Starting Dynare (version 6.1). Calling Dynare with arguments: none Starting preprocessing of the model file ... Found 12 equation(s). Evaluating expressions... Computing static model derivatives (order 1). Normalizing the static model... Finding the optimal block decomposition of the static model... 8 block(s) found: 7 recursive block(s) and 1 simultaneous block(s). the largest simultaneous block has 3 equation(s) and 3 feedback variable(s). Computing dynamic model derivatives (order 2). Normalizing the dynamic model... Finding the optimal block decomposition of the dynamic model... 6 block(s) found: 5 recursive block(s) and 1 simultaneous block(s). the largest simultaneous block has 3 equation(s) and 2 feedback variable(s). Preprocessing completed. Preprocessing time: 0h00m00s. STEADY-STATE RESULTS: a 0 z 0 c 0 y 0 y_nat 0 y_gap 0 r_nat 0 r_real 0 ii 0 pie 0 n 0 w 0 EIGENVALUES: Modulus Real Imaginary 0.5 0.5 0 0.9 0.9 0 1.182 1.154 0.2533 1.182 1.154 -0.2533 There are 2 eigenvalue(s) larger than 1 in modulus for 2 forward-looking variable(s) The rank condition is verified. MODEL SUMMARY Number of variables: 12 Number of stochastic shocks: 2 Number of state variables: 2 Number of jumpers: 2 Number of static variables: 8 MATRIX OF COVARIANCE OF EXOGENOUS SHOCKS Variables eps_a eps_z eps_a 1.000000 0.000000 eps_z 0.000000 1.000000 POLICY AND TRANSITION FUNCTIONS a z c y y_nat y_gap r_nat r_real ii pie n w a(-1) 0.900000 0 0.900000 0.900000 0.900000 0 -0.090000 -0.090000 -0.090000 0 0 0.900000 z(-1) 0 0.500000 0 0 0 0 0.250000 0.250000 0.250000 0 0 0 eps_a 1.000000 0 1.000000 1.000000 1.000000 0 -0.100000 -0.100000 -0.100000 0 0 1.000000 eps_z 0 1.000000 0 0 0 0 0.500000 0.500000 0.500000 0 0 0 THEORETICAL MOMENTS VARIABLE MEAN STD. DEV. VARIANCE a 0.0000 2.2942 5.2632 z 0.0000 1.1547 1.3333 c 0.0000 2.2942 5.2632 y 0.0000 2.2942 5.2632 y_nat 0.0000 2.2942 5.2632 y_gap 0.0000 0.0000 0.0000 r_nat 0.0000 0.6213 0.3860 r_real 0.0000 0.6213 0.3860 ii 0.0000 0.6213 0.3860 pie 0.0000 0.0000 0.0000 n 0.0000 0.0000 0.0000 w 0.0000 2.2942 5.2632 VARIANCE DECOMPOSITION (in percent) eps_a eps_z a 100.00 0.00 z 0.00 100.00 c 100.00 0.00 y 100.00 0.00 y_nat 100.00 0.00 y_gap 29.48 70.52 r_nat 13.64 86.36 r_real 13.64 86.36 ii 13.64 86.36 pie 27.22 72.78 n 56.99 43.01 w 100.00 0.00 MATRIX OF CORRELATIONS Variables a z c y y_nat r_nat r_real ii w a 1.0000 0.0000 1.0000 1.0000 1.0000 -0.3693 -0.3693 -0.3693 1.0000 z 0.0000 1.0000 0.0000 0.0000 0.0000 0.9293 0.9293 0.9293 0.0000 c 1.0000 0.0000 1.0000 1.0000 1.0000 -0.3693 -0.3693 -0.3693 1.0000 y 1.0000 0.0000 1.0000 1.0000 1.0000 -0.3693 -0.3693 -0.3693 1.0000 y_nat 1.0000 0.0000 1.0000 1.0000 1.0000 -0.3693 -0.3693 -0.3693 1.0000 r_nat -0.3693 0.9293 -0.3693 -0.3693 -0.3693 1.0000 1.0000 1.0000 -0.3693 r_real -0.3693 0.9293 -0.3693 -0.3693 -0.3693 1.0000 1.0000 1.0000 -0.3693 ii -0.3693 0.9293 -0.3693 -0.3693 -0.3693 1.0000 1.0000 1.0000 -0.3693 w 1.0000 0.0000 1.0000 1.0000 1.0000 -0.3693 -0.3693 -0.3693 1.0000 COEFFICIENTS OF AUTOCORRELATION Order 1 2 3 4 5 a 0.9000 0.8100 0.7290 0.6561 0.5905 z 0.5000 0.2500 0.1250 0.0625 0.0313 c 0.9000 0.8100 0.7290 0.6561 0.5905 y 0.9000 0.8100 0.7290 0.6561 0.5905 y_nat 0.9000 0.8100 0.7290 0.6561 0.5905 r_nat 0.5545 0.3264 0.2074 0.1434 0.1075 r_real 0.5545 0.3264 0.2074 0.1434 0.1075 ii 0.5545 0.3264 0.2074 0.1434 0.1075 w 0.9000 0.8100 0.7290 0.6561 0.5905