
Appendix C: Estimation Details for
�Housing Market Spillovers: Evidence from an Estimated DSGE

Model�

1 Estimation Strategy

The parameters of the model are estimated using Bayesian methods. We use Bayesian methods
because they allow incorporating a priori information on the parameters of the model and also
because pure maximum likelihood tends to produce fragile results, particularly in situations in
which some parameters are weakly identi�ed.

2 Estimation of the model

Before estimating the model a transformation of the data that is consistent with the balanced-
growth path assumption must be taken. Let a sans-serif denote the detrended variables, that
is the variables scaled by their deterministic trend. Therefore: Ct = Ct=G

t
C , IHt = IHt=G

t
IH ,

IKt = IKt=G
t
IK , qt = qt=G

t
q. Let a superscript d denote the data (see Appendix A for data

sources). The measurement equations are:

logCdt � logCd1965:1 = bCt + (GC � 1) t
log IKd

t � log IKd
1965:1 = bIKt + (GKC � 1) t

log IHd
t � log IHd

1965:1 = bIHt + (GH � 1) t
log qdt � log qd1965:1 = bqt + (GQ � 1) t

logNd
ct = �bnct + (1� �) bn0ct

logNd
ht = �bnht + (1� �) bn0ht
�dt = b�t
Rdt = bRt
!dct =

wc
wc + w0c

b!ct + w0c
wc + w0c

b!0ct
!dht =

wh
wh + w

0
h

b!ht + w0h
wh + w

0
h

b!0ht
where real consumption, real business �xed investment and real residential investment are divided
by the civilian non-institutional population over 16 (CNP16OV), and a hat over a variable denotes
its percentage deviation from the steady state, detrended value. The �rst observation is taken away
from the trending series since we do not use information on the long-run averages of the detrended
data.

3 The simulation of the posterior with the Metropolis algorithm

In the Bayesian framework both the data Y and of the parameters � are random variables. Starting
from their joint probability distribution P (Y;�) one can derive the relationship between their
marginal and conditional distributions, i.e. the Bayes theorem:

P (�jY ) / P (Y j�) � P (�)
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The information contained in the prior distribution P (�) is updated with the likelihood,
P (Y j�), of the observed data to deliver the posterior distribution of the parameters P (�jY ).
The posterior density can then be used to perform statistical inference either on the parameters
themselves or on any function of them.

However, since the posterior distribution of the parameters does not belong to any known
family of distributions we need to build our inference on a (Monte Carlo) simulation algorithm
that generates a vector of draws from an unknown distribution using a known distribution. As
the length of the simulation increases the Markow chain produced by the algorithm converges to
the true unknown �target� distribution. The most commonly used algorithm for this purpose is
the Metropolis one.1 As in Schorfheide (2000)2 and Smets and Wouters (2007), inference is done
in two steps. First we maximize the log of the posterior density and compute an approximation
of the inverse of the Hessian at the mode. Second, we generate 200,000 draws from the posterior
distribution of the parameters using a multivariate normal (the so-called �jump�distibution) with
covariance matrix proportional to the inverse of the Hessian. The constant of proportionality is
called �scaling�factor. This factor is set at 0.2 and it results in an acceptance rate of 27 percent
in 200,000 draws. The �rst 50,000 draws are used as burn-in sample. The inference described in
the paper is based on a total of 150,000 draws from the posterior distribution.

3.1 The output of the Metropolis

The following graphs report the time series of the draws from the posterior distribution generated
by the Metropolis algorithm. On the horizontal axis each tick denotes 1,600 draws.
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1N. Metropolis, A.W. Rosenbluth, M.N. Rosenbluth, A.H. Teller, and E. Teller, �Equations of State Calculations
by Fast Computing Machines�, Journal of Chemical Physics, 21(6):1087-1092, 1953.

2Frank Schorfheide, 2000. "Loss function-based evaluation of DSGE models," Journal of Applied Econometrics,
vol. 15(6), pages 645-670.
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3.2 Convergence of the algorithm

Convergence of the algorithm is assessed by looking at the plots of the draws, the �rst four moments
(mean, standard deviation, skewness and kurtosis) obtained by splitting the draws into two samples
(�rst and second half) and by computing recursively the �rst four moments of the marginal posterior
distribution of each parameter. Table C.1 reports the �rst and second moments of the posterior
marginal distributions based on 200,000 draws. Table C.2 reports the moments based on 500,000
draws.
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Table C.1. Posterior mean and standard deviation: 200,000 draws
mean standard deviation

parameter �rst half second half �rst half second half
� 0.3170 0.3142 0.0409 0.0396
�0 0.5659 0.5680 0.0620 0.0607
� 0.5169 0.5179 0.1025 0.0928
�0 0.5106 0.5112 0.1020 0.1021
� 0.6521 0.6474 0.1434 0.1443
�0 0.9821 0.9776 0.1018 0.0996
�k;c 14.3652 14.2922 1.6103 1.5578
�k;h 10.9398 11.4178 2.4066 2.6513
� 0.7930 0.7940 0.0326 0.0323
rR 0.5996 0.5999 0.0393 0.0376
r� 1.4175 1.4161 0.0661 0.0673
rY 0.5281 0.5222 0.0602 0.0585
�� 0.8381 0.8363 0.0202 0.0193
�� 0.6814 0.6847 0.0868 0.0860
�w;c 0.7951 0.7927 0.0238 0.0234
�w;c 0.0796 0.0793 0.0414 0.0400
�w;h 0.9091 0.9091 0.0139 0.0126
�w;h 0.4360 0.4348 0.1210 0.1173
� 0.7021 0.7039 0.0915 0.0884
AC 0.0032 0.0032 0.0001 0.0001
AH 0.0008 0.0008 0.0008 0.0008
AK 0.0027 0.0027 0.0002 0.0002
�AC 0.9436 0.9427 0.0141 0.0144
�AH 0.9970 0.9968 0.0017 0.0020
�AK 0.9224 0.9231 0.0178 0.0164
�j 0.9594 0.9599 0.0138 0.0144
�z 0.9624 0.9648 0.0163 0.0149
�� 0.9213 0.9204 0.0218 0.0216
�AC 0.0102 0.0101 0.0007 0.0006
�AH 0.0195 0.0194 0.0011 0.0011
�AK 0.0106 0.0105 0.0013 0.0012
�j 0.0408 0.0404 0.0097 0.0100
�R 0.0034 0.0034 0.0003 0.0003
�z 0.0168 0.0173 0.0041 0.0040
�� 0.0255 0.0252 0.0045 0.0043
�p 0.0046 0.0046 0.0004 0.0004
�s 0.0003 0.0003 0.0001 0.0001
�n;h 0.1207 0.1206 0.0068 0.0068
�w;h 0.0072 0.0072 0.0005 0.0005
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Table C.2. Posterior mean and standard deviation: 500,000 draws
mean standard deviation

parameter �rst half second half �rst half second half
� 0.3198 0.3181 0.0410 0.0407
�0 0.5672 0.5676 0.0620 0.0630
� 0.5149 0.5155 0.0980 0.1000
�0 0.5105 0.5138 0.1020 0.1015
� 0.6453 0.6403 0.1416 0.1385
�0 0.9773 0.9823 0.1022 0.1012
�k;c 14.3400 14.2892 1.5737 1.5672
�k;h 11.1922 11.1316 2.5818 2.5239
� 0.7929 0.7928 0.0321 0.0329
rR 0.6012 0.5993 0.0389 0.0377
r� 1.4173 1.4192 0.0669 0.0676
rY 0.6012 0.5993 0.0608 0.0622
�� 0.8371 0.8379 0.0193 0.0188
�� 0.6845 0.6779 0.0844 0.0859
�w;c 0.7954 0.7939 0.0254 0.0256
�w;c 0.0802 0.0831 0.0400 0.0417
�w;h 0.9092 0.9091 0.0128 0.0125
�w;h 0.4355 0.4312 0.1204 0.1224
� 0.7007 0.6941 0.0901 0.0960
AC 0.0032 0.0032 0.0001 0.0001
AH 0.0008 0.0008 0.0008 0.0008
AK 0.0027 0.0027 0.0002 0.0002
�AC 0.9423 0.9427 0.0147 0.0144
�AH 0.9968 0.9969 0.0020 0.0021
�AK 0.9229 0.9230 0.0173 0.0169
�j 0.9597 0.9601 0.0143 0.0137
�z 0.9629 0.9643 0.0176 0.0151
�� 0.9185 0.9208 0.0229 0.0226
�AC 0.0101 0.0101 0.0006 0.0006
�AH 0.0194 0.0194 0.0011 0.0011
�AK 0.0106 0.0105 0.0013 0.0012
�j 0.0405 0.0400 0.0098 0.0093
�R 0.0034 0.0034 0.0034 0.0034
�z 0.0173 0.0174 0.0042 0.0043
�� 0.0259 0.0256 0.0052 0.0049
�p 0.0046 0.0046 0.0004 0.0004
�s 0.0003 0.0003 0.0001 0.0001
�n;h 0.1208 0.1210 0.0068 0.0068
�w;h 0.0071 0.0072 0.0005 0.0005
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Table C.3. Posterior mean and standard deviation: 200,000 and 500,000 draws
mean standard deviation
200,000 500,000

parameter second half second half �rst half second half
� 0.3170 0.3198 0.0409 0.0407
�0 0.5659 0.5672 0.0620 0.0630
� 0.5169 0.5149 0.1025 0.1000
�0 0.5106 0.5105 0.1020 0.1015
� 0.6521 0.6453 0.1434 0.1385
�0 0.9821 0.9773 0.1018 0.1012
�k;c 14.3652 14.3400 1.6103 1.5672
�k;h 10.9398 11.1922 2.4066 2.5239
� 0.7930 0.7929 0.0326 0.0329
rR 0.5996 0.6012 0.0393 0.0377
r� 1.4175 1.4173 0.0661 0.0676
rY 0.5281 0.6012 0.0602 0.0622
�� 0.8381 0.8371 0.0202 0.0188
�� 0.6814 0.6845 0.0868 0.0859
�w;c 0.7951 0.7954 0.0238 0.0256
�w;c 0.0796 0.0802 0.0414 0.0417
�w;h 0.9091 0.9092 0.0139 0.0125
�w;h 0.4360 0.4355 0.1210 0.1224
� 0.7021 0.7007 0.0915 0.0960
AC 0.0032 0.0032 0.0001 0.0001
AH 0.0008 0.0008 0.0008 0.0008
AK 0.0027 0.0027 0.0002 0.0002
�AC 0.9436 0.9423 0.0141 0.0144
�AH 0.9970 0.9968 0.0017 0.0021
�AK 0.9224 0.9229 0.0178 0.0169
�j 0.9594 0.9597 0.0138 0.0137
�z 0.9624 0.9629 0.0163 0.0151
�� 0.9213 0.9185 0.0218 0.0226
�AC 0.0102 0.0101 0.0007 0.0006
�AH 0.0195 0.0194 0.0011 0.0011
�AK 0.0106 0.0106 0.0013 0.0012
�j 0.0408 0.0405 0.0097 0.0093
�R 0.0034 0.0034 0.0003 0.0034
�z 0.0168 0.0173 0.0041 0.0043
�� 0.0255 0.0259 0.0045 0.0049
�p 0.0046 0.0046 0.0004 0.0004
�s 0.0003 0.0003 0.0001 0.0001
�n;h 0.1207 0.1208 0.0068 0.0068
�w;h 0.0072 0.0071 0.0005 0.0005
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3.3 Prior and posterior densities

In the following graphs we report the prior and posterior densities of selected parameters. The
posterior ones are based on 500,000 draws from the Metropolis algorithm and are estimated using
a Gaussian kernel. Red lines denote the posterior density while the blue one the prior density.
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Appendix D: Robustness Analysis for
�Housing Market Spillovers: Evidence from an Estimated DSGE

Model�

1 Overview

This Appendix reports the results of additional robustness exercises that are mentioned in the
paper �Housing Market Spillovers: Evidence from an Estimated DSGE Model�.

2 Robustness Analysis

2.1 The Role of Shocks and Frictions.

The ability of the various shocks and frictions to match certain moments of the data has been
assessed by reestimating the model shutting one or more frictions or shocks o¤ each time. Table
D.1a reports the simulated (mean) volatilities of some of the observables used in estimation.1 Table
D.1b reports correlations among selected observables. Table D.2 reports the mode of the posterior
distribution of the structural parameters.

Tables D.1a and D.1b report selected standard deviations and correlations for the data and the
baseline model in columns (a) and (b). Column (c) reports statistics for the model without capital
adjustment costs: this model generates excessive volatilility in business investment and a correlation
between consumption and GDP that is far lower than in the data. The model with perfect labor
mobility across sectors (column d) underestimates the positive correlation between housing prices
and housing investment. The model with �xed capacity utilization (column e) generates excessive
volatility of residential investment and house prices, and fails on the correlation between house prices
and housing investment. The model with �exible wages and prices (column f) fails to account for
the empirical volatilities and the correlations between the real variables (consumption, business and
residential investment). Similar considerations apply to the model with �exible wage only (column
g) and �exible prices only (column h). Finally, the model without borrowing constrained households
(column i) is similar to the baseline model in terms of unconditional moments properties: however,
as we already emphasize in the text, it generates a negative comovement between house prices and
consumption conditional on a housing demand shock.

Moving to parameter estimates, Table D.2 reports the posterior distribution of the estimated
parameters for the alternative model speci�cations in which real and nominal frictions are shut o¤
one at a time.

The main di¤erences concern the degree of substitutability between hours in the two sectors,
the share of unconstrained agents and the parameters measuring the nominal rigidities.

Figures D.1 to D.4 show the estimated impulse responses for the alternative versions of the
model. As we argue in the main text, wage rigidity is the most important friction to account
for the di¤erential responses of residential and business investment to monetary shocks. In the
case of a housing preference shock borrowing constraints, nominal wage rigidity, variable capacity
utilisation and imperfect labor mobility are all important elements in enhancing the model�s ability
to generate an increase in consumption following a shock that increases real house prics.

1The statistics are computed using the mode of the posterior distribution of the parameters and drawing 500 time
series for each variable.
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2.2 The Model with Technology Shocks only

The model has been estimated with only technology shocks. All the variables except residential
investment, consumption and business investment have an AR(1) measurement error attached to
the corresponding observation equation. Tables D.3 and D.4 report simulated volatilities and
correlations of this model.

This model also generates a lower volatility of all the variables. It also produces a very low
correlation between real house prices and real residential investment. It also generates a lower
correlation between real residential investment and output, and misses the empirical correlation
between consumption and housing prices (in the data it is 0:48; in the model it is 0:95).

2.3 The Role of House Price Data

In order to understand the implications of the choice of the data for house prices, we have estimated
the model using the OFHEO price index in place of the Census one.2 We have also estimated the
model using both time series under the assumption that each series measures house prices up to
some measurement error. In this case we have assumed the following measurement equations:

q̂Censust = bqt + vCensust

q̂OFHEOt = bqt + vOFHEOt

where the two measurement errors vCensust and vOFHEOt are assumed to be two mutually indepen-
dent, serially correlated processes:

vCensust = �Cv
Census
t�1 + �Censust

vOFHEOt = �Ov
OFHEO
t�1 + �OFHEOt

and bqt denotes the model counterpart of log real house prices, in deviation from the linear trend.
Figures D.5 and D.6 compare the impulse responses to housing preference (Figure D.5) and

monetary policy (Figure D.6) shocks computed using the mode of the posterior distribution of
the parameters obtained using the Census, the OFHEO and both indices. The implications for
the results in the paper are evaluated in terms of parameters estimates, impulse responses and
historical decompositions of real house prices. Figures D.5 and D.6 show that the three sets of
impulse responses are virtually identical.

A comparison of the contribution of monetary policy to the historical decomposition of real
house prices shows that the e¤ects of changes in the nominal interest rate have had similar conse-
quences on house prices, either measured by the Census or the OFHEO indices. Table D.5 shows
that the mode of the parameters estimated using the two house price data, both separately and at
the same time do not di¤er substantially.

2.4 The Role of Heterogeneous Household Preferences

We have estimated a version of our model where we constrain the preference parameters to be the
same across the two types of agents. The results are reported in Table D.6 and are quantitatively
similar to those reported in the paper.

2The Census series starts in 1965. The OFHEO series is only available from 1970. To ensure compatibility across
the two sets of estimates, we extrapolate the OFHEO series backwards for the years 1965-1969 using the growth rate
of the Census series during the same period.
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Concerning the e¤ects of a positive housing preference shock, the model in which constrained
and unconstrained agents have identical preferences (except for the discount factor) suggests a
larger elasticity of real consumption to real house prices. The response on impact is twice the one
in the model with heterogeneous households�preferences.

With respect to the e¤ects of an expansionary monetary policy shock, the model with identical
preferences suggests a larger response of residential investment.

3 Some Additional Checks

3.1 What is the Role of Measurement Error?

In the baseline model, we allow for (iid) measurement error only in wages and hours of the con-
struction sector. We have estimated two alternative versions of the model with di¤erent assumption
regarding measurement error: (1) a version of our model where we allow for measurement error
also in wages and hours in the non-housing sector; (2) a version of our model where we allow for
measurement error in all time series. We found no major di¤erences across models for the estimates
of the key model parameters. The main discrepancy between our benchmark model and the ver-
sions with measurement error arises when we compare monetary shocks between the model with
measurement error only for the housing labor market with the model with measurement error in
all variables. Allowing for measurement error in all variables reduces the contribution of monetary
policy shocks to business �uctuations. In practice, the model assigns a good deal of the �uctua-
tions in interest rates to �noise�, rather than random changes in the monetary policy rule. For
this reason, the standard deviation of the monetary shocks is found to be smaller (it falls from
around 0.3 percent to 0.1 percent), so that monetary shocks play a smaller role in the historical
decomposition. Figure D.10 plots the impulse responses to a monetary shock in the three models.
The response in the model with measurement error for all variables are a scaled-down version of
those of the benchmark model.

3.2 What do Credit Shocks do?

As a further check, we have estimated our model by allowing m to change over time. We have
treated mt as an observable random variable that follows an AR(1) process of the form logmt =
(1� �m) logm+ �m logmt�1 + "mt; where "mt is an i.i.d disturbance with standard deviation �m.
We have then constructed a time series for mt

3 using as a proxy household leverage, constructed as
the ratio of outstanding home mortgages over holdings of residential real estate.4 The implied series
is plotted in Figure D.11 together with the real house price series used in estimation.5 As the �gure
shows, the run-up in house prices since the late 1990s is roughly concomitant with an increase in
leverage of the household sector. However, household leverage fell in the 1970s (when house prices
also rose dramatically) and did not change much between 1997 and 2001 (at the beginning of the
housing boom). Our estimates (including the results from the historical decomposition) for this

3We have normalized m = 0:85 as in our benchmark model.
4The series are from the Flows of Funds. Home mortgages are in line 32 of Table B.100 - series FL153165105.Q

-. Residential real estate holdings are in line 4 of Table B.100 - series FL155035015.Q -.
5We set the average loan-to-value ratio m to 0.85, and feed into the model the demeaned series for leverage plotted

in Figure 2. Therefore, we do not use information on average leverage as an input in estimation. The reason why we
do so is because in the data many households have a mortgage but behave as unconstrained households, smoothing
consumption through other means (for instance, they might own equity and a mortgage at the same time, or they
borrow less than the maximum amount).
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version of the model are essentially unchanged from the baseline, with the only exception that we
now estimate two additional parameters, �m and �m: Their estimated values are respectively 0:994
and 0:0049.

A persistent shock to mt leads to a protracted increase in debt, housing prices and investment,
and consumption. However, the quantitative e¤ects are small, and insu¢ cient to generate large
�uctuations in house prices. A one standard-deviation shock (impulse responses are plotted in
Figure D.12) changes leverage by 50 basis points (from, say, 0.85 to 0.855) and, while it a¤ects
debt substantially (because it creates a large transfer of housing stock from lenders to borrowers),
it produces a modest e¤ect on house prices (house prices increase by less than 0.05 percent). Most
of the e¤ects of the leverage shock involve reallocation of the housing stock from one class of agents
to another, but their e¤ect on housing prices is limited.

To gain insight into why changes in m have little e¤ect on prices, one can study the two key
equations that determine the equilibrium behavior of housing demand (equations A:2 and A:3 in
appendix B of the paper). After rearranging, these two equations can be combined to write the
two relative housing demand equations as:

uh;t
uc;t

MRS b/w housing and consumption

= qt � Et
�

1

RRt
qt+1 (1� �h)

�
user cost of housing for unconstrained agents

uh0;t
uc0;t

MRS b/w housing and consumption

= qt � Et
�
�0GCuc0;t+1

uc0;t
qt+1 (1� �h) +

�
1

RRt
� �

0GCuc0;t+1
uc0;t

�
mtqt+1

�
user cost of housing for constrained agents

For changes in leverage to signi�cantly a¤ect housing demand and prices, it must be that they
signi�cantly alter the user cost (the right-hand side of the equations above). For unconstrained
agents, changes in m do not a¤ect their housing demand. For constrained agents, an increase in
m lowers the user cost, with an e¤ect that grows with gap between the stochastic discount factor
(the term 1=RRt � �0GCuc0;t+1=uc0;t) of the two groups. But, from a quantitative standpoint, this
e¤ect of changes in m is not large enough to generate large increases in asset prices.

4 Estimated Shocks and Newspaper Accounts

We have conducted a search of newspapers�articles for the period 1965-2006 trying to relate, from
an informal standpoint, our estimated shocks to contemporary accounts of developments in the
housing market at the time. Commentators�accounts in general agree with us that house prices
are driven by a large variety of factors, such as in�ation, technology, monetary policy. They also
seem to refer from time to time to mysterious changes in housing demand that they could not
immediately attribute to changes in fundamentals. Below, we report some examples:

For Housing preference shocks

� A positive housing shock in January 1970: �Privacy is another important factor for the buyer
in today�s market. With the increasing pressures of crowded living, more and more people
are searching for solitude� [ Anonymous (1970, January 18). �As Tastes Change, So Does
Broker�s Pitch: Brokers Attuned to Tastes,�New York Times. ]

� In 1975, a positive housing demand shock coming to an end: �People have been buying a
lot more house than necessary... They�ve had empty living rooms with plastic covers on the
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furniture while they were using the family room...� [ Lindsey, Robert (1975, December 7).
�Less House for a Home; Less House, and More Money, for a Home,�New York Times. ]

And for the recent boom:

� In 1998, the beginning of the housing boom: �Another show of wealth is a trend for buyers
to raze expensive houses to build newer, even more expensive houses more to their taste� [
Rather, John (1998, January 11). �Luxury Houses: Strong Market, Low Inventory; A strong
economy and Wall St. are just part of a boom,�New York Times. ]

� In 2001, signs of strong demand again, not based on clear fundamentals: �Housing strength
also re�ects surprisingly resilient consumer con�dence. Memories have faded away of the
early 1990s... Faith in real estate as an investment remains strong� [ Norris, Floyd (2001,
June 22). �Will This Slowdown Spare Housing, or Just Hit It Late?�New York Times ]

For Housing supply shocks
The 1970�s are also a period where supply-side conditions were often cited (at least, they were

cited far more than in the recent housing cycle) by the press and commentators are one of the
reasons for rising high prices in a period where the quantity could not keep up pace with demand.
Examples include:

� In 1973: �Building executives complained of severe shortages of various types of lumber prod-
ucts�[ Tomasson, Robert E. (1973, January 14). �Lumber Costs Smashing Control Barriers:
So the Prices Of Homes Go Up and Up,�New York Times.]

� In 1974: �As the cost of building materials have increased drastically, and the wages of
construction workers have soared, the cost of new housing has brought up the selling price on
existing homes� [ Jensen, Micheal C. (1974, August 25). �Home Buyers All Over U.S. Feel
the Economy�s Crunch,�New York Times ]

� In 1978: �Unless some signi�cant improvements occur on the supply side, [construction] prices
will remain high... lumber mills have been shut or curtailed for lack of timber [...] The major
question now is whether there will be a change in national forest policies�[ Mullaney, Thomas
E. (1978, April 28). �Trimming Cost of Home Building By Cutting Into National Forests,�
New York Times. ]
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Table D.1a. Volatilities of selected observables (percentages): the role of frictions

data baseline no k. full lab. �xed �ex. w �ex. w. �ex. p. no collat.
adj. mob. cap. and p. constr.

(a) (b) (c) (d) (e) (f) (g) (h) (i)
. . . . . . . . .

C 1.22 1.40 1.28 1.51 1.37 0.88 1.16 1.76 1.37
� 0.40 0.47 0.48 0.47 0.50 - 0.46 0.69 0.45
IH 9.97 8.01 9.05 8.37 12.59 5.96 6.16 9.87 7.81
q 1.87 2.08 1.80 2.12 4.83 1.90 2.04 2.73 2.06
R 0.32 0.32 0.47 0.31 0.36 - 0.33 0.39 0.31
IK 4.87 3.80 7.25 3.71 4.08 2.83 3.52 5.98 3.78
GDP 2.17 2.11 2.07 2.02 1.90 1.26 1.66 1.90 2.04

Notes: The volatilities are computed using 500 draws of the time series obtained by setting the parameters of the
model at the mode of the posterior distribution. The business cycle component of each variable is obtained using
the HP �lter with smoothing parameter set at 1,600. C: real consumption; IH: real residential investment; q: real
house prices; R: nominal interest rate; IK: real business investment; GDP: output.

Table D.1b. Selected correlations: the role of frictions
data baseline no k. full lab. �xed �ex. w �ex. w. �ex. p. no collat.

adj. mob. cap. and p. constr.
(a) (b) (c) (d) (e) (f) (g) (h) (i)

� (C;GDP ) 0.88 0.82 0.41 0.86 0.65 0.67 0.83 0.03 0.88
� (IH;GDP ) 0.78 0.65 0.09 0.56 0.53 0.42 0.30 0.57 0.66
� (IK;GDP ) 0.75 0.89 0.86 0.88 0.82 0.87 0.89 0.79 0.90
� (q;GDP ) 0.58 0.65 0.12 0.60 0.20 0.36 0.51 0.45 0.62
� (q; C) 0.48 0.46 0.32 0.59 0.19 0.12 0.45 -0.25 0.58
� (q; IH) 0.41 0.45 0.29 0.25 -0.17 0.12 0.06 0.57 0.43

Notes: The correlations are computed using 500 draws of the time series obtained by setting the parameters of the
model at the mode of the posterior distribution. The business cycle component of each variable is obtained using the HP
�lter with smoothing parameter set at 1,600. C: real consumption; IH: real residential investment; Q: real house prices;
R: nominal interest rate; IK: real business investment; NC: hours worked in the goods sector; NH; hours worked in the
residential sector; Y: output.
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Table D.2. Posterior modes of alternative models: the role of frictions

par. baseline no capital full labor �xed �ex. wage �ex. wage �ex. price no collateral
adj. cost mobility capital util. and price constraint

(a) (b) (c) (d) (e) (f) (g) (h)
. . . . . . . .

" 0.3117 0.3774 0.3053 0.3883 0.2642 0.1656 0.4110 0.2802
"0 0.5749 0.5471 0.5495 0.6608 0.3547 0.4914 0.5708 -
� 0.4789 0.4415 0.4520 0.5662 0.4553 0.4604 0.6640 0.5057
�0 0.4738 0.4731 0.4858 0.5577 0.4680 0.5175 0.4818 -
� 0.7523 0.7367 - 1.0703 1.2294 0.6810 0.7740 0.6862
�0 0.9790 0.9802 - 1.0319 1.1485 0.9938 0.9590 -
�k;c 16.0126 - 16.4534 16.5198 15.6971 16.0854 15.2134 16.0838
�k;h 10.0026 - 10.0170 9.9059 13.3400 8.5111 9.3556 10.0392
� 0.7970 0.7785 0.8170 0.8841 0.6086 0.8725 0.7632 -
rR 0.6071 0.2607 0.6091 0.6539 - 0.5771 0.6699 0.6008
r� 1.3743 1.5156 1.3902 1.3883 - 1.3895 1.7849 1.3404
rY 0.4938 0.7128 0.5104 0.4010 - 0.4284 0.3220 0.4785
�� 0.8393 0.7987 0.8453 0.7987 - 0.8157 - 0.8548
�� 0.6961 0.0452 0.6791 0.8223 - 0.7294 - 0.6373
�w;c 0.7901 0.9118 0.7674 0.7460 - - 0.7497 0.7598
�w;c 0.0656 0.0783 0.0988 0.0354 - - 0.1996 0.0656
�w;h 0.9218 0.9169 0.7995 0.7202 - - 0.9352 0.9170
�w;h 0.4134 0.6371 0.4298 0.2787 - - 0.4482 0.4101
� 0.7469 0.6171 0.7683 - 0.1747 0.6784 0.9866 0.7520
AC 0.0032 0.0033 0.0032 0.0032 0.0031 0.0032 0.0055 0.0032
AH 0.0008 0.0014 0.0010 0.0008 0.0007 0.0005 0.0103 0.0007
AK 0.0027 0.0026 0.0027 0.0027 0.0029 0.0028 -0.0009 0.0027
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Table D.3. Volatilities: the model with only technology shocks

C � IH q R IK nc nh GDP

Data 1.22 0.40 10.00 1.87 0.32 4.85 1.43 4.07 2.17
Benchmark 1.40 0.47 8.01 2.08 0.32 3.80 2.40 8.74 2.11

Only tech. shocks 0.92 0.11 5.72 0.90 0.09 3.07 0.80 5.73 1.53

Notes: The volatilities are computed using 500 draws of the time series obtained by setting the
parameters of the model at the mode of the posterior distribution. The business cycle component
of each variable is obtained using the HP �lter with smoothing parameter set at 1,600. C: real
consumption; IH: real residential investment; Q: real house prices; R: nominal interest rate; IK: real
business investment; NC: hours worked in the goods sector; NH; hours worked in the residential sector;
Y: output.

Table D.4. Selected correlations: the model with only technology shocks

� (C;GDP ) � (IH;GDP ) � (IK;GDP ) � (q;GDP ) � (q; C) � (q; IH)

Data 0.88 0.78 0.75 0.58 0.48 0.41
Benchmark 0.82 0.65 0.89 0.65 0.46 0.45

Only tech. shocks 0.83 0.54 0.84 0.73 0.95 0.17

Notes: The correlations are computed using 500 draws of the time series obtained by setting the parameters of
the model at the mode of the posterior distribution. The business cycle component of each variable is obtained
using the HP �lter with smoothing parameter set at 1,600. C: real consumption; IH: real residential investment;
Q: real house prices; R: nominal interest rate; IK: real business investment; NC: hours worked in the goods
sector; NH; hours worked in the residential sector; Y: output.
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Table D.5. Posterior modes of the model using alternative data for house prices

parameter Census OFHEO Both
(a) (b) (c)

" 0.3117 0.2953 0.2925
"0 0.5749 0.5671 0.5263
� 0.4789 0.5013 0.5091
�0 0.4738 0.4903 0.4902
� 0.7523 0.7908 0.7761
�0 0.9790 0.9931 0.9743
�k;c 16.0126 15.0621 16.7160
�k;h 10.0026 10.0242 10.6020
� 0.7970 0.7891 0.7741
rR 0.6071 0.6066 0.5975
r� 1.3743 1.3686 1.3847
rY 0.4938 0.4906 0.4959
�� 0.8393 0.8448 0.8523
�� 0.6961 0.6899 0.6515
�w;c 0.7901 0.7774 0.7770
�w;c 0.0656 0.0593 0.0627
�w;h 0.9218 0.9276 0.9237
�w;h 0.4134 0.3346 0.3776
� 0.7469 0.6919 0.6244
AC 0.0032 0.0034 0.0032
AH 0.0008 -0.0013 0.0005
AK 0.0027 0.0025 0.0027
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Table D.6. Posterior modes of alternative models: the role of household preferences

parameter Benchmark Same preferences
(a) (b)

" 0.3117 0.3929
"0 0.5749 0.3929
� 0.4789 0.5115
�0 0.4738 0.5115
� 0.7523 0.8691
�0 0.9790 0.8691
�k;c 16.0126 16.1596
�k;h 10.0026 10.0581
� 0.7970 0.8062
rR 0.6071 0.6358
r� 1.3743 1.3913
rY 0.4938 0.5012
�� 0.8393 0.8526
�� 0.6961 0.6771
�w;c 0.7901 0.7964
�w;c 0.0656 0.0642
�w;h 0.9218 0.9311
�w;h 0.4134 0.4144
� 0.7469 0.5981
AC 0.0032 0.0032
AH 0.0008 0.0008
AK 0.0027 0.0027
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Figure D.1. Impulse responses to a monetary policy shock: the role of real rigidities

Note: horizontal axis: quarters from the shock; vertical axis: percentage deviation from the steady state.
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Figure D.2. Impulse responses to a monetary policy shock: the role of nominal rigidities and
collateral constraints

12



0 5 10 15 20
0.2

0.1

0

0.1

0.2
Real Consumption

0 5 10 15 20

2

1

0

Real Business Investment

Baseline
No Capital Adj. Costs
No Variable Capacity
Full Labor Mobility

0 5 10 15 20
2

0

2

4

6
Real Residential Investment

0 5 10 15 20
1

0

1

2

3
Real House Prices

0 5 10 15 20
0.2

0

0.2

0.4

0.6
Real GDP

0 5 10 15 20
0.02

0

0.02

0.04

0.06
Nominal Interest Rate

Figure D.3. Impulse responses to a housing preference shock: the role of real rigidities
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Figure D.4. Impulse responses to a housing preference shock: the role of nominal rigidities and
collateral constraints
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Figure D.5. Impulse responses to a housing preference shock: parameters estimated using the
Census, the OFHEO and both indices at the same time
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Figure D.6. Impulse responses to a monetary policy shock: parameters estimated using the
Census, the OFHEO and both indices at the same time
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Figure D.7. Historical decomposition of real house prices: contribution of monetary policy
(Census vs. OFHEO)
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Figure D.8. Impulse responses to a housing preference shock: the role of heterogeneous preferences
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Figure D.9. Impulse responses to a monetary policy shock: the role of heterogeneous preferences
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Figure D.10: Impulse Responses to a Monetary Shock. The Role of Measurement Error.
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Figure D.11: House Prices and Households�Mortgage Debt to Housing Wealth Ratio
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Figure D.12: Impulse responses to an estimated innovation in the loan-to-value ratio
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Appendix E: Mathematical Derivations for the Equations of
�Housing Market Spillovers: Evidence from an Estimated DSGE

Model�

1 The model

1.1 Patient households

Lifetime utility is given by:

Vt = E0

1X
t=0

(�GC)
t zt

�
GC � "

GC � �"GC
log (ct � "ct�1) + jt log ht �

� t
1 + �

�
n1+�ct + n1+�ht

� 1+�
1+�

�
where the term in square brackets represents period utility. With this formulation, the marginal
utility of consumption is given by:

uct = zt

�
GC � "

GC � �"GC

��
1

ct � "ct�1
� �GC"

ct+1 � "ct

�
the marginal utility of housing is:

uht =
ztjt
ht

and the marginal disutility of working in the goods and housing sector:

unct = ztjt (1 + �)n
�
ct

�
n1+�ct + n1+�ht

� ���
1+�

unht = ztjt (1 + �)n
�
ht

�
n1+�ct + n1+�ht

� ���
1+�

Since along the balance growth path (BGP) consumption grows at the rate GC every quarter,
the marginal utility of consumption falls at this rate. Hence the transformed marginal utilityeuct = uctGtC is stationary around the steady state and equal to:

euct = GtCuct =
GC � "

GC � �"GC

 
GtC

ct � "ct�1
� �Gt+1C "

ct+1 � "ct

!

=
GC � "

GC � �"GC

0@ 1
ct
GtC

� "
GC

ct�1
Gt�1C

� �"
ct+1
Gt+1C

� "
GC

ct
GtC

1A
=

GC � "
GC � �"GC

 
1ect � "
GC
ect�1 � �"ect+1 � "

GC
ect
!

=
GC � "

GC � �"GC

 
1ect � "
GC
ect�1 � �"ect+1 � "

GC
ect
!

Tranformed consumption, bct = ct=Gt, and the scaled marginal utility of consumption euct:
euc =

GC � "
GC � �"GC

 
1

1� "
GC

� �"

1� "
GC

!
1ec =

=
GC � "

GC � �"GC

�
GC (1� �")
GC � "

�
1ec = 1ec
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are both constant in steady state.
The marginal utility of housing uht =

jtzt
ht

declines at the rate GH . Therefore the transformed
marginal utility euht = uhtGtH is stationary around the steady state and equal to:

euht = jtzt
~ht

In steady state it is equal to euh = 1eh since both jt and zt are equal to one.
Due to the assumptions on preferences and technology hours worked in the two sector are

stationary already in the level economy.
The patient household�s budget constraint:

ct +
kct
Akt

+ kht + kbt + qt [ht � (1� �h)ht�1] + pltlt =
wct
Xwct

nct +
wht
Xwht

nht

+ Divt � �t +
�
Rctzct +

1� �k
Akt

�
kct�1 + (Rhtzht + 1� �k) kht�1 + pbtkbt

+bt �
Rt�1bt�1
�t

+ (Rlt + plt) lt�1 �
a (zct)

Akt
kct�1 � a (zht) kht�1

where the adjustment costs on capital are

�t =
�kc
2

�
kct
kct�1

�GKC
�2 kct�1

�tAk
+
�kh
2

�
kht
kht�1

�GC
�2
kht�1

where �Ak is the gross growth rate of the investment speci�c technology process in the goods sector
and GKC is the BGP gross growth rate of capital in the goods sector. Adjustment costs on capacity
utilisation are:

a (zct) = Rc

�
1

2
$z2ct + (1�$) zct +

�$
2
� 1
��

a (zht) = Rh

�
1

2
$z2ht + (1�$) zht +

�$
2
� 1
��

where Rc and Rh are the steady state levels of the rental rate of capital in, respectively, the goods
and the housing sector.
The budget constraint can be transformed as follows:

ct
GtC

+
kct

AktG
t
C

+
kht
GtC

+
kbt
GtC

+
qt
GtC

 
ht
GtC

� (1� �h)
ht�1

Gt�1C

Gt�1C

Gt�1C

!
+
plt
GtC

lt =
wct

XwctGtC
nct +

wht
XwhtG

t
C

nht

+
Divt
GtC

� �t
GtC

+
�tAK

�t�1AK�AK
Rctzctkct�1

1

Gt�1C GC
+ (1� �k)

kct�1
Akt

Akt�1
Akt�1

1

GtC

+(Rhtzht + 1� �k)
kht�1

Gt�1C

Gt�1C

GtC
+ pbt

kbt
GtC

+
bt
GtC

� Rt�1
�t

bt�1

Gt�1C

Gt�1C

GtC
+
Rlt + plt
GtC

lt�1

�a (zct)
Akt

kct�1
Akt�1

Akt�1
GtC

� a (zht)
kht�1

Gt�1C

Gt�1C

GtC
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ct
GtC

+
kct

AktG
t
C

+
kht
GtC

+
kbt
GtC

+
qt
GtC

 
ht
GtC

� (1� �h)
ht�1

Gt�1C

Gt�1C

Gt�1C

!
+
plt
GtC

lt =
wct

XwctGtC
nct +

wht
XwhtG

t
C

nht

+
Divt
GtC

� �t
GtC

+
Rct�

t
AK

�AKGC
zct

kct�1

�t�1AKG
t�1
C

+ (1� �k)
kct�1
Akt

Akt�1
Akt�1

1

GtC

+(Rhtzht + 1� �k)
kht�1

Gt�1C

Gt�1C

GtC
+ pbt

kbt
GtC

+
bt
GtC

� Rt�1
�t

bt�1

Gt�1C

Gt�1C

GtC
+
Rlt + plt
GtC

lt�1

�a (zct)
Akt

kct�1
Akt�1

Akt�1
GtC

� a (zht)
kht�1

Gt�1C

Gt�1C

GtC

~ct +
~kct
akt

+ ~kht + ~kbt + ~qt~ht � (1� �h) ~qt
~ht�1
GH

+ ~pltlt =
~wct
Xwct

nct +
~wht
Xwht

nht + ~Divt � ~�t

+ ~Rctzct
~kct�1
GKC

+
(1� �k)
GKC

~kct�1
akt

+ (Rhtzht + 1� �k)
~kht�1
GC

+ pbt~kbt

�a (zct)
GKC

~kct�1
akt

� a (zht)
~kht�1
GC

+~bt �
Rt�1
�t

~bt�1
GC

+
�
~Rlt + ~plt

�
lt�1

where the following result, which will be derived later, has been used:

GtKC = �
t
AKG

t
C

Adjustment costs for capital can be transformed as follows:

�t
GtC

=
�kc
2

�
kct
kct�1

�GKC
�2 kct�1

Gt�1C GC�
t�1
Ak �Ak

+
�kh
2

�
kht
kht�1

�GC
�2 kht�1

Gt�1C GC

~�t =
�kc
2GKC

 
GKC

~kct
~kct�1

�GKC

!2
~kct�1 +

�kh
2GC

 
GC

~kht
~kht�1

�GC

!2
~kht�1

Using the de�nition of dividends:

DIVt =

�
1� 1

Xwct

�
wctnct +

�
1� 1

Xwht

�
whtnht +

�
1� 1

Xt

�
Yt

the terms 1
Xwct

wctnct and 1
Xwht

whtnht cancel out in the budget constraint so that dividends to the
patient households are given by:

DIVt =

�
1� 1

Xt

�
Yt

The �nal expression for the budget constraint is:
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~ct +
~kct
akt

+ ~kht + ~kbt + ~qt~ht � (1� �h) ~qt
~ht�1
GH

+ ~pltlt = ~wctnct + ~whtnht +

�
1� 1

Xt

�
~Yt

+

�
~Rctzct +

(1� �k)
akt

� ~kct�1
GKC

+ (Rhtzht + 1� �k)
~kht�1
GC

+ pbt~kbt

�~bt +
Rt�1
�t

~bt�1
GC

+
�
~Rlt + ~plt

�
lt�1 �

a (zct)

GKC

~kct�1
akt

� a (zht)
~kht�1
GC

� �kc
2GKC

 
~kct
~kct�1

�GKC

!2
~kct�1

+
�kh
2GC

 
~kht
~kht�1

�GC

!2
~kht�1

The choice variables for the patient household are the following: ct, ht, kct, kht, bt, nct, nht, kbt, zct
and zht. The �rst-order conditions of the patient household�s maximisation problem are:

uctqt = uht + �GCEt [uct+1qt+1 (1� �h)]
uct = �GCEt (uct+1Rt=�t+1)

uct
Akt

�
1 +

@�ct
@kct

�
= �GCEt

�
uct+1

�
Rct+1zct+1 �

a (zct)

Akt
+
1� �k
Akt+1

�
@�ct+1
@kct

��
uct

�
1 +

@�ht
@kht

�
= �GCEt

�
uct+1

�
Rht+1zht+1 � a (zht) + 1� �k �

@�ht+1
@kht

��
unct = uct

wct
Xwct

unht = uct
wht
Xwht

uct (pbt � 1) = 0

Rct =
a0 (zct)

Akt
Rht = a0 (zht)

uctplt = �GCEt [uct+1 (plt+1 +Rlt+1)]

where we have substitute away the Lagrange multiplier on the budget constraint. These optimality
condition must be transformed to take into account the fact the some of the variables are growing
over time.
The �rst order condition with respect to ht is transformed in the following way:

uctqt = uht + �GCEt (uct+1qt+1 (1� �h))

uctG
t
C

qt
GtQ

=
�
uhtG

t
H

�
+ �GCEt

"�
uct+1G

t
C

� qt+1
GtQ

!
(1� �h)

#

uctG
t
C

qt
GtQ

=

 
uht
GtC
GtQ

!
+ �GCEt

"�
uct+1G

t+1
C

1

GC

� 
qt+1

Gt+1Q

GQ

!
(1� �h)

#

eucteqt = euht + �GCEt [euct+1eqt+1 (1� �h)] GQ
GC

where GQ is the BGP growth rate of real house prices whose expression will be derived later.
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The transformation that must be applied to the �rst order condition with respect to lending, bt, is:

uct = �GCEt

�
uct+1Rt
�t+1

�
uctG

t
C = �GCEt

 
uct+1

Gt+1C

GC

Rt
�t+1

!

euct = �euct+1 Rt
�t+1

The �rst order condition with respect to kct is:

uct

�
1

Akt
+
�kc
GKC

�
kct
kct�1

�GKC
��

= �GCEt

�
uct+1

�
Rct+1zct+1 �

a (zct+1)

Akt+1
+
1� �k
Akt+1

�

+
�kc
2GKC

�
k2ct+1
k2ct

�G2KC
�

1

�t+1AK

!

It can be transformed in the following way:

GtCuct

"
1

Akt
+
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GKC
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~kct
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!#
= �GCEt
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GtCuct+1
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!
1
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!#

~uct

"
1
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~kct
~kct�1

� 1
!#

= �GCEt

"
~uct+1�

t
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t+1
AK

�
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+
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+
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2
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!!#
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"
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� 1
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�
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akt+1
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+
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+
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2
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� 1
!!#

The �rst order condition with respect to kht is:

uct

�
1 +

�kh
GC

�
kht
kht�1

�GC
��

= �GCEt [uct+1 (Rht+1zht+1 � a (zht+1) + 1� �k �

� �kh
2GC

 
k2ht+1
k2ht

�G2C

!!#
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This �rst order condition can be transformed into:

GtCuct

"
1 +

�kh
GC

 
GC

~kht
~kht�1

�GC

!#
= �GCEt

"
GtCuct+1

Gt+1C

Gt+1C

(Rht+1zht+1 � a (zht+1) +

+ 1� �k �
�kh
2GC

 
G2C

~k2ht+1
~k2ht

�G2C

!!#

~uct

"
1 + �kh

 
~kht
~kht�1

� 1
!#

= �GCEt

�
~uct+1
GC

(Rht+1zht+1 � a (zct) +

+ 1� �k �
�khGC
2

 
~k2ht+1
~k2ht

� 1
!!#

The �rst order conditions with respect to unct and unht are:

unct = uct
wct
Xwct

unht = uct
wht
Xwht

which can be transformed as follow:

unct = ztjt (1 + �)n
�
ct

�
n1+�ct + n1+�ht

� ���
1+�

= uctG
t
C

wct
XwctGtC

unht = ztjt (1 + �)n
�
ht

�
n1+�ct + n1+�ht

� ���
1+�

= uctG
t
C

wht
XwhtG

t
C

unct = ztjt (1 + �)n
�
ct

�
n1+�ct + n1+�ht

� ���
1+�

= ~uct
~wct
Xwct

unht = ztjt (1 + �)n
�
ht

�
n1+�ct + n1+�ht

� ���
1+�

= ~uct
~wht
Xwht

The �rst order condition with respect to intermediate inputs kbt is:

uct (pbt � 1) = 0

which implies that their price is always equal to 1.
The �rst order conditions with respect to capacity utilisation are:

Rct =
a0 (zct)

Akt
Rht = a0 (zht)

which are transformed as:

RctAkt = a0 (zct)

Rht = a0 (zht)
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~Rct =
a0 (zct)

akt
Rht = a0 (zht)

where we have taken into account the de�nition ~Rct = Rct�tk.
The �rst order condition with respect to land lt

uctplt = �GCEt (uct+1 (plt+1 +Rlt+1))

becomes after transformation:

uctG
t
C

plt
GtC

= �GCEt

"
uct+1G

t+1
C

 
plt+1

Gt+1C

+
Rlt+1

Gt+1C

!#
eucteplt = �GCEt

heuct+1 �eplt+1 + eRlt+1�i .
1.2 Impatient households

Lifetime utility is given by:

Vt = E0

1X
t=0

�
�0GC

�t
zt

"
GC � "0

GC � �0"0GC
log
�
c0t � "0c0t�1

�
+ jt log h

0
t �

� t
1 + �0

��
n0ct
�1+�0

+
�
n0ht
�1+�0� 1+�01+�0

#

With this formulation, the marginal utility of consumption is given by:

u0ct =
GC � "0

GC � �0"0GC

�
1

c0t � "0c0t�1
� �0GC"

0

c0t+1 � "0c0t

�
which can be made stationary using the same transformation employed for the patient householdseu0ct = u0ctGtC . The marginal utility of housing and the marginal disutilities of working are similar
to those of the patient households with the exception that the household-speci�c variables and
parameters are denoted with a prime.
The optimality conditions must be transformed to take into account the fact the some of the
variables are growing over time. The �rst order condition with respect to housing, ht:

uc0tqt = uh0t + �
0GCEt (uc0t+1 (qt+1 (1� �h))) + Et

�
�t
mqt+1�t+1

Rt

�
uc0tG

t
C

qt
GtQ

= uh0t
GtC
GtQ

+ �GCEt

 �
uc0t+1G

t+1
C

1

GC

� 
qt+1

Gt+1Q

GQ

!
(1� �h)

!

+ Et

 
�tG

t
C

mqt+1�t+1
Rt

1

GtQ

Gt+1Q

Gt+1Q

!

euc0teqt = euh0t + �GCEt (euc0t+1eqt+1 (1� �h)) GQ
GC

+ Et

�
~�t
m~qt+1�t+1

Rt
GQ

�
where GQ is the BGP growth rate of real house prices whose expression will be derived later.
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The �rst order condition with respect to lending, bt:

uc0t = �GCEt

�
uc0t+1Rt
�t+1

�
+ �t

uc0tG
t
C = �GCEt

 
uc0t+1

Gt+1C

GC

Rt
�t+1

!
+ �tG

t
C

euc0t = �euc0t+1 Rt
�t+1

+ ~�t

The budget constraint:

c0t + qt
�
h0t � (1� �h)h0t�1

�
=

w0ct
Xwct

n0ct +
w0ht
Xwht

n0ht +Div
0
t + b

0
t �

Rt�1b0t�1
�t

c0t
GtC

+
qt
GtC

 
h0t
GtC

� (1� �h)
h0t�1
Gt�1C

Gt�1C

Gt�1C

!
=

w0ct
XwctGtC

n0ct +
w0ht

XwhtG
t
C

n0ht +
Div0t
GtC

+
b0t
GtC

� Rt�1
�t

b0t�1
Gt�1C

Gt�1C

GtC

By substituting the expression for the dividends from the unions the transformed budget constraint
becomes:

~c0t + ~qt~h
0
t � (1� �h) ~qt

~h0t�1
GH

= ~w0ctn
0
ct + ~w0htn

0
ht +

~b0t �
Rt�1
�t

~b0t�1
GC

The borrowing constraint:

b0t = mEt

�
qt+1h

0
t�t+1
Rt

�
can be transformed as follows:

b0t
GtC

= mEt

�
qt+1h

0
t�t+1

GtCRt

�

~bt = mEt

 
qt+1h

0
t�t+1

GtHG
t
QRt

!

~bt = mEt

 
GQqt+1h

0
t�t+1

Gt+1Q GtHRt

!

~bt = mEt

 
GQ~qt+1~h

0
t�t+1

Rt

!
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1.3 Intermediate goods �rms

Wholesale �rms solve the following maximization problem:

max
Yt
Xt
+ qtIHt � (

P
witnit +Rctzctkct�1 +Rhtzhtkht�1 +Rltlt�1 + pbtkbt)

The two production technologies are:

Yt =
�
Act
�
n�ctn

01��
ct

��1��c (zctkct�1)�c
IHt =

�
Aht

�
n�htn

01��
ht

��1��h��b��l (zhtkht�1)�h k�bbt l�lt�1
The �rst order condition with respect to nct is:

(1� �c)�
Yt

Xtnct
= wct

which after taking into account that both Yt and wct growth at rate GC along the BGP becomes:

(1� �c)�
Yt

GtCXtnct
=

wct
GtC

(1� �c)�
~Yt

Xtnct
= ~wct

Similarly for n0ct:

(1� �c) (1� �)
Yt

Xtn0ct
= w0ct

(1� �c) (1� �)
~Yt

Xtn0ct
= ~w0ct

and for nht:

(1� �h � �l)�
qtIHt
nht

= wht

(1� �h � �l)�
qt
GtQ

IHt
GtH

nht =
wht
GtC

(1� �h � �l)�
~qt ~IHt

nht
= ~wht

and for n0ht:

(1� �h � �l) (1� �)
qtIHt
n0ht

= w0ht

(1� �h � �l) (1� �)
qt
GtQ

IHt
GtH

n0ht =
w0ht
GtC

(1� �h � �l) (1� �)
~qt ~IHt

n0ht
= ~w0ht

The �rst-order condition with respect to kct�1 is:

�c
Yt

Xtkct�1
= Rctzct
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which is transformed into:
�c
Xt

Yt
GtC

kct�1
Gt�1C

Gt�1C

GtC

1
�tAK

= Rct�
t
AKzct

�c
Xt

~Yt
~kct�1
GKC

= ~Rctzct.

Similarly with respect to kht�1 is

�h
qtIHt
kht�1

= Rhtzht

�h

qt
GtQ

IHt
GtH

kht�1
Gt�1C

Gt�1C

GtC

= Rhtzht

�h
~qt ~IHt
~kht�1
GC

= Rhtzht.

The �rst order condition with respect to lt, after setting lt = 1, is:

�lqtIHt = Rlt

�l
qt
GtQ

IHt
GtH

=
Rlt
GtC

�l~qt ~IHt = ~Rlt

and with respect to kbt:

�b
qtIHt
kbt

= pbt

�b

qt
GtQ

IHt
GtH

kbt
GtC

= pbt

�b
~qt ~IHt

~kbt
= pbt

1.4 Wage stickiness

Patient and impatient households supply their homogeneous labor services to labor unions. There
are four unions, two for each sector, each one acting in the interest of either patient or impatient
households. The unions di¤erentiate labor services, set nominal wages subject to a Calvo scheme
and o¤er labor services to intermediate labor packers who assemble the di¤erentiated labor services
into the homogeneous labor composites nc; nh; n0c and n

0
h. The probability of unions being allowed

to change nominal wages in each sector is common to both households. Wholesale �rms hire labor
services from the labor packers. Under partial indexation of nominal wages to past in�ation, the

10



wage-setting rules set by the union imply four wage Phillips curves that are isomorphic to the one
in the goods sector:1

ln!c;t � �wc ln�t�1 = �GC (Et ln!c;t+1 � �wc ln�t)� "wc ln (Xwc;t=Xwc)
ln!0c;t � �wc ln�t�1 = �0GC

�
Et ln!

0
c;t+1 � �wc ln�t

�
� "0wc ln (Xwc;t=Xwc)

ln!h;t � �wh ln�t�1 = �GC (Et ln!h;t+1 � �wh ln�t)� "wh ln (Xwh;t=Xwh)
ln!0h;t � �wh ln�t�1 = �0GC

�
Et ln!

0
h;t+1 � �wh ln�t

�
� "0wh ln (Xwh;t=Xwh)

with !i;t nominal wage in�ation, that is, !i;t =
wi;t�t
wi;t�1

for each sector/household pair, and

"wc = (1� �wc) (1� �GC�wc) =�wc
"0wc = (1� �wc)

�
1� �0GC�wc

�
=�wc

"wh = (1� �wh) (1� �GC�wh) =�wh
"0wh = (1� �wh)

�
1� �0GC�wh

�
=�wh

de�ne the slope of the wage equations.

1.5 Price stickiness

Price stickiness in the consumption-business investment sector is introduced by assuming monopo-
listic competition at the retail level, implicit costs of adjusting nominal prices following Calvo-style
contracts and partial indexation to lagged in�ation of those prices that can not be reoptimized.
The resulting in�ation equation is:

log �t � �� log �t�1 = � (Et log �t+1 � �� log �t)� "� log
�
Xt
X

�
+ log up;t

where the parameter "� is equal to "� =
(1���)(1��GC��)

��
.

1.6 Monetary policy

Rt = (Rt�1)
rR

�
�r�t

�
GDPt

GCGDPt�1

�rY �1�rR
rr1�rR

eRt
ASt

where GDPt is the sum of the value added of the two sectors, that is GDPt = Yt + qIHt + IKt

1.7 Market clearing

The market clearing conditions are:

Ct + IKct=Akt + IKht + kbt = Yt �
�kc
2

�
kct
kct�1

�GKC
�2 kct�1

�tAK
� �kh

2

�
kht
kht�1

�GC
�2
kht�1

ht + h
0
t � (1� �h)

�
ht�1 + h

0
t�1
�
= IHt

bt + b
0
t = 0

1Here we make use of the result that the price-setter stochastic discount factor for nominal payo¤s (the ratio
between future and current marginal utility of consumption) cancels out in the linearization of the Phillips curve
itself, so that the e¤ective discount factor is simply �GC ; rather than �GCEtuc;t+1=uc;t.
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which are transformed as follows:

Ct
GtC

+
IKct=Akt
GtC

+
IKht
GtC

+
kbt
GtC

=
Yt
GtC

� �kc
2

�
kct
kct�1

GtKC
GtKC

�GKC
�2

kct�1
GtC�

t
AK

�

��kh
2

�
kht
kht�1

GtC
GtC

�GC
�2
kht�1
GtC

ht
GtH

+
h0t

GHG
t�1
H

� (1� �h)
 

ht�1

GHG
t�1
H

+
h0t�1

GHG
t�1
H

!
=

IHt
GtH

bt
GtC

+
b0t
GtC

= 0

~Ct +
~IKct

akt
+ ~IKht + ~kbt = ~Yt �

�kc
2GKC

 
~kct
~kct�1

�GKC

!2
~kct�1 �

� �kh
2GC

 
~kht
~kht�1

�GC

!2
~kht�1

~ht + ~h
0
t � (1� �h)

 
~ht�1
GH

+
~h0t�1
GH

!
= ~IHt

~bt +~b
0
t = 0

2 Linear deterministic trends

Suppose there are linear deterministic trends in the technologies Ac; Ah and Ak. Let the corre-
sponding gross growth rates be respectively:

C ; H ; K

Because of these trends, the variables:

Y; c; c0;
kc
Ak
; kh; kb; qI

all grow at a common rate along the balanced growth path. This result stems from the form of the
utility function and the assumption of constant returns to scale in the production functions, which
implies common expenditure shares. To compute the net growth rate (x) of Y; we observe from the
production function that xY = (1� �c) C + �cxKC : We also know that xY = xKC � K : It then
follows that

xY = C +
�c

1� �c
K

xKC = C +
1

1� �c
K

xKH = C +
�c

1� �c
K
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In order to disentangle q and I separately, we use the formula for I to obtain the steady state
growth rate of I as xI = (1� �h � �l � �b) H + �hxKH + �bxKB:
Hence the steady state growth rate of I is:

xI = (1� �h � �l � �b) H + �h
�
C +

�c
1� �c

K

�
+ �b

�
C +

�c
1� �c

K

�

xI = xH = (�h + �b) C +
(�h + �b)�c
1� �c

K + (1� �h � �l � �b) H

and the growth rate of q is

xQ = (1� �h � �b) C +
(1� �h � �b)�c

1� �c
K � (1� �h � �l � �b) H

xQ = xY � xI
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3 Steady state of the model

We are interested in �nding the steady state of the transformed model. In the transformed model,
each variable is scaled by its long-run growth rate, e.g.

ect =
ct
GtCect�1 =
ct�1

Gt�1C

hence in each equation we perform the necessary replacements such as the following:

ct = ectGtC
ct�1 = ect�1Gt�1C

qt = eqtGtQ
uct = euctG�t

3.1 Calculations

Marginal utility of consumption and housing are equal, respectively, to 1=c and j=h in steady state.
From the transformed consumption Euler equation:

uct = �GCuct+1
Rt
�t+1

the GC term disappears and we can derive the steady state level of the real interest rate once we
have imposed � = 1:

R =
1

�

From the Euler equations for the two capital stocks we can derive the steady state values for the
rental rates:

Rkc =
�K
�
� (1� �k)

Rkh =
1

�
� (1� �k)

r � R

GC
� 1

Combining the Euler equation for kc and the expression for Rkc (from the optimal demand for
capital by �rms in the good sector) the following ratio is obtained:

�0 =
kc
Y
=

�
�GKC�c

�K � � (1� �kc)

�
1

X

Combining the Euler equation for kh and the expression for Rkh from the optimal demand for
capital by �rms in the good sector the following ratio is obtained:

�1 =
kh
qI
=

�GC�h
1� � (1� �kh)
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From the Euler equation for h:

�2 =
qh

c
=

j

1� �GQ (1� �h)

while from the Euler equation for h0 and b0:

�3 =
j

1� �0GQ (1� �h)�GQ
�
� � �0

�
m

� =
1� �0=�

c0

f =
X � 1
X

Y

For land, let l = 1; so that
Rl = �lqI

The following equations describe the steady state (using b + b0 = 0; where b = mGQqh
0=R and

steady state repayment is
�
R
GC

� 1
�
b; so that repayment equals

�
R
GC

� 1
�
mGQ
R qh0 = �4qh

0):

De�ne the adjusted depreciation rates:

�0h = 1� 1� �h
GH

�0k = 1� 1� �k
GKC

From the above ratios and using the budget constraints of the two types of households, we have:

kc = �0Y

kh = �1qI

qh = �2c

qh0 = �3c
0

�0h
�
qh+ qh0

�
= qI

c+ c0 + �0k (kc + kh) = Y

c+ �0hqh = f + rkc + rkh + �lqI +
X

wn+ �4qh
0 + div

c0 + �0hqh
0 =

X
wn� �4qh0 + div

Simple algebra yields:

�0h
�
�2c+ �3c

0� = qI

c+ c0 + �0k (�0Y + �1qI) = Y

c+ �0h�2c = f + r�0Y + r�1qI + �lqI +
X

wn+ �4�3c
0 + div

c0 + �0h�3c
0 =

X
wn� �4�3c0 + div
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The equations in labor market satisfy from the demand side:

(1� �c)�
Y

Xnc
= wc

(1� �c) (1� �)
Y

Xn0c
= w0c

(1� �h � �b � �l)�
qI

nh
= wh

(1� �h � �b � �l) (1� �)
qI

n0h
= w0h

To compute the steady state, we simply need to know the total wage bill plus union dividends
earned by each group, which equals

wcnc + whnh = �

�
(1� �c)

Y

X
+ (1� �h � �b � �l) qI

�
w0cn

0
c + w

0
hn
0
h = (1� �)

�
(1� �c)

Y

X
+ (1� �h � �b � �l) qI

�
Using � = (X � 1) =X, we have

�0h
�
�2c+ �3c

0� = qI
c+ c0 + �0k (�0Y + �1qI) = Y

c+ �0h�2c = �Y + r�0Y + r�1qI + �lqI + �

�
(1� �c)

Y

X
+ (1� �h � �b � �l) qI

�
+ �4�3c

0

c0 + �0h�3c
0 = (1� �)

�
(1� �c)

Y

X
+ (1� �h � �b � �l) qI

�
� �4�3c0

Eliminating one redundant equation (for example the second) and using the formula for qI

c+ �h�2c = (�+ r�0)Y + r�1�h
�
�2c+ �3c

0�+ ��(1� �c)Y
X

+ (1� �b � �h � �l) �h
�
�2c+ �3c

0��+ �4�3c0
c0 + �h�3c

0 = (1� �)
�
(1� �c)

Y

X
+ (1� �h � �b � �l) �0h

�
�2c+ �3c

0��� �4�3c0
Hence the consumption-output ratios c=Y and c0=Y solve:�

1 + �0h�2 (1� r�1 � �l � � (1� �b � �h � �l))
�
c�

�
(r�1 + �l + � (1� �h � �b � �l)) �0h�3 + �4�3

�
c0

=

�
X � 1
X

+ r�0X + �
(1� �c)
X

�
Y�

1 + �0h�3 � (1� �) (1� �h � �b � �l) �0h�3 + �4�3
�
c0 � (1� �) (1� �h � �b � �l) �0h�2c

= (1� �) (1� �c)
1

X
Y
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Solve for c=Y , c0=Y and qI=Y . De�ning the following variables:

�1 = 1 + �0h�2 (1� r�1 � �l � � (1� �h � �b � �l))
�2 = (r�1 + �l + � (1� �h � �b � �l)) �0h�3 + �4�3

�3 =
X � 1
X

+ r�0X + �
(1� �c)
X

�4 = 1 + �0h�3 � (1� �) (1� �h � �b � �l) �0h�3 + �4�3
�5 = (1� �) (1� �h � �b � �l) �0h�2
�6 = (1� �) (1� �c)

1

X

delivers the following solution:

c

Y
=

�3�4 + �2�6
�1�4 � �2�5

c0

Y
=

�1�6 + �3�5
�1�4 � �2�5

qI

Y
= �0h

�
�2c+ �3c

0�
3.2 Levels

In order to compute the levels of the variables in steady state we need to �nd �rst the value of
hours worked. It is useful to normalize � to 1. The labor market equilibrium is of the kind:

(1� �c)�
Y

X
= Xwc

�
n1+�c + n1+�h

� ���
1+�

n1+�c

(1� �h � �b � �l)�qI = Xwc
�
n1+�c + n1+�h

� ���
1+�

n1+�h

so that the ratio of hours worked is:

nh
nc
=

�
(1� �h � �b � �l) qIX

(1� �c)Y

� 1
1+�

plug back to get

(1� �c)�
Y

Xc
= Xw

�
1 +

(1� �h � �b � �l) qIX
(1� �c)Y

� ���
1+�

n1+�c

knowing Y
c and

qI
Y , this can be solved for nc; and consequently for all the variables of the model:

nc =

0BB@ (1� �c)� Y
XwXc�

1 + (1��h��b��l)qIX
(1��c)Y

� ���
1+�

1CCA
1

1+�

Similar formulas apply to nh; n0c and n
0
h. Once we know the levels of hours worked by the two

households in the two sectors, we can compute Y , c, c0, kc, kh and the product qI. To �nd q and
I separately we use:

kb = �bqI
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and
I =

�
Ahn

�
hn

01��
h

�
(�1q)

�h
1��h��b��l (�bq)

�h
1��h��b��l

Let qI be equal to �, then:

qI = �

I =
�
Ahn

�
hn

01��
h

�1��h��l (�1�)�h (�b�)�b
Given the values of hours worked, we can use the production function in the goods sector to compute
output Y :

Y =

The levels of capital stock in the two sectors are respectively:

kc = �0Y

kc = �1QI

the levels of consumption of the two agents:

c =

�
�3�4 + �2�6
�1�4 � �2�5

�
Y

c0 =

�
�1�6 + �3�5
�1�4 � �2�5

�
Y

and their stock of housing:

h = �2
c

q

h0 = �3
c0

q

Finally, the level of loans is:

b = mqGQ
h0

r
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