square
problems. This algorithm allows the use of a sparse Jacobian.

37With multiple policy functions the Jacobian consists of repeated blocks of diagonal
matrices.
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7.1 Splines
Splines are determined by Matlab’s griddedInterpolant. Spline basis
functions are best used in combination with collocation. The policy variable(s)
Ỹ at each gridpoint x ∈ X is obtained with either Direct Computation or
Time Iteration. The solution at the gridpoints determines the parameters θ of
a piece-wise cubic polynomial, or spline as in (6.6). For simplicity we use a
grid with equidistant nodes.

By default the toolbox sets the interpolation method of
griddedInterpolant to 'spline'38. This interpolation method uses a cubic
spline determined with not-a-knot end conditions, which results in a twice
differentiable spline. When such a cubic spline is used to approximate a four
times differentiable function the convergence is O

(
q−4), where q is the number

of nodes per dimension (De Boor, 1978).
For the univariate case with q data points (x1, y1) , . . . , (xq, yq) a cubic spline

takes the piece-wise form:

S1 (x) = y1 + θ1,1∆x1 + θ1,2∆x2
1 + θ1,3∆x3

1 for x ∈ [x1, x2]
S2 (x) = y2 + θ2,1∆x2 + θ2,2∆x2

2 + θ2,3∆x3
2 for x ∈ [x2, x3]

...
...

Sq−1 (x) = yq−1 + θq−1,1∆xq−1 + θq−1,2∆x2
q−1 + θq−1,3∆x3

q−1 for x ∈ [xq−1, xq]

with ∆xi = x− xi.
This univariate spline has 3 (q − 1) coefficients, which can be determined

with the following conditions. At the interior points the function needs to be
continuous, which gives us q − 1 conditions:

Si (xi+1) = yi+1

In addition the first and second derivative have to be continuous at the interior
points, which gives us two times q − 2 conditions:

S
′

i (xi+1) = S
′

i+1 (xi+1)
S
′′

i (xi+1) = S
′′

i+1 (xi+1)

The not-a-knot end conditions require that the third derivative is also continuous
at the gridpoints x2 and xq−1:

S
′′′

1 (x2) = S
′′′

2 (x2)
S
′′′

q−2 (xq−1) = S
′′′

q−1 (xq−1)
38The interpolation method can be changed with the field POL.spl_meth.
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This yields a linear system of 3 (q − 1) equations in the univariate case. With
multi-dimensional interpolation each dimension is treated independently, and
sequential one-dimensional interpolation is carried out39.

Spline with Direct Computation
The algorithm 'spl_dir' uses Direct Computation as discussed in Section
6.2. The objective is equation (6.8): solve the residual R at each gridpoint by
adjusting the policy variable at the gridpoints. We need to numerically
approximate the full Jacobian matrix, because a change in the policy variable
at one gridpoint will change the spline, and therewith affect the solution at
other gridpoints. With multiple policy variables the Jacobian of the system of
equations will be an dm × dm matrix, where m is the total number of
gridpoints, and d the number of policy variables.

Spline with Time Iteration
The algorithm 'spl_tmi' uses Time Iteration as discussed in Section 6.2. We
solve the residual function at each gridpoint by choosing the period t policy
variable, holding the period t + 1 policy function constant. For a single policy
variable the solution at each gridpoint does not affect the solution at other
gridpoints, and the Jacobian matrix will only have entries on the diagonal. With
multiple variables the Jacobian matrix consists of repeated blocks of diagonal
matrices.

7.2 General: construction of polynomials
For 'mono', 'cheb', and 'smolyak' the polynomials are constructed with a
similar procedure. The multivariate polynomial Ω (m×p matrix) is constructed
with three elements: the initial grid xx, the array Φ which consists of univariate
polynomial terms, the matrix LL which compiles the polynomial.

The following dimensions are used:

• m the total number of gridpoints;

• n the number of state variables;

• p the total number of (multivariate) polynomial terms;

• k the maximum degree of a (univariate) polynomial.

Initial grid x

The initial grid x is an m × n matrix, where each column j is a state variable
xj (m× 1).

39Matlab does not specify the algorithm for multi-dimensional interpolation, but the results
are equivalent to sequential one dimensional interpolation.
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Univariate polynomials terms

We have to differentiate between monomials used for the algorithm 'mono_mse'
and Chebyshev polynomials used for the algorithms with 'cheb', and 'smolyak
'.

For univariate monomial terms are:

Ti (x) = xi

For Chebyshev polynomials (of the first kind) the univariate terms have the
recurrent relation:

T0 (x̃) = 1
T1 (x̃) = x̃

Tv+1 (x̃) = 2x̃Tv (x̃)− Tv−1 (x̃) (7.1)

where x̃ is a scaled down variable to the interval [−1, 1]. The transformation
is a function x̃ (x) (see equation (7.7)) and this allows us to write Tv+1 (x) =
Tv+1 (x̃ (x)). Using index j = 1, . . . , n for the state variables we get:

Ti (xj) =
{
xij for monomials
Ti (x̃ (xj)) for Chebyshev polynomials

Note that each Ti (xj) is an m× 1 vector.

Matrix of univariate polynomial terms Φ

The array Φ consists of all univariate polynomial terms up to order k. The
dimensions of Φ are m × k × n, where m is the number of nodes in the initial
grid, k is the degree of the polynomial, and n is the number of state variables.

For state variable j the polynomial terms are:

Φj = [T1 (xj) , . . . , Tk (xj)]

which is an m× k matrix. Note that we omit T0 = 1. We concatenate each Φj
in the third dimension.

Element index LL

The matrix L (p × n) consists of indices that refer to the elements in Φ. The
element li,j refers to Tli,j (xj), meaning the order li,j polynomial for state
variable j. The elements in row i are multiplied by each other to form column
i of the polynomial matrix Ω, meaning Ωi =

∏n
j=1 Tli,j (xj).
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Polynomial

The m× p matrix Ω is:

Ω (x) =

 Ω1 (x1) · · · Ωp (x1)
... . . . ...

Ω1 (xm) · · · Ωp (xm)

 (7.2)

In our code we use the names XX_poly40 for Ω, and poly_elem41 for L.
The matrix Ω is constructed as:

1 XX_poly = ones(mm ,pp);% initiate with ones
2
3 for ii = 1:pp
4 for jj = 1:nn
5 if LL(ii ,jj) >0%omit T_0 =1 terms
6 XX_poly (:,ii) = XX_poly (:,ii) .* Phi (:,

poly_elem (ii ,jj),jj);
7 end
8 end
9 end

Complete polynomials

For the algorithms 'cheb' and 'mono' we use complete polynomials. A
complete polynomial of degree k in n dimensions consists of all possible
combinations with

∑n
j=1 lj ≤ k. Using short-hand notation T ji = Ti (xj) a

complete polynomial of degree k in n dimensions is (Judd, 1998):

Pn
k ≡

T 1
l1 · · ·T

n
ln |

n∑
j=1

lj ≤ k, 0 ≤ l1, . . . , ln

 (7.3)

The toolbox allows for asymmetric polynomials where state variable j has a
maximum degree kj polynomial42, ie. the restriction lj ≤ kj .

We use complete polynomials for the algorithms 'cheb' and 'mono', because
they achieve almost the same accuracy as a tensor product, despite having
a lower number of coefficients (Judd, 1992). For a complete polynomial the
number of coefficients grows polynomially in the number of dimensions, while
tensor product grow exponentially (Judd, 1998).

40Or XX_poly_dw for scaled down variables.
41For the Smolyak algorithm smol_el_ani is L+ 1 and Φ also contains T0 = 1.
42The field ord_vec in the input argument meth_spec is the 1× n vector [k1, . . . , kn].
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Example with two dimensions
To illustrate the construction of a complete polynomial we use a two dimensional
example, which is also used in Chapter 10. Assume we have two state variables
with bounds [1, 3] for x1 and [10, 25] for x2.

We start with the monomial case, and use 3 and 4 gridpoints for x1 and for
x2, respectively. With equidistant nodes the resulting fields are
gridV ecs{1, 1} =

[
1 2 3

]
for x1 and

gridV ecs{1, 2} =
[

10 15 20 25
]
for x2. The initial grid (12× 2) is:

xx =
[

1 2 3 1 2 3 1 2 3 1 2 3
10 10 10 15 15 15 20 20 20 25 25 25

]ᵀ
We want to construct a complete polynomial of degree k = 2. We construct

the matrix Φj (m× k) for j = 1, 2 consisting of the univariate monomials up to
order 2:

Φj =
[
xj , x

2
j

]
We construct the polynomial with the matrix LL:

LL =
[

0 0 1 0 1 2
0 1 0 2 1 0

]ᵀ
Each element li,j in LL refers to a polynomial term in the column vector Φj (:, i)
with Φj (:, 0) = 1. The polynomial terms in row i are multiplied by each other
to form column i of the polynomial matrix Ω. For example, row four of LL is
[2, 0], meaning x2

1x
0
2 = x2

1, which is the entry in the fourth column of Ω. The
complete polynomial Ω (x) (dimension 12× 6) is:

Ω (x) =
[

1 x1 x2 x2
1 x1x2 x2

2
]

(7.4)

7.3 Monomials
With monomials the policy function is approximated with a complete
polynomial. The grid with monomial basis functions consists of equidistant
nodes. Monomials are simple to use, but have three disadvantages compared
to Chebyshev polynomials. The first is that monomials are collinear. For
example, x2 and x4are very close to each other around 0. The second
disadvantage is that monomials are not scaled. For example, the term x4 will
have a complete different magnitude than the term x. The third disadvantage
is known as Runge’s phenomenon, which results in oscillation at the edges of
an interval for polynomials of high degree when equidistant nodes are used.
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To construct complete polynomials we use the procedure described above
in Section 7.2. For example, the approximation with a complete polynomial of
degree two with two state variables x1 and x2 is:

Ŷ (x; θ) = θ1 + θ2x1 + θ3x2 + θ4x
2
1 + θ5x1x2 + θ6x

2
2 (7.5)

Using the notation Ωi (x) to refer to multivariate polynomial term i we may
also write:

Ŷ (x; θ) =
p∑
i=1

θiΩi (x)

where p is the total number of polynomial terms. Using the matrix notation as
in (7.4) this is equivalent to:

Ŷ (x; θ) = Ω (x) θ

Monomials with Minimization of Squared Errors
The algorithm 'mono_mse' minimizes the squared errors at the gridpoints by
setting the coefficients θ. Assume we have a residual function R (x; θ), which is
evaluated at gridpoints i = 1, . . . ,m. The objective is to minimize the sum of
the square residuals:

min
θ

m∑
i=1

R (xi; θ)2 (7.6)

where m is the total number of gridpoints. To minimize (7.6) the default
algorithm is Matlab’s lsqnonlin with a ‘trust-region’ algorithm.

7.4 Complete Chebyshev polynomials
The most commonly used basis functions are Chebyshev polynomials.
Chebyshev polynomials are superior to monomial basis functions for three
reasons. The first is that Chebyshev polynomials of the first kind have the
discrete orthogonality property:

N−1∑
k=0

Ti (xk)Tj (xk) = 0 if i 6= j

where N is any integer greater than max (i, j), and xk are the Chebyshev nodes
(see below), and Ti (x) is given by the recursive relation in (7.1). Note that this
orthogonality is defined for the one dimensional case.
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The second reason for the superiority of Chebyshev polynomials is that they
are scaled such that the absolute value of the extrema never exceeds 1. The
third reason is that they are very effective at reducing Runge’s phenomenon.
Runge’s phenomenon is that polynomial interpolation results in oscillation at
the edges of an interval for polynomials of high degree when equidistant nodes
are used. This phenomenon is avoided with Chebyshev nodes.

To make use of the favorable properties of Chebyshev polynomials it is
necessary to linearly map variables from the interval [x, x] to [−1, 1]. This
transformation is given by:

x̃ (x) = 2x− x
x− x

− 1 (7.7)

which we call the scaling down of variables. The inverse of this map, which we
call scaling up, is:

x (x̃) = (x̃+ 1) (x− x)
2 + x (7.8)

where subscripts are the degree of the polynomial.
To construct complete polynomials we use the procedure described above in

Section 7.2. For example, the complete Chebyshev polynomial of degree two
with two variables x1 and x2 is:

Ŷ (x; θ) = θ1 + θ2x̃ (x1) + θ3x̃ (x2) + θ4

(
2x̃ (x1)2 − 1

)
+ θ5x̃ (x1) x̃ (x2) + θ6

(
2x̃ (x2)2 − 1

)
(7.9)

where θ are the coefficients on the polynomial terms i = 1, . . . , p. Alternatively
we can write:

Ŷ (x; θ) =
p∑
i=1

θiΩi (x) (7.10)

where Ωi (x) refers to the multivariate polynomial term in column i of Ω, and
p is the total number of polynomial terms. In matrix notation this becomes:

Ŷ (x; θ) = Ω (x) θ (7.11)
To construct the initial grid we use the Chebyshev nodes, which are in the

interval [−1, 1]. These nodes are determined by the formula:

x̃i = cos
(

2i− 1
2q π

)
for i = 1, . . . , q. The q nodes are the roots of the polynomial Tq (x). For example
for q = 2 the nodes are the roots of T2 (x) = 2x̃2 − 1, which are ± 1

2
√

2. Note
that these roots never include the bounds [−1, 1].
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Chebyshev with Galerkin’s method
With the algorithm 'cheb_gal' we use Galerkin’s method to obtain the
coefficients θ in (7.10). We calculate the product of the residual function
R (x; θ) and each polynomial term Ωj (x) at all gridpoints i = 1, . . . ,m. The
objective for each coefficient θj is to set the sum of these products to zero:

0 =
m∑
i=1

R (xi; θ) Ωj (xi) (7.12)

As there are j = 1, . . . , p coefficients this is a system of p equations in p
unknowns. This system is solved using a non-linear equation solver, based on
a Newton-type of algorithm. By default we use Matlab’s fsolve with the
‘trust-region-dogleg’ algorithm. If multiple policy variables need to be solved
each policy variable has its own residual function. With d policy variables this
is a system of dp equations. For a large number of coefficients it is more
efficient to use Time Iteration.

Chebyshev with Time Iteration
The algorithm 'cheb_tmi' solves the residual function at the gridpoints with
Time Iteration as explained in Section 6.2. Given the solution at the gridpoints
the coefficients θ are obtained by solving a least squares problem. The solution
at the gridpoints is a m× 1 vector Ŷ (x), and the m× p matrix Ω is defined in
(7.11). The coefficients θ are determined using Matlab’s mldivide, which gives
the least squares solution of a linear system of equations Ŷ = Ωθ when it is
overidentified.

Chebyshev with Minimization of Squared Error
The algorithm 'cheb_mse' minimizes the squared errors at the gridpoints by
setting the coefficients as with 'mono_mse'. The objective is the same and
given by equation (7.6). The differences are the scaling down of variables,
the polynomial itself, and the nodes. To solve the objective we use Matlab’s
lsqnonlin with a ‘trust-region’ algorithm by default.

7.5 Smolyak’s algorithm
Smolyak’s algorithm can be implemented in various ways. We use the method
described by Judd et al. (2014)43. The algorithm constructs a sparse grid
consisting of Chebyshev extrema. The solution at the gridpoints determines
the coefficients of a sparse Chebyshev polynomial. The (sparse) gridpoints are

43We implemented the provided Matlab code: Rafa Valero (2021), Smolyak Anisotropic
Grid (https://www.mathworks.com/matlabcentral/fileexchange/50963-smolyak-anisotropic-
grid), MATLAB Central File Exchange. Retrieved November, 2021.
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concentrated on the axis and the corners of the grid44. The solution at the
gridpoints is computed with Direct Computation or Time Iteration. With
Direct Computation we use the coefficients θ as choice variables. With Time
Iteration we solve the policy variable at the gridpoints, and obtain the
coefficients by solving a linear system of equations.

For the construction of the isotropic sparse grid45 we largely follow the
exposition by Fernández-Villaverde, Rubio-Ramírez, and Schorfheide (2016).
First we choose the accuracy parameter µ46. The degree of the Chebyshev
polynomial will be 2µ. For accuracy µ > 0 there are qµ = 2µ + 1 number of
nodes in each dimension, and for µ = 0 there is one node q0 = 1.

The extrema of a univariate Chebyshev polynomial (also called
Gauss-Lobotto nodes) for given µ with j = 1, . . . , qµ are (Judd et al., 2014):

ζµj =
{

0 for µ = 0
− cos

(
j−1
qµ−1π

)
for µ > 0

We define the nested sets:

Gµ =
{
ζµ1 , . . . , ζ

µ
qµ

}
where Gµ ⊂ Gµ+1. The first three sets are: G0 = {0}, G1 = {−1, 0, 1}, and
G2 =

{
−1,−

√
2

2 , 0,
√

2
2 , 1

}
. We introduce the notation T ik = Tk (x̃i), which is

the univariate Chebyshev basis function of degree k in dimension i as defined in
(7.1). The nodes Gµ correspond to the extrema of the basis functions T0, . . . , T2µ ,
with the extremum of T0 set to 0.

The multivariate sparse grid is a union of the Cartesian products47:

G (µ, n) =
⋃∑
µn=µ

(Gµ1 × . . .× Gµn) (7.13)

For example with n = 2 dimensions and µ = 1 (meaning a degree 2µ = 2
polynomial) we get:

44See for example Figure 11 in Fernández-Villaverde, Rubio-Ramírez, and Schorfheide
(2016).

45The toolbox allows for the construction of an anisotropic grid as described by Judd et al.
(2014). The procedure is very similar, where the accuracy parameter µ is specified for each
dimension.

46In the notation of Fernández-Villaverde, Rubio-Ramírez, and Schorfheide (2016): µ =
q − n.

47Fernández-Villaverde, Rubio-Ramírez, and Schorfheide (2016) include Cartesian products
with

∑
µn < µ, but since Gµ ⊂ Gµ+1 these lower ranked Cartesian products are redundant.

For example G1 × G0 ⊂ G2 × G0
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G (1, 2) =
⋃∑
µn=1

(Gµ1 × Gµ2)

=
(
G1 × G0) ∪ (G0 × G1)

= {(−1, 0) , (0, 0) , (1, 0)} ∪ {(0,−1) , (0, 0) , (0, 1)}
= {(0, 0) , (−1, 0) , (1, 0) , (0,−1) , (0, 1)}

Similarly with n = 2 dimensions and µ = 2 (meaning a degree 2µ = 4
polynomial) we get:

G (2, 2) =
⋃∑
µn=2

(Gµ1 × Gµ2)

=
(
G2 × G0) ∪ (G0 × G2) ∪ (G1 × G1) ∪ (G1 × G1)

Note that G1 × G0 ⊂ G2 × G0, so G (1, 2) ⊂ G (2, 2) .
The sparse grid exactly identifies the coefficients of a polynomial, and we

can infer from the grid, which polynomial terms are included. For example,
for a two dimensional grid (n = 2) and an accuracy µ = 1 we get a degree
2µ = 2 polynomial. The grid consists of the sets

(
G1 × G0) ∪ (G0 × G1). This

corresponds to a polynomial consisting of only univariate terms T0, T i1, and T i2
for i = 1, 2. The degree 2 bivariate terms T i1T

j
1 for i 6= j are omitted.

To generalize this we define the set of univariate Chebyshev polynomials up
to order k as T ki =

{
T i0, T

i
1, . . . , T

i
k

}
. Note that for accuracy µ the degree of

the polynomial is 2µ. For example, in two dimensions with µ1 = 2 and µ2 = 1
the Cartesian product G2 ×G1 defines 15 gridpoints. The corresponding tensor
product T 2µ1

1 ⊗ T 2µ2
2 is a set of 15 bivariate polynomials:

T 4
1 ⊗ T 2

2 =

 T 1
0 T

2
0 , . . . , T 1

4 T
2
0

T 1
0 T

2
1 , . . . , T 1

4 T
2
1

T 1
0 T

2
2 , . . . , T 1

4 T
2
2

 (7.14)

This sparse grid and sparse set of polynomials is very effective at tackling
the curse of the dimensionality. A standard Cartesian product with q nodes
in n dimensions consists of a total of qn nodes. We would need at least 5
gridpoints in each dimension to estimate a degree 4 complete polynomial. For
8 dimensions this would result in 58 = 390, 625 gridpoints to estimate a total of
495 coefficients.

The Smolyak algorithm with a sparse degree 4 polynomial (ie. µ = 2) in 8
dimensions results in only 145 nodes and coefficients. The resulting polynomial
consists of the univariate terms T0, T i1, T i2, T i3, and T i4 for i = 1, . . . , 8, and all
possible combinations of the bivariate terms T i1T

j
1 , T i2T

j
1 , and T i2T

j
2 for i 6= j.

Compared to a complete polynomial 350 terms are omitted by the Smolyak
algorithm: the degree 3 terms T i1T

j
1T

l
1, and the degree 4 terms T i1T

j
1T

l
1T

m
1 ,
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T i2T
j
1T

l
1 and T i3T

j
1 for all possible combination with i 6= j 6= l 6= m. In general,

a degree 4 Smolyak polynomial does not contain polynomial terms consisting of
more than 2 variables.

Following the explanation by Judd et al. (2014) the polynomial results in
the approximation of the policy variable:

Ŷ (x; θ) =
p∑
i=1

θiΩi (x)

where p is the total number of polynomial terms, equal to the number of
gridpoints m, and Ωi (x) are the multivariate polynomial terms as explained in
Section 7.2. We can write in matrix notation:

Ŷ (x; θ) = Ω (x) θ

Smolyak with Direct Computation
The algorithm 'smol_dir' directly solves the residuals at the gridpoints by
setting the coefficients θ48. The objective is to solve:

0 = R (x; θ)

which is a system of m equations in m unknowns as the number of coefficients
is equal to the number of gridpoints. The Jacobian matrix of this system is
m ×m because each coefficient affects the solution at all gridpoints. For more
details on Direct Computation see Section 6.2.

Smolyak with Time Iteration
The algorithm 'smol_tmi' solves the residual function by choosing the period
t policy variable with Time Iteration as explained in Section 6.2. Given the
period t policy variable at the gridpoints Ŷ (x), and the matrix with polynomial
terms Ω (as in equation (7.2) in Section 7.2) we determine the coefficients θ by
solving a linear system of equations:

θ = Ω−1Ŷ

In practice we solve this linear system with Matlab’s mldivide.

48This contrasts with 'spl_dir', where we solve for the policy variable, and then determine
the coefficients using equation (6.6).
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8. Model file
The model should be a function that takes the grid and the policy functions
as inputs and gives the Euler residuals as output. One has to create a handle
to this model function, which only takes the structure with the policy function
POL as input. To evaluate the policy function we use get_pol_var (described
in Section 8.2). The function get_pol_var takes the state variables xx as input,
which is an m×n matrix where each column vector represents a state variable,
and each row a datapoint. The output is an m× d matrix, where each column
represents a policy variable. One has to use an algorithm specific format to
evaluate the policy function as explained in Section 8.1. For examples of model
functions see Listing 3.3 and Listing 4.1.

The model function itself can include any amount of input fields, but needs
to include at least:

• GRID: a structure with all necessary properties of the grid as assigned
by the function prepgrid (see Section 10.1);

• POL: a structure that needs to contain the algorithm algo, and the policy
function (see Section 9.1). Note that the policy function will be assigned
to POL by the function solve_proj, based on the algorithm and the
initial guess.

The output of the function needs to be:

• RES: residuals in a dm × 1 vector, where m is the total number of
gridpoints, and d the number of policy functions. When multiple policy
variables are used (d > 1) the residuals vectors should be stacked
vertically as explained below.

Vertical concatenation of residuals
The residuals vectors need to be stacked vertically. An example of this ordering
can be found in Chapter 5. To explain the ordering we assume there are two
policy variables (d = 2), and the total number of gridpoints is m. As d = 2
there are two residuals functions R1 and R2, which are both column vectors
with length m. These vectors need to be stacked vertically such that the model
function returns a 2m× 1 residual vector R = [R1;R2]. Grouping the residuals
this way ensures that row j and row j + m in R refer to the same gridpoint.
This format is necessary, because the sparse Jacobian for Time Iteration is
constructed based on this format.

In addition the order of the residual vectors should correspond to the order
of the policy variables. In the example of Chapter 5 we had an Euler equation
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for capital and an Euler equation for consumption. The complete residual vector
is constructed as R = [R1;R2]. As capital is the first policy variable the Euler
residuals for capital should be in R1 and the other Euler residuals in R2.

8.1 Formats for policy function evaluation
To evaluate the policy function in the model file we need to differentiate between
two formats. There is a standard format and a format specific to Time Iteration
algorithms ('tmi'). Examples of these formats are shown in Listing 3.3 and
Listing 4.1. In this section we assume there are i = 1, . . . , d policy variables yi.
Each policy variable is a function of the two state variables X1 and X2.

Standard Format
With the standard format the same policy function is used for current period’s
choices and next period’s choices. To evaluate policy variable i (index i_pol) in
period t use:

1 y_t = get_pol_var (POL ,[X1_t ,X2_t],GRID ,i_pol);

We can use the same format to evaluate the policy function in period t+ 1.
For algorithms with polynomials not using Time Iteration49 we can save

computation time by evaluating the policy function at the initial grid, which is
stored in the structure GRID. We have to set the input argument spec_opt=
'ini_grid' of get_pol_var to achieve this:

1 spec_opt = 'ini_grid ';
2 y_t = get_pol_var (POL ,[X1_t ,X2_t],GRID ,i_pol , spec_opt )

;

For the polynomial algorithms this option will ignore the inputs arguments
[X1t, X2t], and the policy function will be evaluated using the initial grid
GRID.xx. When the option spec_opt='ini_grid' is used in combination
with a spline get_pol_var ignores the option, and inputs [X1t, X2t] are used
to evaluate the policy function.

Time Iteration
With Time Iteration we solve for the period t policy variable, given the policy
function in period t + 1 as explained in Section 6.2. With Time Iteration the
solver solve_proj assigns the period t policy variable at the gridpoints to the
field POL.Y Y , which is an m × d matrix where d is the number of policy
variables, and m the number of gridpoints. To evaluate the period t policy
variable with index i_pol we call:

49These are the algorithms 'cheb_gal', 'cheb_mse', 'mono_mse', and 'smol_dir'.
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1 y_t = POL.YY(:, i_pol);

For next period’s choices we use the policy function of the previous
iteration50. To evaluate this policy function we set spec_opt='old_pol' as
input argument for get_pol_var:

1 spec_opt_next = 'old_pol ';
2 y_n = get_pol_var (POL ,[X1_n ,X2_n],GRID ,i_pol ,

spec_opt_next );

8.2 Function get_pol_var

The function get_pol_var takes the policy function in POL, the state variables
in matrix xx, and the grid structure GRID as input and gives the policy variable
as output. When multiple policy variables are used one needs to specify the
index i_pol of the policy variable.

The inputs are:

• POL: a structure which contains the field algo (see Chapter 7), and a
field containing the appropriate policy function. For splines this is the
field pp_y and for polynomials this is the field theta. For solution method
'tmi' there are two special cases of the policy function. The period t
policy function evaluated at the initial grid is the field Y Y , and the policy
function of the previous iteration is the field pp_y_old for splines and
theta_old for polynomials;

• xx: a matrix with the state variables in column vectors stacked behind
each other (m×nmatrix, wherem is the number of points to be evaluated,
and n is the number of state variables) as shown in Listings 3.3 and 4.1
for a model file, and in Listing 4.2 for a simulation. When spec_opt='
ini_grid' the input xx is ignored for polynomials51;

• GRID: structure with the necessary grid properties, which are assigned
by prepgrid (see Chapter 10);

• i_pol (optional if d = 1): the index of the policy variable to be evaluated.
The total number of policy variables is d. The index i_pol is determined
by the column index in the initial guess Y 0 (see Chapter 5 for an example);

• spec_opt (optional): there are two options for this field, either
spec_opt='ini_grid' or spec_opt='old_pol'. Other values are
ignored. If spec_opt='ini_grid' and the algorithm is 'cheb_gal',

50The old policy function is assigned to POL.pp_y_old for splines, and to POL.theta_old
for polynomials.

51For polynomials in combination with Time Iteration the option spec_opt='ini_grid' will
throw an error.
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'cheb_mse', 'smol_dir', or 'mono_mse' the initial grid (either
XX_poly or XX_poly_dw) is used to evaluate the policy function52.
Note that the input argument xx will be ignored in this case. The option
spec_opt='ini_grid' is ignored when used in combination with
'spl_dir', and will result in an error when used in combination with
Time Iteration53. If spec_opt='old_pol' the old policy function is
used. For splines this is the field pp_y_old, and for polynomials
theta_old. These fields will be assigned to POL when solving the model
with Time Iteration ('tmi').

9. Solving the model
The model is solved using the function solve_proj, which is explained in the
following section.

9.1 Function solve_proj

The function solve_proj solves for the policy function that minimizes the Euler
residuals. To solve the model one calls the function solve_proj with inputs:

• GRID: the structure with the grid properties assigned by prepgrid as
described in Chapter 10;

• POL: a structure with the required field algo, that defines the
algorithm. There are several optional fields, which are listed in the
Subsection Optional Fields below;

• fun_res: the function handle to the model function as described in
Section 4.5, and the examples Listing 3.3 and 4.1;

• Y 0: the initial guess of the policy functions evaluated at the initial grid
GRID.xx. Y 0 should be a m × d matrix with m the total number of
gridpoints, and d the number of policy variables. The column index of
a variable in Y 0 determines the index i_pol, which is used to evaluate
the policy function with get_pol_var (see Section 8.2 and for an example
Chapter 5 );

• options (optional): a structure which can replace fields of the
optimoptions structure of the solvers (either lsqnonlin or fsolve). If
'options.override_all = 1' then options.optimoptions is used as the
options input argument of the solver. If options.Algorithm is set than

52This will save computation time as the polynomial of the initial grid does not have to be
reconstructed.

53With Time Iteration the policy function at the initial grid is assigned to POL.Y Y .
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the optimoptions structure will be created using the specified algorithm.
Otherwise only the fields specified in options will be used to replace their
standard values. See below for some details54.

The output is:

• POL: a structure to which the policy function is added. For polynomial
algorithms the policy functions are assigned to the field theta. This is
a p × d matrix with the polynomial coefficients, where d is the number
of policy variables, and p the number of polynomial terms. For spline
algorithms the policy function is pp_y, which is 1 × d cell array. Each
cell contains a spline for a policy variable. The splines are created using
Matlab’s griddedInterpolant. The interpolation method is specified in
POL.spl_meth for which 'spline' is the default option.

The solver uses the following functions from Matlab’s Optimization Toolbox:

• lsqnonlin for algorithms 'cheb_mse' and 'mono_mse';

• fsolve for all other algorithms. Note that for Time Iteration this solver
is only used to solve for the period t policy variable.

We use default options for fsolve and lsqnonlin with two exceptions. The
first exception is for Time Iteration. For this solution method the algorithm of
fsolve is set to 'trust-region', which allows for a sparse Jacobian matrix.
The 'JacobPattern' is set to sparse identity matrix55. The second exception
is the 'Display' option, which is set to 'off' by default.

Algorithms
We repeat the overview of the algorithms in Table 9.1. For recommendations
we refer to Section 1.4. The details of each algorithm are discussed in Chapter
7.

Table 9.1: Overview of algorithms

Algorithm Basis function Proj. Cond. Solution Meth.
'spl_dir' Spline Collocation Direct Comp.
'spl_tmi' Spline Collocation Time Iteration
'cheb_gal' Compl. Chebyshev polyn. Galerkin Newton type
'cheb_tmi' Compl. Chebyshev polyn. Min. Sq. Err. Time Iteration
'cheb_mse' Compl. Chebyshev polyn. Min. Sq. Err. Trust-Region
'mono_mse' Monomials (compl. polyn.) Min. Sq. Err. Trust-Region
'smol_dir' Smolyak-Chebyshev polyn. Collocation Direct Comp.
'smol_tmi' Smolyak-Chebyshev polyn. Collocation Time Iteration

54Or see the subfunction set_default_opt_solver inside solve_proj.
55In case of multiple policy variables the pattern consists of repeated blocks of identity

matrices.
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Optional fields
There are several optional fields in POL.

Spline algorithms

• spl_meth: for the algorithms 'spl_tmi' and 'spl_dir' the interpolation
method of the spline can be set in the optional field POL.spl_meth. The
Matlab documentation for the function griddedInterpolant describes
the choices under ‘Method’. The default of the toolbox is 'spline'.

Time Iteration

For the solution method 'tmi' several options can be set in fields of the structure
POL:

• diff_tol: the tolerance for the maximum absolute change in the the policy
function between two iterations: max

∣∣ŷj − ŷj−1
∣∣where ŷj is the policy

variable of iteration j. The default is 1e-8;

• res_tol: the tolerance εrmax, which is the acceptance level for the maximum
absolute value of the (Euler) residuals: max

∣∣∣R(ŷjt ; θj)∣∣∣. The default is
1e-8;

• max_iter: the maximum number of iterations in the 'while' loop. The
default is 500;

• step_acc: all tolerances are scaled with step_acc when the solver stalls56.
The default value is 0.1;

• mem_Y : dampening (memory) parameter when updating the policy
function Y , ie. Y = (1−memY )Ynew + memY Yold, where Ynew is the
solution at the gridpoints found in the current iteration. The default is
0. Only values between 0 and 1 are allowed.

10. Construction of grid
The grid parameters, and also the grid itself are stored in the structure GRID.
It is created with the function prepgrid, which takes the grid parameters, and
the algorithm as inputs. The output is the structure GRID which includes all
the required fields.

The prepgrid function is demonstrated in Section 10.4 with the example
script grid_example in the folder ‘PROMES_v05.0.0/Examples’, which shows
all the output variables (and intermediate variables). All functions of this

56When output.iterations == 0 indicating that the solver got stuck at the initial point.
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chapter except prepgrid are found in the subfolders
‘PROMES_v05.0.0/grid_subfun’ and ‘PROMES_v05.0.0/smolyak_subfun’.
The latter folder contains the code to construct the Smolyak grid. This code is
provided by Rafa Valero57, and the underlying algorithm is described in Judd
et al. (2014). The relevant subfolders need to be on the searchpath to
construct the grid.

10.1 Function prepgrid

The function prepgrid constructs structure GRID with all the necessary fields.
It mainly prepares the call to gridstruct or gridstruct_smolyak. The function
prepgrid has five input arguments:

• nn: the number of state variables;

• lb: vector of lower bounds in each dimension (1 x nn vector);

• ub: vector of upper bounds in each dimension (1 x nn vector);

• algo: the algorithm, which should be assigned to POL.algo. See
Subsection 9.1 for a list of options;

• algo_spec (optional): structure with algorithm specific fields. If this input
is not specified the default values are used. For the 'spline' algorithms
this is the field qq, which is set to qq = 5 ∗ ones(1, nn) by default. For the
algorithms with 'cheb' and 'mono' the specific fields are qq and ord_vec.
For 'cheb' the default values are qq = 6 ∗ ones(1, nn), and ord_vec =
5 ∗ ones(1, nn). For 'mono' the default values are qq = 4 ∗ ones(1, nn),
and ord_vec = 3 ∗ ones(1, nn). For the 'smol' algorithms only the field
mu has to be assigned, which is set to mu = 2 ∗ ones(1, nn) by default.

The function prepgrid assigns the grid_type, which is either 'spline', 'cheb
', 'mono' or 'smolyak'. For the types 'spline', 'cheb', and 'mono' we
call the function gridstruct. For the type 'smolyak' we call the function
gridstruct_smolyak. These two functions construct the structure GRID and
are explained in next two sections.

10.2 Function gridstruct

The function gridstruct is used to create a structure that contains all the
necessary properties of the grid when the grid_type is 'spline', 'cheb', or
'mono'. The necessary properties include the gridvectors, the full grid, and if
required the complete polynomial of the grid.

The input arguments are:
57Rafa Valero (2021) Smolyak Anisotropic Grid, MATLAB Central File Exchange,

Retrieved November 5, 2021 (https://www.mathworks.com/matlabcentral/fileexchange/50963-
smolyak-anisotropic-grid).
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• nn: the number of state variables

• qq: vector of number of gridpoints in each dimension (1× n vector);

• lb: vector of lower bounds in each dimension (1× n vector);

• ub: vector of upper bounds in each dimension (1× n vector);

• grid_type: either 'cheb' for a complete Chebyshev polynomial with
Chebyshev nodes, 'mono' for a complete polynomial based on
monomials with equidistant nodes, or 'spline' for an equidistant grid;

• ord_vec: the maximum order of the polynomial in each dimension (1× n
vector). This input is only required for grid_type 'cheb', and 'mono'

The function gridstruct adds the input arguments nn, qq, lb, ub, and
grid_type as fields to GRID. Several additional fields are added, which are
best explained with the example in Section 10.4. The additional fields are:

• mm which is the total number of gridpoints;

• gridV ecs, and xx which contain the initial gridvectors (see Sections 10.5),
and the initial grid (see Section 10.6), respectively;

• poly_elem which is a p×nmatrix which is used to construct a multivariate
polynomial as in Section 7.2. The element li,j refers to the univariate
polynomial Tli,j (xj). The multiplication of the polynomial terms in a row
construct a multivariate polynomial (either XX_poly or XX_poly_dw,
see the example in Section 10.4);

• XX_poly if the grid_type is 'mono', which is the complete polynomial
of the full grid xx (see Section10.9);

• gridV ecs_dw, xx_dw, and XX_poly_dw if the grid_type is 'cheb'
. These are the scaled down versions of gridV ecs, xx, and XX_poly,
respectively. The scaling down maps the variables linearly from [lb, ub] to
[−1, 1]. The nodes are the Chebyshev nodes. For more details see Sections
10.5, 10.6 and 10.9, respectively.

10.3 Function gridstruct_smolyak

The function gridstruct_smolyak is used to create a structure that contains
all the necessary properties of the grid when the grid_type is 'smolyak'. The
necessary properties include the gridvectors, the full grid, the Smolyak
polynomial, and the matrix inverse of the polynomial. This function makes
calls to the code provided by Rafa Valero58. The algorithm underlying this
code is originally described in Judd et al. (2014), and also found in Section 7.5.

58See Footnote 57.
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This manual does not further explain the code by Rafa Valero, which can be
found in the subfolder ‘smolyak_subfun’.

The input arguments are:

• nn: the number of state variables

• lb: vector of lower bounds in each dimension (1× n vector);

• ub: vector of upper bounds in each dimension (1× n vector);

• mu_vec: vector of the accuracy mu in each dimension (1× n vector).

The function gridstruct_smolyak adds the input arguments nn, lb, ub, and
grid_type as fields to GRID. Several additional fields are added, which are
best explained with the example in Section 10.4. The additional fields are:

• mm which is the total number of gridpoints;

• xx which is the initial grid (see Section 7.5);

• smol_elem_ani which is a p× n matrix used to construct a multivariate
polynomial as in Section 7.2. The element li,j refers to the univariate
polynomial Tli,j−1 (xj). The multiplication of the polynomial terms in a
single row give a multivariate polynomial XX_pol_dw, see the example
in Section 10.4;

• xx_dw, and XX_pol_dw, which are the scaled down initial grid, and the
Smolyak polynomial of this grid. The scaling down maps the variables
linearly from [lb, ub] to [−1, 1]. The nodes are the Chebyshev extrema.
For more details see Sections 7.5.

10.4 Example grid_example

We demonstrate the fields of the structure GRID with the file grid_example,
which prints some of the properties of the grid on screen. The function
grid_example can be found in the folder ‘PROMES_v05.0.0/Examples’. That
example prints the various grid variables on screen, and plots the initial grid.
The code (excluding the printing commands) is:

1 % Add relevant folders of Promes toolbox :
2 addpath ('.. ');
3 addpath ('..\ grid_subfun ');
4 addpath ('..\ smolyak_subfun ');
5
6 %% Initializtion of grid parameters :
7 gin.nn = 2;% number of state variables
8 gin.lb = [1 ,10];%lower bounds for [x1 ,x2]
9 gin.ub = [3 ,25];%upper bounds for [x1 ,x2]
10
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11 % Set solution method
12 % 'cheb_gal ','cheb_tmi ','cheb_mse ',
13 % 'spl_tmi ','spl_tmi ',
14 % 'smol_tmi ','smol_tmi ',
15 % 'mono_mse ';
16 algo = 'cheb_gal ';
17
18 if strncmp (algo ,'cheb ' ,4) || strncmp (algo ,'mono ' ,4)
19 meth_spec . ord_vec = 2* ones (1, gin.nn);%order in each

dim.
20 meth_spec .qq = [3 ,4];% number of nodes in each dim.
21
22 elseif strncmp (algo ,'spl ' ,3)
23 meth_spec .qq = [3 ,4];% number of nodes in each

dim.
24
25 elseif strncmp (algo ,'smol ' ,4)
26 meth_spec . mu_vec = [2 ,2];% accuracy in each dim.
27 end
28
29 % Construct structure with grid:
30 [GRID] = prepgrid (gin.nn ,gin.lb ,gin.ub ,algo , meth_spec )

;

All algorithms except Smolyak
The grid example is discussed for all algorithms except the Smolyak algorithm.
The other algorithms use an initial grid based on a Cartesian product. The grid
for these algorithms is constructed with the function gridstruct. The Smolyak
grid is constructed differently.

Gridvectors

The function gridstruct first constructs the gridvectors gridV ecs, plus the
scaled down versions in gridV ecs_dw in case the grid_type is 'cheb'. These
gridvectors consist of either equidistant or Chebyshev nodes with the specified
amount of gridpoints, and on the interval determined by the lower and upper
bound. The gridvectors are constructed using the function constr_vecs (see
Section 10.5). The gridvectors will be added as fields to the structure GRID.

In the example we have specified that the state variables have 3 and 4
gridpoints, with bounds [1, 3] for x1 and [10, 25] for x2. If the grid_type is
'mono' or 'spline' the function gridstruct will use equidistant nodes for
the gridvectors. With equidistant nodes the resulting fields are
gridV ecs{1, 1} =

[
1 2 3

]
for x1 and
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gridV ecs{1, 2} =
[

10 15 20 25
]
for x2, which are linearly spaced vectors

from lower to upper bound with the specified amount of gridpoints.
For the algorithms using Chebyshev polynomials prepgrid sets the

grid_type to 'cheb', which means Chebyshev nodes are used. These nodes in
the interval [−1, 1] are added as gridV ecs_dw. Scaled down variables are
computed using the linear mapping from the lower and upper bounds [lb, ub]
to [−1, 1]. The linear map is:

x̃ = 2x
ub− lb

− lb+ ub

ub− lb
(10.1)

where x̃ denotes the scaled down variable x (see Section 10.13).
The scaled down nodes correspond to the roots of the Chebyshev

polynomials. If there are q nodes, then these nodes are the roots of the order q
polynomial. For example, for q = 2 the nodes are the roots of the second order
polynomial 2x̃2

1 − 1. These roots are ± 1
2
√

2. The minimum number of nodes in
each dimension is therefore the order of the polynomial plus 159.

In our case we have q = 3 and q = 4, which results in:

gridV ecs_dw{1, 1} =
[
−0.866 0 0.866

]
gridV ecs_dw{1, 2} =

[
−0.924 −0.383 0.383 0.924

]
for x̃1 and for x̃2, respectively. To scale up these vectors into the interval [lb, ub]
we use the inverse of (10.1) (see Section 10.11). These scaled up vectors are
stored in the field gridV ecs.

Grid

After the gridvectors are constructed the function gridstruct will construct
the initial grid xx using the function constr_grid (see Section 10.6), which
takes the gridvectors as input. The function constr_grid constructs the
initial grid using Matlab’s ndgrid, which computes the Cartesian product of
the gridvectors. For each state variable the output of ndgrid is transformed
into a m × 1 column vector with m being the total number of nodes. These
column vectors are stacked next to each other to form the m × n matrix xx,
where n is the number of state variables. In our code:

1 [x1 ,x2] = ndgrid ( gridvecs {1,1}, gridvecs {1 ,2});
2
3 xx = NaN(mm ,nn);
4 xx (: ,1) = reshape (x1 ,[] ,1);
5 xx (: ,2) = reshape (x2 ,[] ,1);

With the gridvectors gridV ecs{1, 1} =
[

1 2 3
]
and gridV ecs{1, 2} =[

10 15 20 25
]
the result is:

59Otherwise the complete polynomial will contain a column vector with zeros.
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xx =
[

1 2 3 1 2 3 1 2 3 1 2 3
10 10 10 15 15 15 20 20 20 25 25 25

]ᵀ
(10.2)

where each column (note the transpose) in x represents a state variable, and
each row a unique gridpoint. For the Chebyshev polynomials we construct a
full grid for both the scaled up (xx) and scaled down (xx_dw) variables.

Complete polynomials

For the grid types using polynomials (grid_type='cheb' and
grid_type='mono') the function gridstruct will construct complete
polynomials as explained in Section 7.2. It first constructs the field poly_elem
with the function poly_elem_ani, and then calls the function get_poly_ani.
The complete polynomial with monomial basis functions of order two in both
dimensions is:

XX_poly =
[

1 x1 x2 x2
1 x1x2 x2

2
]

where x1 = xx (:, 1) and x2 = xx (:, 2) are the state variables in m × 1 column
vectors. The resulting complete polynomial XX_poly is printed on screen when
the algorithm is set to 'mono_mse'.

For Chebyshev polynomials only the scaled down grid x̃ (GRID.xx_dw)
is used. A second order complete Chebyshev polynomial with two variables
consists of the terms:

XX_poly_dw =
[

1 x̃1 x̃2 2x̃2
1 − 1 x̃1x̃2 2x̃2

2 − 1
]

(10.3)

The scaled down complete polynomial with Chebyshev nodes will be printed on
screen when algorithm is set to either 'cheb_gal', 'cheb_tmi' or 'mse'.

10.5 Function constr_vecs

This function constructs a cell array gridV ecs, where each cell contains a
vector of gridpoints (for state variable i this is a 1 × q (i) vector). This
function allows for either equidistant nodes (nod_type='equi') or Chebyshev
nodes (nod_type='cheb'). In addition, one can choose for scaled up or scaled
down variables, where scaled up variables are in the interval [lb (i) , ub (i)] and
scaled down variables in the interval [−1, 1].

This function is called by gridstruct. When grid_type='equi' scaled up
vectors with equidistant nodes are constructed, and when grid_type='cheb'
both scaled down and scaled up vectors are constructed.

The inputs of the function are:
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• qq: vector of number of gridpoints in each dimension (1× n vector);

• nod_type: a string set to either 'equi' for equidistant nodes, or 'cheb'
for Chebyshev nodes;

• scale_type (optional): a string which is either 'up' (default for
nod_type='equi') or 'dw' (default for nod_type='cheb'), referring to
scaled up variables (taking values between lb and ub) or scaled down
variables (taking values between −1 and 1), respectively;

• lb (required for scale_type='up'): vector of lower bounds in each
dimension (1× n vector);

• ub (required for scale_type='up'): vector of upper bounds in each
dimension (1× n vector).

The output of the function is:

• gridV ecs: 1× n cell array containing the grid vector (either scaled up or
scale down, depending on the scale_type) in each dimension (the i-th cell
contains a row vector of length q(i)).

Note that when gridstruct calls this function with scale_type='dw' then the
output will assigned to GRID.gridV ecs_dw.

The function constr_vecs uses the functions:

• chebnodes (for grid_type='cheb'), which returns the Chebyshev nodes
(see Section 10.14);

• sc_cheb_dw (for scale_type='dw'): see Section 10.13;

• sc_cheb_up (for grid_type='cheb' in combination with scale_type='
up'): see Section 10.11.

10.6 Function constr_grid

This function constructs a grid, based on the Cartesian product of the n
gridvectors in the cell array gridV ecs. The output is an m × n matrix xx,
where each column vector is a state variable, and each row represents a unique
gridpoint. The function constructs the grid with Matlab’s ndgrid, where each
grid vector is expanded into a n dimensional array. These arrays are reshaped
into column vectors, which are stacked next to each other.

The inputs of the function is:

• gridV ecs: a 1 × n cell array, as described in Section 10.5. It should be
noted that gridV ecs can contain either scaled up or scaled down variables.

The output of the function is:
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• xx: an m× n matrix where each column represents a state variable, and
each row represents a unique gridpoint. Note that xx can be either scaled
up or down 60.

10.7 Function poly_elem_ani

The function poly_elem_ani constructs the matrix poly_elem as explained in
Section 7.261. Each element li,j in poly_elem refers to the univariate polynomial
term Ti (xj) of order i for state variable j. These univariate polynomial terms
Ti (xj) are found in the matrix Φj (see Section 10.8). The matrix poly_elem and
the array Φ are used to construct the complete in the function get_poly_ani.

The inputs are:

• nn: the number of state variables;

• ord_vec: the maximum order of the polynomial in each dimension (1× n
vector).

The output is:

• poly_elem: an p × n matrix which is used to construct a complete
polynomial. Each element li,j refers to the univariate polynomial term
Ti (xj) of order i for state variable j.

10.8 Function constr_univar_basis

The function constr_univar_basis constructs the univariate polynomial in
matrix Φj up to order k, taking a vector xj as input, as explained in Section
7.2.

The inputs are:

• xx: an m× 1 vector of datapoints;

• order: the order of the univariate polynomial;

• poly_type: either 'cheb' for Chebyshev polynomials of the first kind, or
'mono' for monomials.

The output is:

• PHI: an m× order matrix, where each column i is the polynomial term
Ti (x). Note that T0 (x) is not included.

60The labeling as either xx or xx_dw is done in the function gridstruct.
61The matrix poly_elem is called LL in that section
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10.9 Function get_poly_ani

The function get_poly_ani constructs a complete polynomial of the grid, using
either Chebyshev polynomials (poly_type='cheb') or monomials (poly_type
='mono'). The procedure is explained in Section 7.2, where Ω is the output
XX_poly of the function get_poly_ani.

The inputs are:

• xx: an m× n matrix of gridpoints (either scaled up or scaled down);

• ord_vec: the maximum order of the polynomial in each dimension (1× n
vector);

• poly_type: a string either 'cheb' or 'mono', which is an input for the
function constr_univar_basis. For type='cheb' the Chebyshev
polynomials of the first kind are used, for type='mono' monomials are
used;

• poly_elem: a p × n matrix to construct an anisotropic polynomial (see
Section 10.7).

The output is:

• XX_poly: m× p matrix of the complete polynomial of poly_type for the
grid xx.

Complete polynomials
An example of complete polynomials with two variables, x1 and x2, is as follows.
For monomials the third order polynomial is:

XX_poly =
[

1 x1 x2 x2
1 x1x2 x2

2 x3
1 x2

1x2 x1x
2
2 x3

2
]

where x1 and x2 are column vectors (see function constr_grid in Section 10.6).
The complete Chebyshev polynomial (of the first type) of order two is:

XX_poly =
[

1 x̃1 x̃2 2x̃2
1 − 1 x̃1x̃2 2x̃2

2 − 1
]

(10.4)

where x̃1 and x̃2 are column vectors of the scaled down variables (see function
constr_grid in Section 10.6).

10.10 Function scal_mat_up

The function takes a scaled down grid xx_dw and scales it up to output xx,
using sc_cheb_up. The inputs are:

• xx_dw: scaled down grid (m× n matrix) (see Section 10.6)
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• lb: vector of lower bounds in each dimension (1× n vector);

• ub: vector of upper bounds in each dimension (1× n vector);

The output is:

• xx: a is scaled up grid ( m × n matrix), with each column i in xx_dw
linearly transformed using sc_cheb_up, using bounds lb (i) and ub (i).

The function uses:

• sc_cheb_up, which is explained in Section 10.11.

10.11 Function sc_cheb_up

This function uses a linear transformation of a variable of the form
xx = (xx_dw + 1)(ub − lb)/2 + lb. This means a variable xx_dw with the
basis interval [−1, 1] is linearly mapped to the interval [lb, ub]62. This is the
inverse transformation of the function sc_cheb_dw. The inputs are:

• lb and ub: the lower and upper bound (both scalars) of variable xx;

• xx_dw: an array of gridpoints for one variable on the interval [−1, 1].

The output is:

• xx: an array of one variable with the same dimensions as xx_dw and
scaled up to the interval [lb, ub].

10.12 Function scal_mat_dw

The function takes a scaled up grid (xx ) and scales it down (output xx_dw)
using sc_cheb_dw. The inputs are:

• xx: scaled up grid (m× n matrix) (see Section10.13)

• lb: vector of lower bounds in each dimension (1× n vector);

• ub: vector of upper bounds in each dimension (1× n vector);

The output is:

• xx_dw: a is scaled down grid (m× n matrix) with each column in xx (i)
linearly transformed using sc_cheb_dw, using bounds lb (i) and ub (i).

The function uses:

• sc_cheb_dw, which is explained in Section 10.13.
62Values can be outside the interval [−1, 1], which results in xx also being outside [lb, ub].
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10.13 Function sc_cheb_dw

This function linearly transforms a variable with the formula
xx_dw = 2xx/(ub − lb) − (lb + ub)/(ub − lb). A variable xx based on the
interval [lb, ub] is linearly mapped to interval [−1, 1]63. This is the inverse
transformation of the function sc_cheb_up. The inputs are:

• lb and ub: the lower and upper bound (both scalars) of variable xx;

• xx: an array (of any dimension) of gridpoints for one variable based on
the interval [lb, ub].

The output is:

• xx_dw: an array of one variable with the same dimensions as xx and
scaled down to the interval [−1, 1].

10.14 Function chebnodes

This function constructs a column vector of the Chebyshev nodes in the range
[−1, 1]. The input is:

• dd: the number of nodes.

The output is:

• x: a column vector (dd x 1) of the Chebyshev nodes in the range [−1, 1].

11. Update to v05.0.0 from
v04.3
As mentioned before the update from Promes v04.3 to Promes v05.0.0 is not
backwards compatible. In Promes v05.0.0 it is not be possible to evaluate
a policy function obtained with Promes v04.3. The changes necessary to run
code written for v04.3 with v05.0.0 are however minimal and discussed in Section
11.1. Some default values changed, and these are discussed in Section 11.2. The
added options are discussed in Section 11.3, and other changes in Section 11.4.

11.1 Updating your code
To update your code to v05.0.0 you need to account for the following changes:

63Values can be outside the interval [lb, ub], which results in xx also being outside [−1, 1].
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Table 11.1: Algorithm name changes

Algorithm Name Old name
Spline with Time Iteration 'spl_tmi' 'tmi'
Spline with Direct Computation 'spl_dir' 'dir'
Chebyshev with Galerkin’s method 'cheb_gal' 'gal '
Chebyshev, Min. of Sq. Errors 'cheb_mse' 'mse'
Monomials, Min. of Sq. Errors 'mono_mse' 'mono'

Function prepgrid

• prepgrid changed its name (was prep_grid);

• Input arguments changed. For splines and complete polynomials the
inputs qq and ord_vec (was order in v04.3) have to be set as fields of
the fifth argument algo_spec. (They were individual input arguments in
v04.3). In addition ord_vec has to be vector (order was scalar in v04.3).

Function get_pol_var

• The input spec_opt changed. The input spec_opt has to be set to '
ini_grid' to use the initial grid (was spec_opt = 1 in v04.3). The input
spec_opt has to be set to 'old_pol' to evaluate the old policy for Time
Iteration (was spec_opt = 2 in v04.3).

Function solve_proj

• The last input argument is changed to options (was opt_display in
v04.3), which determines the optimoptions structure for fsolve and
lsqnonlin (opt_display only determined the 'Display' option of
fsolve and lsqnonlin in v04.3).

Algorithm names in POL

• The algorithms changed names. Table 11.1 shows the new and the old
names;

• Algorithms have to be set in POL.algo (was POL.sol_meth in v04.3).

11.2 Changes in default settings
• For algorithms 'spl_tmi', 'cheb_tmi', and 'smol_tmi' the default

tolerance diff_tol is 10−8 (was 10−6 for 'tmi' in v04.3). The
parameter step_acc is set to 0.1 by default (was 0.01 for 'tmi' in v04.3);
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• Algorithms 'spl_tmi', and 'spl_dir' use interpolation method 'spline
'64 by default (was 'cubic' for algorithms 'tmi', and 'dir' in v04.3).

11.3 Added options
• Smolyak algorithms ('smol_dir' and 'smol_tmi') added;

• Algorithm with complete Chebyshev polynomial and Time Iteration ('
cheb_tmi') added;

• Option to use asymmetric polynomials added, by setting the maximum
order of the polynomial in each dimension in the input algo_spec.ord_vec
of the function prepgrid.

11.4 Other changes
• Complete polynomials: different procedure to construct the grid, using

the field GRID.poly_elem;

• prepgrid: all algorithms have default settings for the grid. The only
required inputs are nn, lb, ub, and algo;

• GRID: several fields are changed or added. The most important
changes are for complete polynomials: the fields XX_poly (was XX)
and XX_poly_dw (was XX_dw) are renamed, and the field poly_elem
is added;

• Grid subfunctions: several names of functions, and their arguments
changed.

64See Matlab documentation on griddedInterpolant.
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Part IV

Example models
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12. Deterministic
Brock-Mirman model
The Brock-Mirman model was used in Chapter 3 as a simple example. In this
chapter we describe the derivation of the equations used there. The
Brock-Mirman model is interesting, because the optimal solution can be
derived analytically, even for the stochastic version. We used the deterministic
version for simplicity reasons.

The agent in the Brock-Mirman model maximizes his discounted utility :

max
∞∑
t=1

βt−1 log (Ct)

subject to:

Kt+1 + Ct = Kα
t (12.1)

where Ct is consumption in period t, β is the discount factor, Kt is the capital
stock at the beginning of the period, and Kα

t is the production function.
We rewrite the maximization problem in a infinite horizon Lagrangian:

L =
∞∑
t=1

βt−1 {log (Ct) + λt [Kα
t −Kt+1 − Ct]}

where λt is the Lagrangian multiplier on the resource constraint. The solution
is an infinite series for Ct, Kt+1, and λt. The sufficient First Order Conditions
with respect to Ct, and Kt+1 are:

1
Ct

= λt (12.2)

λt = βλt+1αK
α−1
t+1

The second equation is referred to as the Euler equation, and characterizes
the dynamic solution. We can substitute out λ using (12.2) and obtain:

1
Ct

= β
1

Ct+1
αKα−1

t+1 (12.3)
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Analytical solution
The model has an analytical solution, which is:

Ct = (1− αβ)Kα
t

With this policy function next period’s capital stock is:

Kt+1 = Kα
t − (1− αβ)Kα

t

= (αβ)Kα
t

Substituting this into the The Euler equation yields:

1
(1− αβ)Kα

t

= β
1

(1− αβ) [(αβ)Kα
t ]αα [(αβ)Kα

t ]α−1

which proofs that both equations are satisfied for the given solution.

Steady state
From the Euler equation (12.3) we derive steady state capital:

K = [αβ]
1

1−α

and from the resource constraint (12.1) we derive steady state consumption:

C = K
α − δK

13. Standard RBC model
In Chapter 4 we used a standard Real Business Cycle (RBC) as an example.
In this chapter we derive the equations used in that chapter. This includes the
computation of the expected value using Gauss-Hermite quadrature.

13.1 Model
A standard Real Business Cycle (RBC) model with a representative agent is a
dynamic model where the agent has to determine how much to work, consume
and invest. Hours worked gives disutility, consumption gives instant positive
utility, while investment increases future capital income.
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The objective function of the agent is:

max E1

∞∑
t=1

βt−1

C1−ν
t

1− ν − χ
H

1+ 1
η

t

1 + 1
η


where Ct is period t consumption, and Ht is period t labor supply. The real
budget constraint is:

Ct +Kt+1 = ZtK
α
t H

1−α
t + (1− δ)Kt (13.1)

where Kt is the capital stock at the beginning of period t, and δ is the
depreciation rate of capital. Total Factor Productivity (TFP) Zt evolves by an
exogenous process:

zt = ρzzt−1 + σzεt (13.2)

where zt = log (Zt), ρz is the autocorrelation coefficient, and σz is the standard
deviation of the shocks. The shocks εt are standard normally distributed (εt ∼
N (0, 1)).

The optimization problem can be written with an infinite Lagrangian:

L = E
∞∑
t=1
βt

{
C1−ν
t

1−ν − χ
H

1+ 1
η

t

1+ 1
η

+ λt
[
ZtK

α
t H

1−α
t + (1− δ)Kt − Ct −Kt+1

]}
where λt is the shadow price of the budget constraint, and K1 is given.
Maximization of this Lagrangian with respect to hours Ht, consumption Ct
and capital in next period Kt+1 yields the following First Order Conditions:

C−νt = λt

χH
1
η

t = λtZt (1− α)Kα
t H
−α
t

λt = βλt+1 [Fk (Kt, Ht) + 1− δ]

Substituting out λ gives:

χH
1
η

t = C−νt Zt (1− α)Kα
t H
−α
t (13.3)

C−νt = βEt
{
C−νt+1

[
Zt+1αK

α−1
t+1 H

1−α
t+1 + 1− δ

]}
(13.4)

We can derive an analytical expression for labor supply, given capital, TFP and
consumption using (13.3):

Ht =
[

1− α
χ

C−νt ZtK
α
t

] η
1+αη

(13.5)
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13.2 Gauss-Hermite quadrature
The general rule for Gaussian-Hermite approximation is:

∞�

−∞

exp
(
−z2) g (z) dz ≈

J∑
j=1

ωjg (ζj) (13.6)

with Gauss-Hermite nodes j = 1, ..., J , roots ζj and weights ωj (see Judd, 1998).
Assume we have a function f (zt+1, x) with exogenous variable zt+1. This

variable evolves according to (13.2) with standard normally distributed shocks
εt+1 ∼ N (0, 1). The expected value of this function is:

Etf (zt+1, x) =
∞�

−∞

f (ρzzt + σzεt+1, x) 1√
2π

exp
(
−ε2t+1/2

)
dεt+1 (13.7)

To write (13.7) in the same form as (13.6) we need a change of variable
φ = εt+1√

2 , such that exp
(
−ε2t+1/2

)
= exp

(
−φ2). The approximation of the

integral is:

∞�

−∞

f
(
ρzzt + σz

√
2φ, x

) 1√
2π

exp (φ)
√

2dφ

≈
J∑
j=1

ωj√
π
f
(
ρzzt + σz

√
2ζj , x

)
where the extra term

√
2 (before dφ) follows from integration by substitution.

13.3 Steady state
To derive the analytical steady state we start with the Euler equation (13.4):

C
−ν = β

{
C
−ν [

ZαK
α−1

H1−α + 1− δ
]}

H =
[

1− β (1− δ)
Zαβ

] 1
1−α

K = Ω 1
1−αK

with Ω = 1−β(1−δ)
αβZ

.
Substituting this into the resource constraint (13.1) yields:
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C +K = ZK
α
H

1−α + (1− δ)K

C = ZK
α
[
Ω 1

1−αK
]1−α

− δK

=
(
ZΩ− δ

)
K

Substituting the expressions for H and C into the labor supply function
(13.3) and solving for K yields:

K =
[(

1− α
χ

Z
[
ZΩ− δ

]−ν)η Ω
αη+1
α−1

] 1
1+ην

14. Housing model
In Chapter 5 we used an RBC model with housing to demonstrate how to solve
a model with two policy variables. In this chapter we describe the model and
the derivations of the equations.

Model
The objective of the agent is:

max E1

∞∑
t=1

βt−1 [U (Ct) + V (Dt)]

where C is consumption, and D is housing. The agent maximizes the objective
subject to the budget constraint:

Ct +Kt+1 +Dt+1 ≤ ZtKα
t + (1− δk)Kt + (1− δd)Dt (14.1)

The First Order Conditions for Ct, Kt+1, and Dt+1 are:

U ′ (Ct) = λt

λt = βEt
{
λt+1

[
Zt+1αK

α−1
t+1 + 1− δk

]}
(14.2)

λt = βEt {V ′ (Dt+1) + λt+1 (1− δd)} (14.3)
We use the functional form:

U (Ct) = C1−ν
t − 1
1− ν

V (Dt) = %
D1−η
t − 1
1− η
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Steady state
The Euler equation for capital (14.2) is standard and yields:

1 = β
(
ZαK

α−1 + 1− δk
)

K =
(

Zαβ

1− β (1− δk)

) 1
1−α

From the Euler equation for housing (14.3) we derive:

V ′
(
D
)

= λ
1− β (1− δd)

β

%D
−η = C

−ν 1− β (1− δd)
β

D =
(

1− β (1− δd)
%β

) 1
−η

C
ν
η

And finally from the budget constraint:

C + δkK + δdD = ZK
α

C + δd

(
1− β (1− δk)

%β

) 1
−η

C
ν
η = ZK

α − δkK

We solve for C and D numerically using a non-linear equation solver.
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