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A Constant Real and Nominal Rate Monetary Policies

The paper considers specifications of monetary policy that hold the real or nominal interest rate

constant in response to a government spending shock. Here, we illustrate the method used to solve

for these monetary policy specifications. We do this for the case of separable preference. We use

an analogous approach for the case of GHH preference.

Consider the closed economy limit of our model. A log-linear approximation of the key equilib-

rium conditions of this model are

ĉt = Etĉt+1 − σ(r̂nt − Etπ̂t+1), (1)

π̂t = βEtπ̂t+1 + κζσ−1ĉt + κζψν ŷt, (2)

ŷt =

(
C

Y

)
ĉt + ĝt, (3)

where ζ = 1/(1 + ψνθ) and ψν = (1 + ν−1)/a− 1.

Using equation (3) to eliminate ŷt from equations (1) and (2) yields

ĉt = Etĉt+1 − σ(r̂nt − Etπ̂t+1), (4)

π̂t = βEtπ̂t+1 + κζcĉt + κζg ĝt, (5)

where ζy = ζ(σ−1 + (C/Y )ψν) and ζg = ζψν . Recall that ĝt = ρg ĝt−1 + εg,t.
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A.1 Fixed Real Rate Monetary Policy

An equilibrium with a fixed real interest rate must satisfy

ĉt = Etĉt+1, (6)

π̂t = βEtπ̂t+1 + κζcĉt + κζg ĝt. (7)

We conjecture a solution of the form ĉ∗t = acĝt, π̂
∗
t = aπ ĝt. Using the method of undetermined

coefficients, it is easy to verify that such an equilibrium exists with

ac = 0, aπ = κ
ζg

1−βρg .

This equilibrium can be implemented with the following policy rule

r̂nt = Etπ̂t+1 + φπ(π̂t − π̂∗t )

= aπρg ĝt + φππ̂t − aπφπ ĝt

= φππ̂t − aπ(φπ − ρg)ĝt. (8)

A.2 Fixed Nominal Rate Monetary Policy

An equilibrium with a fixed nominal interest rate must satisfy

ĉt = Etĉt+1 + σEtπ̂t+1, (9)

π̂t = βEtπ̂t+1 + κζcĉt + κζg ĝt. (10)

We again conjecture a solution of the form ĉ∗t = acĝt, π̂
∗
t = aπ ĝt. Using the method of undeter-

mined coefficients, it is easy to verify that such an equilibrium exists with

ac =
ρgκζg
Ac

, aπ = κ ζc
1−βρg ac + κ

ζg
1−βρg .

where Ac = (1 − ρg)(1 − βρg) − ρgκζc. This solution is however only valid when Ac > 0. For

0 < ρg < 1, Ac is decreasing in ρg. There is a critical point at which Ac = 0. As ρg rises and Ac

falls towards zero, ac →∞. For values of ρg that are above this point, our solution method breaks

down since ac is infinite. Similar parameter restrictions arise in Eggertsson (2010) and Christiano,

Eichenbaum, and Rebelo (2011).

In the valid range, this equilibrium can be implemented with the following policy rule

r̂nt = φπ(π̂t − π̂∗t )

= φππ̂t − aπφπ ĝt. (11)
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B Persistence of the Government Spending Shocks

We use annual data on aggregate military procurement spending to calibrate the persistence of

the government spending shocks that we feed into our model. The first order autocorrelation of

aggregate military procurement spending suggests a great deal of persistence. However, higher

order autocorrelations suggest less persistence. To capture this behavior in a parsimonious way, we

estimate a quarterly AR(1) process by simulated method of moments using the first five autocor-

relations as moments.

More specifically, our procedure is the following. First, we take the log of aggregate military

procurement spending and detrend it (results are insensitive to this). We then estimate regressions

of the following form:

Gaggt = αj + βjG
agg
t−j + εt,

where Gaggt is detrended log aggregate military procurement spending. We use βj for j = 1, ..., 5

as the moments in our simulated methods of moments estimation. We then simulate quarterly

data from AR(1) processes with different degrees of persistence, time aggregate these data to an

annual frequency, and run these same regressions on the simulated data. We then find the value of

the quarterly AR(1) parameter that minimizes the sum of the squared deviations of the empirical

moments from the simulated moments.

C Linear Approximation of Equation (1) for Model Regressions

To calculate the open economy relative multiplier for simulated data from our model, we must take

a linear approximation of the dependent and independent variables in equation (1) so as to be able

to express the variables in the regression in terms of the variables in our model. For the output

regression, we approximate the specification in which we deflate regional GDP by the regional CPI

(The second specification in Table 2). The linear approximation of the dependent variable is

PHtYt
Pt
− PHt−2Yt−2

Pt−2

PHt−2Yt−2

Pt−2

=
Yt
Yt−2

ΠHtΠHt−1
ΠtΠt−1

− 1 = ŷt − ŷt−2 + π̂Ht + π̂Ht−1 − π̂t − π̂t−1 + h.o.t, (12)
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where h.o.t. denotes “higher order terms.” The linear approximation of the independent variable

is

PHtGHt
PWt

− PHt−2GHt−2

PWt−2

PHt−2Yt−2

PWt−2

=
GHt
Yt−2

ΠHtΠHt−1

ΠW
t ΠW

t−1
− GHt−2

Yt−2

= ĝt − ĝt−2 +

(
1− C

Y

)(
π̂Ht + π̂Ht−1 − π̂Wt − π̂Wt−1

)
+ h.o.t. (13)

D Separable Preferences Model

The model consists of two regions that belong to a monetary and fiscal union. We refer to the

regions as “home” and “foreign.” Think of the home region as the region in which the government

spending shock occurs – a U.S. state or small group of states – and the foreign region as the rest

of the economy. The population of the entire economy is normalized to one. The population of the

home region is denoted by n.

D.1 Households

The home region has a continuum of household types indexed by x. A household’s type indicates

the type of labor supplied by that household. Home households of type x seek to maximize their

utility given by

E0

∞∑
t=0

βtu(Ct, Lt(x)), (14)

where β denotes the household’s subjective discount factor, Ct denotes household consumption of

a composite consumption good, Lt(x) denotes household supply of differentiated labor input x.

There are an equal (large) number of households of each type. The period utility function takes

the form

u(Ct, Lt(x)) =
C1−σ−1

t

1− σ−1
− χLt(x)1+ν

−1

1 + ν−1
. (15)

The composite consumption good in expression (14) is an index given by

Ct =

[
φ

1
η

HC
η−1
η

Ht + φ
1
η

FC
η−1
η

Ft

] η
η−1

, (16)

where CHt and CFt denote the consumption of composites of home and foreign produced goods,

respectively. The parameter η > 0 denotes the elasticity of substitution between home and foreign

goods and φH and φF are preference parameters that determine the household’s relative preference
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for home and foreign goods. It is analytically convenient to normalize φH + φF = 1. If φH > n,

household preferences are biased toward home produced goods.

The subindices, CHt and CFt, are given by

CHt =
[∫ 1

0 cht(z)
θ−1
θ dz

] θ
θ−1

and CFt =
[∫ 1

0 cft(z)
θ−1
θ dz

] θ
θ−1 (17)

where cht(z) and cft(z) denote consumption of variety z of home and foreign produced goods,

respectively. There is a continuum of measure one of varieties in each region. The parameter θ > 1

denotes the elasticity of substitution between different varieties.

Goods markets are completely integrated across regions. Home and foreign households thus

face the same prices for each of the differentiated goods produced in the economy. We denote these

prices by pht(z) for home produced goods and pft(z) for foreign produced goods. All prices are

denominated in a common currency called “dollars.”

Households have access to complete financial markets. There are no impediments to trade in

financial securities across regions. Home households of type x face a flow budget constraint given

by

PtCt + Et[Mt,t+1Bt+1(x)] ≤ Bt(x) + (1− τt)Wt(x)Lt(x) +

∫ 1

0
Ξht(z)dz − Tt, (18)

where Pt is a price index that gives the minimum price of a unit of the consumption good Ct,

Bt+1(x) is a random variable that denotes the state contingent payoff of the portfolio of financial

securities held by households of type x at the beginning of period t + 1, Mt,t+1 is the stochastic

discount factor that prices these payoffs in period t, τt denotes a labor income tax levied by the

government in period t, Wt(x) denotes the wage rate received by home households of type x in

period t, Ξht(z) is the profit of home firm z in period t and Tt denotes lump sum taxes.1 To rule

out Ponzi schemes, household debt cannot exceed the present value of future income in any state

of the world.

Households face a decision in each period about how much to spend on consumption, how many

hours of labor to supply, how much to consume of each differentiated good produced in the economy

and what portfolio of assets to purchase. Optimal choice regarding the trade-off between current

consumption and consumption in different states in the future yields the following consumption

Euler equation: (
Ct+j
Ct

)−σ−1

=
Mt,t+j

βj
Pt+j
Pt

(19)

1The stochastic discount factor Mt,t+1 is a random variable over states in period t + 1. For each such state it
equals the price of the Arrow-Debreu asset that pays off in that state divided by the conditional probability of that
state. See Cochrane (2005) for a detailed discussion.
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as well as a standard transversality condition. Equation (19) holds state-by-state for all j > 0.

Optimal choice regarding the intratemporal trade-off between current consumption and current

labor supply yields a labor supply equation:

χLt(x)ν
−1
Cσ
−1

t = (1− τt)
Wt(x)

Pt
. (20)

Households optimally choose to minimize the cost of attaining the level of consumption Ct. This

implies the following demand curves for home and foreign goods and for each of the differentiated

products produced in the economy:

CH,t = φHCt

(
PHt
Pt

)−η
and CF,t = φFCt

(
PFt
Pt

)−η
, (21)

cht(z) = CHt

(
pht(z)
PHt

)−θ
and cft(z) = CFt

(
pft(z)
PFt

)−θ
, (22)

where

PHt =
[∫ 1

0 pht(z)
1−θdz

] 1
1−θ

and PFt =
[∫ 1

0 pft(z)
1−θdz

] 1
1−θ

, (23)

and

Pt =
[
φHP

1−η
Ht + φFP

1−η
F t

] 1
1−η

. (24)

The problem of the foreign household is largely analogous and we therefore refrain from de-

scribing all details for this problem. We use superscript ∗ to denote foreign variables. The utility

function of the foreign households is analogous to that of home households except that the foreign

conposite consumption index is

C∗t =

[
φ
∗ 1
η

H C
∗ η−1

η

Ht + φ
∗ 1
η

F C
∗ η−1

η

Ft

] η
η−1

, (25)

where C∗Ht is a composite index of foreign consumption of home goods and C∗Ft is a composite index

of foreign consumption of foreign goods. These indexes are given by analogous expressions to those

in equation (17). We assume for convenience that φ∗H + φ∗F = 1. The foreign budget constraint

is analogous to that of home households. This implies that the foreign Euler equation and labor

supply equations are analogous to those of the home household. Foreign demand for home and

foreign goods and for each of the differentiated products produced in the economy is given by

C∗H,t = φ∗HC
∗
t

(
PHt
P ∗t

)−η
and C∗F,t = φ∗FC

∗
t

(
PFt
P ∗t

)−η
, (26)

c∗ht(z) = C∗Ht

(
pht(z)
PHt

)−θ
and c∗ft(z) = C∗Ft

(
pft(z)
PFt

)−θ
, (27)
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where

P ∗t =
[
φ∗HP

1−η
Ht + φ∗FP

1−η
F t

] 1
1−η

. (28)

It is useful to note that combining the home and foreign consumption Euler equations to eliminate

the common stochastic discount factor yields(
C∗t
Ct

)−σ−1

= Qt, (29)

where Qt = P ∗t /Pt is the real exchange rate. This is the “Backus-Smith” condition that describes

optimal risk-sharing between home and foreign households (Backus and Smith, 1993). For simplic-

ity, we assume that all households—in both regions—initially have an equal amount of financial

wealth.

D.2 The Government

The economy has a federal government that conducts fiscal and monetary policy. Total government

spending in the home and foreign region follow exogenous AR(1) processes. Let GHt denote gov-

ernment spending per capita in the home region. Total government spending in the home region

is then nGHt. For simplicity, we assume that government demand for the differentiated products

produced in each region takes the same CES form as private demand. In other words, we assume

that

ght(z) = GHt

(
pht(z)
PHt

)−θ
and gft(z) = GFt

(
pft(z)
PFt

)−θ
. (30)

The government levies both labor income and lump-sum taxes to pay for its purchases of

goods. Our assumption of perfect financial markets implies that any risk associated with variation

in lump-sum taxes and transfers across the two regions is undone through risk-sharing. Ricardian

equivalence holds in our model.

We consider two specifications for tax policy. Our baseline tax policy is one in which government

spending shocks are financed completely by lump sum taxes. Under this policy, all distortionary

taxes remain fixed in response to the government spending shock. The second tax policy we

consider is a “balanced budget” tax policy. Under this policy, labor income taxes vary in response

to government spending shocks such that the government’s budget remains balanced throughout:

nPHtGHt + (1− n)PFtGFt = τt

∫
Wt(x)Lt(x)dx, (31)

This policy implies that an increase in government spending is associated with an increase in

distortionary taxes.
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The federal government operates a common monetary policy for the two regions. This policy

consists of the following augmented Taylor-rule for the economy-wide nominal interest rate:

r̂nt = ρrr̂
n
t−1 + (1− ρi)(φππ̂agt + φyŷ

ag
t + φg ĝ

ag
t ), (32)

where hatted variables denote percentage deviations from steady state. The nominal interest rate

is denoted r̂nt . It responds to variation in the weighted average of consumer price inflation in the

two regions π̂agt = nπ̂t + (1 − n)π̂∗t , where π̂t is consumer price inflation in the home region and

π̂∗t is consumer price inflation in the foreign region. It also responds to variation in the weighted

average of output in the two regions ŷagt = nŷt + (1− n)ŷ∗t . Finally, it may respond directly to the

weighted average of the government spending shock in the two regions ĝagt = nĝt + (1− n)ĝ∗t . See

section D.4 below, for precise definitions of these variables.

D.3 Firms

There is a continuum of firms indexed by z in the home region. Firm z specializes in the production

of differentiated good z, the output of which we denote yht(z). In our baseline model, labor is the

only variable factor of production used by firms. Each firm is endowed with a fixed, non-depreciating

stock of capital. The production function of firm z is

yht(z) = Lt(z)
a. (33)

The firm’s production function is increasing and concave. It is concave because there are diminishing

marginal returns to labor given the fixed amount of other inputs employed at the firm. Labor is

immobile across regions. We follow Woodford (2003) in assuming that each firm belongs to an

industry x and that there are many firms in each industry. The goods in industry x are produced

using labor of type x and all firms in industry x change prices at the same time.

Firm z acts to maximize its value,

Et

∞∑
j=0

Mt,t+j [pht+j(z)yht+j(z)−Wt+j(x)Lt+j(z)]. (34)

Firm z must satisfy demand for its product. The demand for firm z’s product comes from three

sources: home consumers, foreign consumers and the government. It is given by

yht(z) = (nCHt + (1− n)C∗Ht + nGHt)

(
pht(z)

PHt

)−θ
. (35)
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Firm z is therefore subject to the following constraint:

(nCHt + (1− n)C∗Ht + nGHt)

(
pht(z)

PHt

)−θ
≤ f(Lt(z)). (36)

Firm z takes its industry wage Wt(x) as given. Optimal choice of labor demand by the firm is

given by

Wt(x) = aLt(z)
a−1St(z), (37)

where St(z) denotes the firm’s nominal marginal cost (the Lagrange multiplier on equation (36) in

the firm’s constrained optimization problem).

Firm z can reoptimize its price with probability 1− α as in Calvo (1983). With probability α

it must keep its price unchanged. Optimal price setting by firm z in periods when it can change

its price implies

pht(z) =
θ

θ − 1
Et

∞∑
j=0

αjMt,t+jyht+j(z)

Et
∑∞

k=0 α
kMt,t+kyht+j(z)

St+j(z). (38)

Intuitively, the firm sets its price equal to a constant markup over a weighted average of current

and expected future marginal cost. Since all frims in industry x face the same wage, have the same

production function and set price at the same time, they will all set the same price, produce the

same amount, hire the same amount of labor and have the same marginal cost. We can therefore

replace all indexes z by x.

Combining labor supply (20) and labor demand (37), we get that

St(x)

Pt
=
χ

a

Lt(x)ν
−1−a+1Cσ

−1

t

(1− τt)
.

Using the production function to eliminate Lt(x) from this equation yields

St(x)

Pt
=
χ

a

yht(x)(ν
−1−a+1)/aCσ

−1

t

(1− τt)
. (39)

D.4 Linear Approximation

We linearize the model around a zero-growth, zero-inflation steady state. We start by deriving

a log-linear approximation for the home consumption Euler equation that relates consumption

growth and the return on a one-period, riskless, nominal bond. This equation takes the form

Et[Mt,t+1(1 + rnt )] = 1. Using equation (19) to plug in for Mt,t+1 and rearranging terms yields

Et

[
β

(
Ct+1

Ct

)−σ−1

Pt
Pt+1

]
=

1

1 + rnt
. (40)
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The zero-growth, zero-inflation steady state of this equation is β(1 + r̄n) = 1. A first order Taylor

series approximation of equation (40) is

ĉt = Etĉt+1 − σ(r̂nt − Etπ̂t+1), (41)

where ĉt = (Ct − C)/C, π̂t = πt − 1, and r̂nt = (1 + rnt − 1− r̄n)/(1 + r̄n).

A linear approximation of the “Backus-Smith” equation (29) is

ĉt − ĉ∗t = σq̂t, (42)

where q̂t = Qt − 1.

We next linearize equation (39) in period t+ j of a firm that last changed its price in period t.

Let ŷt,t+j(x) denote the percent deviation from steady state in period t + j of output in industry

x that last was able to change prices in period t. Let other industry level variables be defined

analogously. We then get that

ŝht,t+j(x) = ψvŷht,t+j(x) + σ−1ĉt+j +
τ

1− τ
τ̂t+j , (43)

where ŝht,t+j(x) denotes the percentage deviation from steady state of real marginal costs in period

t+ j of home output in industry x that last was able to change prices in period t, τ̂t = (τt − τ)/τ ,

and the parameter ψv = (ν−1 + 1)/a− 1.

The foreign analog of equation (43) is

ŝft,t+j(x) = q̂t+j + ψvŷft,t+j(x) + σ−1ĉ∗t+j +
τ

1− τ
τ̂t+j , (44)

Recall that we have assumed φH + φF = 1 and φ∗H + φ∗F = 1. These assumptions imply that

in steady state P = PH = PF = p(z). We then have that in steady state CH = φHC, CF = φFC,

C∗H = φ∗HC
∗, C∗F = φ∗FC

∗, ch(z) = CH , cf (z) = CF , c∗h(z) = C∗H , and c∗f (z) = C∗F . Since we assume

that home and foreign households have equal initial wealth, C = C∗. We also assume that steady

state government spending per capita is equal in the two regions, GH = GF = G. We furthermore

assume that overall demand for home products as a fraction of overall demand for all products is

equal to the size of the home population relative to the total population of the economy. In other

words, nCH + (1− n)C∗H = nC, which implies that φH∗ = (n/(1− n))φF .

We take a linear approximation of all prices relative to the home price level Pt. A linear

approximation of the demand for home and foreign goods by home households—equation (21)—

and its foreign counterpart—equation (26)—yield

ĉHt = ĉt − ηp̂Ht and ĉFt = ĉt − ηp̂Ft (45)
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ĉ∗Ht = ĉ∗t − η(p̂Ht − q̂t) and ĉ∗Ft = ĉ∗t − η(p̂Ft − q̂t), (46)

where ĉHt = (CHt −CH)/CH , Ĉt = (Ct −C)/C, p̂Ht = PHt/Pt − 1 and other variables are defined

analogously.

It is useful to define per capita home and foreign output as

YHt = 1
n

∫ 1
0 yht(z)dz and YFt = 1

1−n
∫ 1
0 yft(z)dz, (47)

and total output as

Yt = nYHt + (1− n)YFt.

In the steady state, we have YH = yh(z)/n, YF = yf (z)/(1− n), and Y = nYH + (1− n)YF .

Next we take a linear approximation of demand for home and foreign variety’s—equation (35)

and its foreign counterpart. The steady state of demand for home varieties is yh(z) = nCH +

(1 − n)C∗H + nGH . Using CH = φHC, C∗H = φ∗HC
∗, C = C∗, GH = G, φH + φF = 1, φH∗ =

(n/(1−n))φF , yields YH = C+G. Similar manipulations for the demand for foreign varieties yield

YF = C + G. Since Y = nYH + (1 − n)YF , we thus have Y = YH = YF . Using these steady state

relationships, we can take a linear approximation the demand in period t+ j for home and foreign

firms in industries that last changed their prices in period t. This yields

ŷht,t+j(x) = φH

(
C

Y

)
ĉHt+j+

1− n
n

φ∗H

(
C

Y

)
ĉ∗Ht+j+ ĝHt+j−θ

(
p̂ht(x)− p̂Ht+j −

j∑
k=1

πt+k

)
, (48)

ŷft,t+j(x) =
n

1− n
φF

(
C

Y

)
ĉFt+j +φ∗F

(
C

Y

)
ĉ∗Ft+j + ĝFt+j − θ

(
p̂ft(x)− p̂Ft+j −

j∑
k=1

πt+k

)
, (49)

where ĝHt+j = (GHt+j −G)/Y and ĝFt+j = (GFt+j −G)/Y .

Given the way prices are set in the economy, home output from equation (47) can be expressed

as

YHt =
1

n

∞∑
j=0

(1− α)αjyht−j,t(x).

A linear approximation of this equation is

ŷHt =

∞∑
j=0

(1− α)αj ŷht−j,t(x).

Using equation (48) to plug in for ŷht−j,t(x) yields

ŷHt = φH

(
C

Y

)
ĉHt +

1− n
n

φ∗H

(
C

Y

)
ĉ∗Ht + ĝHt

−θ
∞∑
j=0

(1− α)αj

(
p̂ht−j(x)− p̂Ht −

j−1∑
k=0

πt−k

)
. (50)
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Using again the structure of price setting in the economy, equation (23) for the price index for

home produced goods can be rewritten as

P 1−θ
Ht =

∞∑
j=0

(1− α)αjpht−j(x)1−θ.

A linear approximation of this equation is

p̂Ht =

∞∑
j=0

(1− α)αj

(
p̂ht+j(x)−

j−1∑
k=0

π̂t−k

)
.

Combining this equation and equation (50) yields

ŷHt = φH

(
C

Y

)
ĉHt +

1− n
n

φ∗H

(
C

Y

)
ĉ∗Ht + ĝHt.

A similar set of manipulations for foreign output and foreign prices yields

ŷFt =
n

1− n
φF

(
C

Y

)
ĉFt + φ∗F

(
C

Y

)
ĉ∗Ft + ĝFt.

Using equations (45) and (46) to eliminate ĉHt, ĉ
∗
Ht, ĉFt, and ĉ∗Ft from the last two equations

yields

ŷHt = φH

(
C

Y

)
ĉt +

1− n
n

φ∗H

(
C

Y

)
ĉ∗t

−η
(
C

Y

)(
φH +

1− n
n

φ∗H

)
p̂Ht + η

(
C

Y

)
1− n
n

φ∗H q̂t + ĝHt, (51)

ŷFt =
n

1− n
φF

(
C

Y

)
ĉt + φ∗F

(
C

Y

)
ĉ∗t

−η
(
C

Y

)(
n

1− n
φF + φ∗F

)
p̂Ht + η

(
C

Y

)
φ∗F q̂t + ĝFt. (52)

Combining equations (43), (48), and (51) and (??), (49), and (52) yields

ŝht,t+j(x) = ψvŷHt+j − ψvθ

(
p̂ht(x)− p̂Ht+j −

j∑
k=1

π̂t+k

)
+ σ−1ĉt+j +

τ

1− τ
τ̂t+j , (53)

ŝft,t+j(x) = q̂t+j + ψvŷFt+j − ψvθ

(
p̂ft(x)− p̂Ft+j −

j∑
k=1

π̂t+k

)
+ σ−1ĉ∗t+j +

τ

1− τ
τ̂t+j . (54)

A linear approximation of equations (23) yields

π̂Ht = 1−α
α (p̂ht(x)− p̂Ht) and π̂Ft = 1−α

α (p̂ft(x)− p̂Ft) (55)
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A linear approxmation of equation (38) and its foreign counterpart yields

p̂ht(x) = (1− αβ)
∞∑
j=0

(αβ)jEtŝht,t+j(x) + αβ
∞∑
j=1

(αβ)jEtπ̂t+j , (56)

p̂ft(x) = (1− αβ)

∞∑
j=0

(αβ)jEtŝft,t+j(x) + αβ

∞∑
j=1

(αβ)jEtπ̂t+j . (57)

Using equations (53) and (54) to substitute for ŝht,t+j(x) and ŝft,t+j(x) in the last two equations

yields

p̂ht(x) = (1− αβ)ζ
∞∑
j=0

(αβ)jEt

[
ψvŷHt+j + θψvp̂Ht+j + σ−1ĉt+j +

τ

1− τ
τ̂t+j

]

+αβ
∞∑
j=1

(αβ)jEtπ̂t+j , (58)

p̂ft(x) = (1− αβ)ζ
∞∑
j=0

(αβ)jEt

[
q̂t+j + ψvŷFt+j + θψvp̂Ft+j + σ−1ĉ∗t+j +

τ

1− τ
τ̂t+j

]

+αβ

∞∑
j=1

(αβ)jEtπ̂t+j , (59)

where ζ = 1/(1 + ψvθ). Quasi-differencing these equations yields

p̂ht(x)− αβEtp̂ht+1(x) = (1− αβ)ζ

[
ψvŷHt + θψvp̂Ht + σ−1ĉt +

τ

1− τ
τ̂t

]
+ αβEtπ̂t+1, (60)

p̂ft(x)− αβEtp̂ft+1(x) = (1− αβ)ζ

[
q̂t + ψvŷFt + θψvp̂Ft + σ−1ĉ∗t +

τ

1− τ
τ̂t

]
+ αβEtπ̂t+1, (61)

Using equation (55) to eliminate p̂ht(x) and p̂ft(x) from these equations yields

πHt − αβEtπHt+1 +
1− α
α

(p̂Ht − αβEtp̂Ht+1)

= κζ

[
ψvŷHt + θψvp̂Ht + σ−1ĉt +

τ

1− τ
τ̂t

]
+ (1− α)βEtπ̂t+1, (62)

πFt − αβEtπFt+1 +
1− α
α

(p̂Ft − αβEtp̂Ft+1)

= κζ

[
q̂t + ψvŷFt + θψvp̂Ft + σ−1ĉ∗t +

τ

1− τ
τ̂t

]
+ (1− α)βEtπ̂t+1, (63)

where κ = (1 − α)(1 − αβ)/α. Notice that p̂Ht+1 − p̂Ht = π̂Ht+1 − π̂t+1. This implies that

p̂Ht − αβp̂Ht+1 = (1− αβ)p̂Ht − αβEtπ̂Ht+1 + αβEtπ̂t+1. Similarly,

Using these in equations (62) and (63) yields

π̂Ht = βEtπ̂Ht+1 + κζψvŷHt − κζp̂Ht + κζσ−1ĉt + κζ
τ

1− τ
τ̂t, (64)
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π̂Ft = βEtπ̂Ft+1 + κζψvŷFt − κζp̂Ft + κζq̂t + κζσ−1ĉ∗t + κζ
τ

1− τ
τ̂t. (65)

A linear approximation of equation (24) is

φH p̂Ht + φF p̂Ft = 0, (66)

which implies

p̂Ft = −φH
φF

p̂Ht. (67)

First differencing equation (69) and rearranging terms yields

π̂t = φH π̂Ht + φF π̂Ft. (68)

A linear approximation of equation(28) is

φ∗H p̂Ht + φ∗F p̂Ft = q̂t. (69)

First differencing this equation and rearranging terms yields

π̂∗t = φ∗H π̂Ht + φ∗F π̂Ft. (70)

E Model with GHH Preference

The second model we consider in the paper is the same as the baseline model except that households

have GHH preferences. The utility function of home households is, in this case, given by

u(Ct, Lt(x)) =

(
Ct − χLt(x)1+ν

−1
/(1 + ν−1)

)1−σ−1

1− σ−1
, (71)

where ν is the Frisch elasticity of labor supply. Home household labor supply is then

u`(Ct, Lt(x))

uc(Ct, Lt(x))
= (1− τt)

Wt(x)

Pt
,

where the subscripts on the function u denote partial derivatives. Notice that these partial deriva-

tives take the form

uct =

(
Ct − χ

L1+ν−1

1 + ν−1

)−σ−1

,

u`t = −

(
Ct − χ

L1+ν−1

1 + ν−1

)−σ−1

χL
1/ν
t .

(72)
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This implies that home labor supply is

χL
1/ν
t = (1− τt)

Wt(x)

Pt
. (73)

Labor demand and the production function of firms are the same as in the baseline model.

Combining labor supply, labor demand, and the production function of the firms yields

St(x)

Pt
=

1

(1− τt)
χ

a
yψvht (x) (74)

A linear approximation of this equation in period t + j for firms that last changed their price

in period t yields

ŝht,t+j(x) = ψvŷht,t+j(x) +
τ

1− τ
τ̂t (75)

Using this equation and its foreign analog, we can derive Phillips curves for home and foreign

PPI inflation in the same way as we did for the baseline model. These derivations yield

π̂Ht = βEtπ̂Ht+1 + κζψvŷHt − κζp̂Ht + κζ
τ

1− τ
τ̂t, (76)

π̂Ft = βEtπ̂Ft+1 + κζψvŷFt − κζp̂Ft + κζq̂t + κζ
τ

1− τ
τ̂t. (77)

With GHH preference, the consumption Euler equation of households becomes

Et

[
β
uc(Ct+1, Lt+1(x))

uc(Ct, Lt(x))

Pt
Pt+1

]
=

1

1 + rnt
. (78)

A linear approximation of uc(Ct+1, Lt+1(x)) yields

uct =
uccC

uc
ĉt +

uc`L

uc
ˆ̀
t(x). (79)

Notice that

ucc = −σ−1
(
C − χ L

1+ν−1

1 + ν−1

)−σ−1−1

,

uc` = σ−1

(
C − χ L

1+ν−1

1 + ν−1

)−σ−1−1

χLν
−1
.

This implies that

uccC

uc
= −σ−1C

(
C − χ L

1+ν−1

1 + ν−1

)−1
= −σ−1

(
1− aµ−1

(
C

Y

)−1
(1 + ν−1)−1

)−1
,

uc`L

uc
= σ−1L

(
C − χ L

1+ν−1

1 + ν−1

)−1
χLν

−1
= −uccC

uc

(
L

C

)
χLν

−1
= −uccC

uc

(
C

Y

)−1
aµ−1.
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Let σ−1c = uccC/uc and σ−1` = uc`L/uc. We then have that a linear approximation of equation (78)

yields

ĉt − σcσ−1` ˆ̀
t = Etĉt+1 − σcσ−1` Et ˆ̀t+1 − σc(r̂nt − Etπt+1). (80)

Let ξ` = σcσ
−1
` =

(
C
Y

)−1
aµ−1. Also, a linear approximation of the production function—equation

(33)—yields ŷHt = aˆ̀
t. Let ξy = ξ`/a =

(
C
Y

)−1
µ−1. Using these conditions, we can rewrite

equation (80) as

ĉt − ξyŷHt = Etĉt+1 − ξyEtŷHt+1 − σc(r̂nt − Etπt+1). (81)

With GHH preferences, the Backus-Smith condition becomes

uc(C
∗
t , L

∗
t (x))

uc(Ct, Lt(x))
= Qt. (82)

A linear approximation of this equation is

ĉt − ξyŷt − ĉ∗t + ξyŷ
∗
t = σcq̂t (83)

F Model with Regional Capital Markets

This section presents an extension of the baseline model in Section 1 that incorporates investment,

capital accumulation and variable capital utilization. We adopt a specification for these features

that mirrors closely the specification in Christiano, Eichenbaum, and Evans (2005).

F.1 Households

Household preferences in the home region are given by equations (15)-(17) as in the baseline model.

Household decisions regarding consumption, saving and labor supply are thus the same as before.

However, in addition to these choices, households own the capital stock, they choose how much

to invest and they choose the rate of utilization of the capital stock. Let K̄t denote the physical

stock capital of capital available for use in period t and It the amount of investment chosen by

the household in period t. For simplicity, assume that It is a composite investment good given

by an index of all the products produced in the economy analogous to equations (16)-(17) for

consumption. The capital stock evolves according to

K̄t+1 = (1− δ)K̄t + Φ(It, It−1), (84)

where δ denotes the physical depreciation of capital and Φ(It, It−1) =
[
1− φ

(
It
It−1

)]
It, summarizes

the technology for transforming current and past investment into capital. Households choose the
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utilization rate ut of the capital cost. The amount of capital services provided by the capital cost

in period t is then given by Kt = utK̄t.

The budget constraint of households in the home region is given by

PtCt + PtIt + PtA(ut)K̄t + Et[Mt,t+1Bt+1(x)]

≤ Bt(x) + (1− τt)Wt(x)Lt(x) +Rkt utK̄t +

∫ 1

0
Ξht(x)dz − Tt. (85)

The differences relative to the model presented in Section 1 are the following. First, households

spend PtIt on investment. Second, they incur a cost PtA(ut)K̄t associated with utilizing the capital

stock. Here A(ut) denotes a convex cost function. Third, they receive rental income equal to Rkt utK̄t

for supplying utK̄t in capital services. Here Rkt denotes the rental rate for a unit of capital services.

In addition to equations (19)-(29) and a standard transversality condition, household opti-

mization yields the following relevant optimality conditions. Optimal capital utilization sets the

marginal cost of additional utilization equal to the rental rate on capital,

A′(ut) =
Rkt
Pt

(86)

Optimal investment and capital accumulation imply

DtΦ1(It, It−1) + βEt[Dt+1Φ2(It+1, It)] = uc(Ct, Lt(x)) (87)

Dt = β(1− δ)EtDt+1 + βEt[(A
′(ut+1)ut+1 −A(ut+1))uc(Ct+1, Lt+1(x))] (88)

where Dt is the Lagrange multiplier on equation (84) and Φj(·, ·) denotes the derivative of Φ with

respect to its j-th argument.

F.2 Firms

The production function of firms in industry x is

yt(x) = f (Lt(x),Kt(x)) (89)

The demand for the output of firms in industry x is given by

yt(x) =
(
nCHt + (1− n)C∗Ht + nIH,t + (1− n)I∗H,t + nGHt

)(pt(x)

PHt

)−θ
(90)

Optimal choice of labor and capital by firms implies

Wt(x) = f`(Lt(x),Kt(x))St(x), (91)
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Rkt = fk(Lt(x),Kt(x))St(x). (92)

Optimal price setting by firms yields equation (38) as in the baseline model.

Combining labor demand, labor supply and the production function yields

St(x)

Pt
=

1

(1− τt)
v`(Lt(x))

uc(Ct)f`(f−1(Lt(x),Kt(x))
(93)

F.3 Calibration

We set the rate of depreciation of capital to δ = 0.025, which implies an annual depreciation rate

of 10 percent. The investment adjustment cost function is given by

Φ(It, It−1) =

[
1− φ

(
It
It−1

)]
It, (94)

where φ(1) = φ′(1) = 0 and κI = φ′′(1) > 0. We set κI = 2.5. This is the value estimated by

Christiano et al. (2005). We require that capital utilization ut = 1 in steady state, assume that

the cost of utilization function A1 = 0 and set σa = A′′(1)/A′(1) = 0.01. Again, this is the value

estimated by Christiano et al. (2005). We assume that the production function is Cobb-Douglas

with a capital share of 1/3.

F.4 Linear Approximation

A linear approximation of equation (93) and its foreign analog yields

ŝt(x) =

(
v`L

v`
− f``L

f`

)
ˆ̀
t(x)− f`kK

f`
k̂t(x)− uccC

uc
ĉt +

τ

1− τ
τ̂t (95)

ŝ∗t (x) =

(
v``L

∗

v`
− f``L

∗

f`

)
ˆ̀∗
t (x)− f`kK

f`
k̂∗t (x)− uccC

uc
ĉ∗t +

τ

1− τ
τ̂t + q̂t (96)

Linearize approximations of the firm production function and capital demand equation (92) and

their foreign analogs yields

ŷt(x) = aˆ̀
t(x) + (1− a)k̂t(x) and ŷ∗t (x) = aˆ̀∗

t (x) + (1− a)k̂∗t (x) (97)

r̂kt = aˆ̀
t(x)− ak̂t(x) + ŝt(x) and r̂k∗t = aˆ̀∗

t (x)− ak̂∗t (x) + ŝ∗t (x) (98)

Note that there is no q̂t term in the above equation, because r̂kt also is divided by Pt. Using these

equation we can derive that

k̂t(x) = ŷt(x)− r̂kt + ŝt(x),

ˆ̀
t(x) = ŷt(x) +

1− a
a

r̂kt −
1− a
a

ŝt(x).
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Using these equations and the functional form of the utility function—equation (15)—and the

production function, we can rewrite equation (95) as

ŝt(x) = (ν−1 + 1− a)

(
ŷt(x) +

1− a
a

r̂kt −
1− a
a

ŝt(x)

)
−(1− a)

(
ŷt(x)− r̂kt + ŝt(x)

)
+ σ−1ĉt +

τ

1− τ
τ̂t

= ψvŷt(x) + σ−1ψcĉt + ψkr̂
k
t + ψc

τ

1− τ
τ̂t, (99)

where ψv ≡ aν−1

(1−a)ν−1+1
, ψk ≡ (1+ν−1)(1−a)

(1−a)ν−1+1
and ψc ≡ a

(1−a)ν−1+1
. Correspondingly, we can rewrite

equation (96) as

ŝ∗t (x) = ψvŷ
∗
t (x) + σ−1ψcĉ

∗
t + ψkr̂

k∗
t + ψcq̂t + ψc

τ

1− τ
τ̂t (100)

A Linear approximation firm demand—equation (118)—yields

ŷHt = φH
C

Y
ĉHt + φH

I

Y
îHt + φ∗H

1− n
n

C

Y
ĉ∗Ht + φ∗H

1− n
n

I

Y
î∗Ht + ĝHt, (101)

ŷFt = φ∗F
C

Y
ĉ∗Ft + φ∗F

I

Y
î∗Ft + φF

n

1− n
C

Y
ĉFt + φ∗F

n

1− n
I

Y
îFt + ĝFt, (102)

where

ŷt,t+j = ŷHt+j − θ

(
p̂t − p̂Ht+j −

j∑
k=1

πt+k

)
(103)

ŷ∗t,t+j = ŷFt+j − θ

(
p̂ft − p̂Ft+j −

j∑
k=1

πt+k

)
(104)

Here we have made use of the fact that in steady state IH = φHI, IF = φF I, I∗H = φ∗HI
∗, and

I∗F = φ∗F I
∗.

Substituting these expressions into equations (99)-(100) yields

ŝt,t+j = ψvŷHt+j − ψvθ

(
p̂t − p̂Ht+j −

j∑
k=1

πt+k

)
+ σ−1ψcĉt+j +

τ

1− τ
ψcτ̂t+j + ψkr̂

k
t+j

ŝ∗t,t+j = ψvŷFt+j − ψvθ

(
p̂∗t − p̂Ft+j −

j∑
k=1

πt+k

)
+ σ−1ψcĉ

∗
t+j +

τ

1− τ
ψcτ̂t+j + ψkr̂

k∗
t+j + ψcq̂t+j

Applying the same method as we did in Section 1 to derive Phillips curves yields

πHt = βEtπHt+1 + κζ

(
ψvŷHt − p̂Ht + σ−1ψcĉt + ψc

τ

1− τ
τ̂t + ψkr̂

k
t

)
(105)

πFt = βEtπFt+1 + κζ

(
ψvŷFt − p̂Ft + σ−1ψcĉ

∗
t + ψc

τ

1− τ
τ̂t + ψkr̂

k∗
t + ψcq̂t

)
(106)

We also have that

ît = φH îHt + φF îFt and î∗t = φ∗H î
∗
Ht + φ∗F î

∗
Ft

19



îHt = ît − ηp̂Ht and îFt = ît − ηp̂Ft

î∗Ht = î∗t − η(p̂Ht − q̂t) and î∗Ft = î∗t − η(p̂Ft − q̂t)

Analogously to (51) and (52) in Section 1, aggregate output is

ŷHt =

(
C

Y

)
φH ĉt +

1− n
n

(
C

Y

)
φ∗H ĉ

∗
t +

(
I

Y

)
φH ît +

1− n
n

(
I

Y

)
φ∗H î

∗
t

−η
(
C + I

Y

)(
φH +

1− n
n

φ∗H

)
p̂Ht + η

(
C + I

Y

)
1− n
n

φ∗H q̂t + ĝHt, (107)

ŷFt =

(
C

Y

)
φ∗F ĉ

∗
t +

n

1− n

(
C

Y

)
φF ĉt +

(
I

Y

)
φ∗F î

∗
t +

n

1− n

(
I

Y

)
φF ît

−η
(
C + I

Y

)(
n

1− n
φF + φ∗F

)
p̂Ht + η

(
C + I

Y

)
φ∗F q̂t + ĝFt. (108)

A linear approximation of Kt = utK̄t and its foreign counterpart yields

k̂t = ût + ˆ̄kt. (109)

k̂∗t = û∗t + ˆ̄k∗t . (110)

A linear approximation of A
′
(ut) = Rkt /Pt and its foreign counterpart yields

σaût = r̂kt . (111)

σaû
∗
t = r̂k∗t − q̂t. (112)

where σa = A
′′
/A
′

and we use the fact that u = 1 in steady state.

Assume that φ(1) = φ′(1) = 0 and φ′′(1) = kI > 0. A linear approximation of equation (87)

and its foreign counterpart yields

d̂t + kI

[
β
(
Etît+1 − ît

)
−
(
ît − ît−1

)]
+ σ−1c ĉt = 0 (113)

d̂∗t + kI

[
β
(
Etî
∗
t+1 − î∗t

)
−
(
î∗t − î∗t−1

)]
+ σ−1c ĉ∗t = 0 (114)

Assume that in steady state A(u) = 0, A′(u) = Rk

P . A linear approximation of equation (88) and

its foreign counterpart yields

d̂t = β(1− δ)Etd̂t+1 + (1− β(1− δ))
(
Etr̂

k
t+1 − σ−1c Etĉt+1

)
(115)

d̂∗t = β(1− δ)Etd̂∗t+1 + (1− β(1− δ))
(
Etr̂

k∗
t+1 + Etπ̂t+1 − qt − Etπ̂∗t+1 − σ−1c Etĉ

∗
t+1

)
(116)
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G A Model with Firm-Specific Capital

This appendix presents a model of investment and capital accumulation that mirrors closely the

specification in Woodford (2003, 2005). In this model, firms own their capital stock and face

adjustment costs at the firm level in adjusting their capital stock. Household behavior is governed

by the same equations as in our baseline GHH model presented in section E. As in our baseline

model, firms belong to industries x, which make use of a specific type of labor. The production

function of firms in industry x is

yt(x) = f(Lt(x),Kt(x)). (117)

The demand for the output of firms in industry x is given by

yt(x) = (nCHt + (1− n)C∗Ht + nIH,t + (1− n)I∗H,t + nGHt)

(
pht(x)

PHt

)−θ
. (118)

Firms’ optimal choice of labor demand implies

Wt(x) = f`(Lt(x),Kt(x))St(x). (119)

Each firm faces convex adjustment costs for investment. A firm that would like to choose a capital

stock Kt+1(x) for period t+1 must invest I(Kt+1(x)/Kt(x))Kt(x) at time t. For simplicity, assume

that It is a composite investment good given by an index of all the products produced in the

economy analogous to equations (16)-(17) for consumption. We assume that I(1) = δ, I ′(1) = 1,

and I ′′(1) = εψ. Optimal investment by firms implies

I ′
(
Kt+1(x)

Kt(x)

)
+ EtMt,t+1

Pt+1

Pt

[
I

(
Kt+2(x)

Kt+1(x)

)
− I ′

(
Kt+2(x)

Kt+1(x)

)
Kt+2(x)

Kt+1(x)

]
= EtMt,t+1

Pt+1

Pt

Rkt+1(x)

PH,t+1

PH,t+1

Pt+1
, (120)

where

Rkt (x) = fk(Lt(x),Kt(x))St(x). (121)

Firm price setting is given by equation (38). This model has two new parameters relative to our

baseline model. We follow Woodford (2003, 2005) in setting δ = 0.012 and εψ = 3. Our results

are virtually identical if we instead set δ = 0.025 and εψ = 2.5. We assume that the production

function is Cobb-Douglas with a capital share of 1/3.

Combining labor demand and labor supply yields

aLt(x)a−1Kt(x)1−a(1− τt)
St(x)

PHt

PHt
Pt

= χLt(x)1/ν (122)
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G.1 Linear Approximation

Notice that

Kt+1(x) = (1− δ)Kt(x) + It(x) (123)

In steady state, we have I/K = δ. A linear approximation of equation (123) then yields

k̂t+1(x) = (1− δ)k̂t(x) + δÎt(x). (124)

Similarly, for the aggregate home capital stock we have

k̂Ht+1 = (1− δ)k̂Ht + δÎHt (125)

A linear approximation of equation (122) yields

ŝt(x) = (ν−1 + 1− a)ˆ̀
t(x)− (1− a)k̂t(x)− p̂Ht +

τ

1− τ
τ̂t (126)

A linear approximation of equation (121) yields

r̂kt (x) = ŝt(x) + aˆ̀
t(x)− ak̂t(x) (127)

Here, in contrast to earlier models, we are deflating nominal variables by PHt.

From equation (??) we have that in steady state Rk/P = δ + 1/β − 1. A linear approximation

of equation (??) then yields

ûct + εψ

(
k̂t+1(x)− k̂t(x)

)
+ Etûct+1 + βεψ

(
Etk̂t+2(x)− k̂t+1(x)

)
+(1− β(1− δ))

(
Etr̂

k
t+1(x) + Etp̂Ht+1

)
(128)

A linear approximation of the production function yields

ŷt(x) = aˆ̀
t(x) + (1− a)k̂t(x) (129)

Combining equations (126) and (129) yields

ŝt(x) =
ν−1 + 1− a

a
ŷt(x)− (1− a)(ν−1 + 1)

a
k̂t(x)− p̂Ht +

τ

1− τ
τ̂t (130)

Adopting the notation used in Woodford (2005), this equation becomes

ŝt(x) = ω̄ŷt(x)− (ω̄ − ν̄)k̂t(x)− p̂Ht +
τ

1− τ
τ̂t (131)

where ω̄ = (ν−1 + 1− a)/a, ν̄ = ν−1. Taking an average across all home firms we get

ŝHt = ω̄ŷHt − (ω̄ − ν̄)k̂Ht − p̂Ht +
τ

1− τ
τ̂t (132)
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and

ŝt(x) = ŝHt + ω̄(ŷt(x)− ŷHt)− (ω̄ − ν̄)(k̂t(x)− k̂Ht) (133)

Now using the demand curve for home firms we get that

ŝt(x) = ŝHt − ω̄θp̂t(x)− (ω̄ − ν̄)k̃t(x) (134)

where k̃t(x) = k̂t(x)− k̂Ht.

A linear approximation of the firms’ price setting equation yields

Êxt

∞∑
j=0

(αβ)j

(
p̂t(x)−

j∑
k=1

πHt+k − ŝt+j(x)

)
= 0 (135)

where following Woodford (2005) we use Êxt to denote an expectation conditional on the state

of the world at date t, but integrating only over those future states in which firms in industry x

have not reset their prices since period t. For aggregate variables Êxt xT = EtxT . For firm specific

variables, this is not the case.

Substituting for marginal costs in the above equation we get

Êxt

∞∑
j=0

(αβ)j

[
p̂t(x)−

j∑
k=1

πHt+k − ŝHt+j(x) + ω̄θ

(
p̂t(x)−

j∑
k=1

πt+k

)
+ (ω̄ − ν̄)k̃t+j(x))

]
= 0

(136)

Thus,

(1 + ω̄θ)p̂t(x) = (1− αβ)Êxt

∞∑
j=0

(αβ)j

[
ŝHt+j + (1 + ω̄θ)

j∑
k=1

πHt+k − (ω̄ − ν̄)k̃t+j(x)

]
(137)

Notice that unlike in the heterogeneous labor model p̂t(x) is not independent of x. This is due to

the presence of the k̃t+j(x) term on the right hand side. Notice also that Êxt k̃t+j(x) depends on

p̂t(x), we need to determine this dependence to be able to solve for p̂t(x).

Combining (127) and (131), we have

r̂kt (x) = ω̄ŷt(x)− (ω̄ − ν̄)k̂t(x)− p̂Ht + aˆ̀
t(x)− ak̂t(x) +

τ

1− τ
τ̂t (138)

Using the product function to eliminate ˆ̀
t(x) yields

r̂kt (x) = ρyŷt(x)− ρkk̂t(x)− p̂Ht +
τ

1− τ
τ̂t (139)

where ρy = ω̄ + 1 and ρk = ρy − ν̄ as in Woodford (2005).
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Thus, aggregating equation (128) yields

ûct + εψ(k̂Ht+1 − k̂Ht) = Etûct+1 + βεψ(Etk̂Ht+2 − k̂Ht+1)

+(1− β(1− δ))(ρyEtŷHt+1 − ρkk̂Ht+1 +
τ

1− τ
τ̂t) (140)

Here our expression differs from Woodford (2005) in the coefficient on Etûct+1. This difference

arises because we are using GHH preferences.

Combining this expression with the one on (128) yields

εψ

(
k̃t+1(x)− k̃t(x)

)
= βεψ

(
Etk̃t+2(x)− k̃t+1(x)

)
+ (1− β(1− δ))

(
ρyEt (ŷt+1(x)− ŷHt+1)− ρkk̃t+1(x)

)
(141)

Rearranging and using the firm’s demand curve

(1− β(1− δ)) ρyθε−1ψ Etp̂t+1(x) = βEtk̃t+2(x)

−
(

1 + β + (1− β(1− δ))ρkε−1ψ
)
k̃t+1(x) + k̃t(x) (142)

or

ΘEtp̂t+1(x) = Et

[
Q(L)k̃t+2(x)

]
(143)

where

Θ = (1− β(1− δ)) ρyθε−1ψ

Q(L) = β −
[
1 + β + (1− β(1− δ))ρkε−1ψ

]
L+ L2

Notice that Q(0) = β > 0, Q(β) < 0, Q(1) < 0 and Q(n) > 0 for large n. So,

Q(L) = β(1− µ1L)(1− µ2L) (144)

with µ1, µ2 real and 0 < µ1 < 1 < β−1 < µ2.

Using the argument on page 13 of Woodford (2005) we have

p̂t(x) = p̂Ht − ψk̃t(x) (145)

i.e. the choice of a price to set by firms in industry x is a function of aggregate variables and industry

x’s capital stock. Here, ψ is a coefficient to be determined below. Also, note that k̃t(x) = 0 on

average for firms that reset their prices at time t because of the Calvo assumption. Thus p̂t is the

average relative price set by firms at time t.
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A linear approximation of the home price index yields

p̂Ht =
α

1− α
πHt (146)

Let’s now introduce the notation p̃t(x) for a generic relative price. This contrasts p̂t(x), which we

have been using to denote the optimal price set at time t. Notice that

Etp̃t+1(x) = α [p̃t(x)− EtπHt+1] + (1− α)Etp̂t+1(x) (147)

and using the last three equations we get

Etp̃t+1(x) = α(p̃t(x)− EtπHt+1) + (1− α)Et[p̂Ht+1(x)− ψk̃t+1(x)]

= αp̃t(x)− (1− α)ψEtk̃t+1(x) (148)

Again, Woodford (2005) argues that

k̃t+1(x) = λk̃t(x)− γp̃t(x) (149)

where λ and γ are to be determined. The algebra on pages 14-15 in Woodford (2005) applies to

our model. We plug the equation (148) into the last equation and get

Etk̃t+2(x) = [λ+ (1− α)γψ]k̃t+1(x)− αγp̃t(x) (150)

Using this to substitute for Etk̃t+2(x) in equation (142), and again using (148) to substitute for

Etp̃t+1(x), we obtain a linear relation of k̃t(x) and p̃t(x). For convenience, denote A ≡ 1 +β+ (1−

β(1− δ))ρkε−1ψ , thus Q(L) = β −AL+ L2. Equation (142) becomes,

Θαp̃t(x)−Θ(1− α)ψEtk̃t+1(x) = λ−1Etk̃t+1(x) + λ−1γp̃t(x)

−Ak̃t+1(x) + β[λ+ (1− α)γψ]k̃t+1(x)− αβγp̃t(x)

For the conjectured solution (149) to satisfy this equation, we need the coefficient in front of p̃t(x)

to satisfy

(1− αβλ)γ = Θαλ. (151)

Using this equation the coefficient in front of Etk̃t+1(x) becomes

Θ(1− α)ψλ+ 1−Aλ+ βλ2 + (1− α)βλψγ = 0

=> Θ(1− α)ψλ+ (1− αβλ)(1−Aλ+ βλ2) = 0

=> (β−1 − αλ)Q(βλ) + (1− α)Θψλ = 0 (152)
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Now, returning to optimal price setting, we focus on the term

Êxt

∞∑
j=0

(αβ)j k̃t+j(x) (153)

Since

k̃t+1(x) = λk̃t(x)− γp̃t(x) (154)

we have

Êxt k̃t+j+1(x) = λÊxt k̃t+j(x)− γ

(
p̃t(x)− Et

j∑
k=1

πHt+k

)
(155)

for all j ≤ 0, and using p̃t(x)− Et
∑j

k=1 πHt+k = Êxt p̃t+j(x). Notice that

k̃t+1(x) = λk̃t(x)− γp̃t(x)

k̃t+2(x) = λ2k̃t(x)− γλp̃t(x)− γp̃t+1(x)

k̃t+3(x) = λ3k̃t(x)− γλ2p̃t(x)− γλp̃t+1(x)− γp̃t+2(x)

so

Êxt

∞∑
j=0

(αβ)j k̃t+j(x) =
k̃t(x)

1− αβλ
− γαβ

1− αβλ
Êxt

∞∑
j=0

(αβ)j p̃t+j(x)

Êxt

∞∑
j=0

(αβ)j p̃t+j(x) =
∞∑
j=0

(αβ)j

(
p̃t(x)− Et

j∑
k=1

πHt+k

)

In addition using the fact that, Êxt
∑∞

j=0(αβ)j
∑j

k=1 πHt+k = 1
1−αβEt

∑∞
j=1(αβ)jπHt+j , we have

Êxt

∞∑
j=0

(αβ)jkt+j(x) =
k̃t(x)

1− αβλ
− γαβ

(1− αβ)(1− αβλ)
p̃t(x) +

γαβ

(1− αβ)(1− αβλ)
Et

∞∑
j=1

(αβ)jπHt+j

(156)

Noting that for firms reoptimizing their price at time t, p̃t(x) = p̂t(x). Therefore, combining

equation (137) and the last equation yields

(1 + ω̄θ)p̂t(x) = (1− αβ)Et

∞∑
j=0

(αβ)j ŝHt+j + (1− αβ)(1 + ω̄θ)Et

∞∑
j=0

(αβ)j
j∑

k=1

πHt+k

−(1− αβ)(ω̄ − ν̄)

1− αβλ
k̃t(x) +

γαβ(ω̄ − ν̄)

1− αβλ
p̂t(x)− γαβ(ω̄ − ν̄)

1− αβλ
Et

∞∑
j=1

(αβ)jπt+j

Thus,

φp̂t(x) = (1− αβ)Et

∞∑
j=0

(αβ)j ŝHt+j + φ

∞∑
j=1

(αβ)jEtπHt+j − (ω̄ − ν̄)
1− αβ

1− αβλ
k̃t(x) (157)
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where φ = 1 + ω̄θ − (ω̄ − ν̄) γαβ
1−αβλ .

For this last equation to be consistent with our conjecture (145), we must have

φp̂Ht = (1− αβ)
∞∑
j=0

(αβ)jEtŝHt+j + φ
∞∑
j=1

(αβ)jEtπHt+j (158)

and

φψ = (ω̄ − ν̄)
1− αβ

1− αβλ
(159)

This last equation along with (151) and (152) comprise a system of three equation in the three

unknown coefficients λ, γ, and ψ. Woodford (2005, pages 17-18) describes an algorithm for solving

these three equations. The following explains how to reduce this system of equations to a single

equation for λ. For λ 6= 0, (151) can be solved for ψ.

ψ(λ) = −(β−1 − αλ)Q(βλ)

(1− α)Θλ
(160)

Similarly, (152) defines a function

γ(λ) =
Θαλ

1− αβλ
(161)

Substituting these functions for ψ and γ in (159), we get the equation to solve for λ:

V (λ) =
[
(1 + ω̄θ)(1− αβλ)2 − α2β(ω̄ − ν̄)Θλ

]
Q(βλ) + β(1− α)(1− αβ)(ω̄ − ν̄)Θλ = 0 (162)

Quasi-differencing the expression for p̂Ht, equation (158), yields

p̂Ht − αβEtp̂Ht+1 = (1− αβ)φ−1ŝHt + αβEtπHt+1 (163)

Using equation (146) to plug in for p̂t yields

α

1− α
πHt −

α2β

1− α
EtπHt+1 = (1− αβ)φ−1ŝHt + αβEtπHt+1 (164)

πHt = kφ−1ŝHt + βEtπHt+1 (165)
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