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Non-stationary Hours in a DSGE Model

The time series fit of dynamic stochastic general equilibrium (DSGE) models
often suffers from restrictions on the long-run dynamics that are at odds
with the data. Using Bayesian methods we estimate a stochastic growth
model in which hours worked are stationary and a modified version with
permanent labor supply shocks. If firms can freely adjust labor inputs, the
data support the latter specification. Once we introduce frictions in terms of
labor adjustment costs, the overall time series fit improves and the model
specification in which labor supply shocks and hours worked are stationary
is preferred.
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DyNaMIC STOCHASTIC GENERAL equilibrium (DSGE) models
have become a workhorse for studying various aggregate economic phenomena.
Since these models generate both business cycle fluctuations as well as long-run
growth paths, they should ultimately be able to match data across all frequencies.
Despite the significant progress in developing empirically viable models (e.g., Chris-
tiano, Eichenbaum, and Evans 2005, Smets and Wouters 2003), the time series fit
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of DSGE models is typically inferior to the fit of vector autoregressions (VAR) that
are estimated with well-calibrated shrinkage methods, as documented in Del Negro
et al. (2007). One reason for the poor time series fit is the restrictions imposed by
the so-called balanced growth path. Along the balanced growth path, (i) the “big ra-
tios” (investment-output, consumption-output, capital-output, and real wage-output)
are stable as output, consumption, investment, capital stock, and real wages grow at
the same rate, and (ii) the real rates of return to capital and per capita hours worked
are stationary. I'As pointed out, for instance, by Canova, Finn, and Pagan (1994), these
model-implied co-trending relationships are often rejected by the data. Modifications
to the probabilistic structure of the exogenous shocks that generate fluctuations in
DSGE models can be used to generalize trend structures. For instance, in a two-sector
model Edge, Laubach, and Williams (2003) introduce trends in sector-specific pro-
ductivity processes such that the relative price of investment becomes non-stationary
and real investment and consumption can grow at different rates.

This paper focuses on the stationarity of hours worked. Many researchers doubt that
hours worked are stationary as we have observed apparent changes in labor-supply
patterns over recent decades (e.g., McGrattan and Rogerson 2004, Gali 2005). Usual
suspects responsible for persistent shifts in per capita hours are structural changes in
demography, government purchases, tax codes, household production technology, or
preferences itself. Recently, business cycle theorists have been particularly concerned
with this issue because assumptions about the persistence of hours has far reaching
implications for our understanding of propagation mechanisms as well as the sources
of economic fluctuations. Shapiro and Watson (1988) report that about half of the
cyclical variation in output can be accounted for by the stochastic trend in labor supply.
In response to a provocative finding by Gali (1999) that hours worked decrease after
a favorable technology shock, Christiano, Eichenbaum, and Vigfusson (2003), Chari,
Kehoe, and McGrattan (2004), and Basu, Fernald, and Kimball (2004) show that the
statistical inference in a structural VAR crucially depends on the treatment of low
frequency components of hours worked.

This paper makes two contributions. First, we present a modified stochastic growth
model in which hours worked have a stochastic trend, generated by a non-stationary
labor supply shock. In terms of properly detrended variables the model has a well-
defined steady-state and can be solved, for instance, by a log-linear approximation
around this steady state. Since this specification implies that the technology shock
is the only source for permanent shifts in average labor productivity, the popular
long-run VAR identification scheme for technology shocks remains consistent with
our model. The modification proposed in this paper can be easily incorporated into
large-scale DSGE models with real and nominal rigidities and potentially improve
their empirical performance.

Second, based on output and hours data we compute posterior odds for four versions
of the stochastic growth model obtained by using either a stationary or non-stationary

1. See King, Plosser, and Rebelo (1988) for the restrictions on technology and preferences that satisfy
the balanced growth path property.
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labor supply shock. Since the absence of strong endogenous dynamics in DSGE
models (e.g., Cogley and Nason 1995) might lead us to favor a model specification
with a non-stationary labor supply shock in our empirical analysis, we also consider
model specifications with richer internal dynamics by introducing adjustment costs
in employment.? We find that without adjustment costs the specification with a non-
stationary labor supply shock is preferred for three alternative data sets that have
been used in the literature. Posterior odds range from 8:1 to 100:1.3 However, as
the prior distribution for the autocorrelation of the labor supply shock in the model
with stationary hours is shifted toward more persistence, the evidence in favor of the
non-stationary hours specification deteriorates. This reflects a well-known difficulty
in distinguishing unit root from highly persistent yet stationary dynamics.

Once labor adjustment costs are included in the stochastic growth model, the spec-
ification with a stationary labor supply shock is preferred. According to our posterior
distributions there is a negative correlation between the adjustment cost parameter and
the persistence of labor supply shock. With an estimated autocorrelation of 0.8 for the
labor supply shock, the adjustment cost model can essentially reproduce the observed
sample autocorrelation and variance of hours worked. Depending on the data sets, the
posterior odds in favor of the stationary hours worked specification range from 2:1 to
9:1. Overall, the model specifications with adjustment costs are strongly preferred to
those without. Given the weak and partially conflicting evidence on the stationarity
of hours from univariate tests as, for instance, documented by Christiano, Eichen-
baum, and Vigfusson (2003), it is in our view preferable to conduct a multivariate
specification analysis directly in the context of the model of interest. Cross-coefficient
restrictions and the careful specification of prior distributions can help to sharpen in-
ference and conclusions depend on auxiliary assumptions about frictions in the labor
market.

The remainder of this paper is organized as follows. Section 1 presents the stochastic
growth model and discusses its long-run dynamics. Section 2 explains our estimation
procedure. The results from the empirical analysis are presented in Section 3, and
Section 4 concludes.

1. MODEL

The model economy is a one-sector stochastic growth model with technology and
labor supply shocks. We consider four versions of the model: in M and M firms
can choose the employment level at the given wage rate without any adjustment cost.
In Ag and Aj;, on the other hand, it is costly for firms to adjust the employment
level. In Ay and M, the labor supply shock is a stationary AR(1) process, whereas
it is modeled as random walk in .A; and M. The presence of adjustment costs will

2. We are grateful to one of the referees for suggesting this extension.

3. All statements in this paper involving posterior odds or posterior model probabilities assume that
the specifications have equal prior probability.
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influence our conclusions regarding the persistence of labor supply shocks as they
generate an endogenous propagation.

The representative household maximizes the expected discounted lifetime utility
from consumption C, and hours worked H:

S, Hiys/Biss)
I, [Zﬁ’“ (lncm - %)} M

s=0

The log utility in consumption implies a constant long-run labor supply in response
to a permanent change in technology. The short-run (Frisch) labor supply elasticity
is v. The labor supply shock is denoted by B,. An increase of B, raises aggregate
labor supply. This may reflect permanent shifts in per capita hours of work due to
demographic changes, tax reforms, shifts in the marginal rate of substitution between
leisure and consumption, or (non-neutral) technological changes in household pro-
duction technology. The household supplies labor at the competitive equilibrium wage
W, and rents capital K, to the firms at the competitive rental rate R,. The capital stock
depreciates at the rate §, and the per period budget constraint faced by the household
is

Ci+ K1 — (1 -9K, = W,H, + R K,. (2)

Firms rent capital, hire labor services, and produce final goods according to the
following Cobb-Douglas technology:

H 2
Y, = (A H)*K™ [1 —¢- (H’ — 1) } 3)
—1

The stochastic process A; represents the exogenous labor augmenting technical
progress. The last term captures the cost of adjusting labor inputs: ¢ > 0. In models
M and M, there is no adjustment cost: ¢ = 0. Despite various types of adjustment
costs in the labor market—for example, search (Andolfatto 1996), learning (Chang,
Gomes, and Schorfheide 2002), time non-separable utility in leisure (Kydland and
Prescott 1982)—we use a simple reduced-form quadratic cost to firms without tak-
ing a particular stand on the microfoundations of the nature of friction. The firms
maximize expected discounted future profits

o
E, [Z B hs (Yis — Wi HY — R,ﬂK,dH)} : )
s=0

where A, is the marginal value of a unit consumption to a household, which is treated
as exogenous to the firm. In equilibrium A, = 1/C, and the goods, labor, and capital
markets clear:

Y, =C + K,y — (1 -8)K,, H'=H, and K{=K,.
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We assume that the log production technology evolves according to a random walk
with drift:

InA, =y +InA_ +ear €y~ iidN(0,07). 6))

The level of technology in period 0 is denoted by Ag. We consider two specifications
for the stochastic process of B,. In models M and A , the labor supply shock follows
a stationary AR(1) process:

Mo: InB, =p,InB_;+(1—p)InBy+ €, €, ~iidN(0,07), (6)

where 0 < p;, < 1 and In By is the unconditional mean of In B,. In model M and
A the innovation €, , only has a transitory effect. Alternatively, in models M and
A, the labor supply shock evolves according to a random walk:

Mi: InB,=InB,_|+¢€,, €~ iidN(O, abz) 7

and we use In By to denote the initial level of In B,. In both specifications, the inno-
vations €, , and €;; are assumed to be uncorrelated at all leads and lags.

It is well known that in models M and A hours are stationary and that output,
consumption, and capital grow according to the technology process A,. Hence, one
can induce stationarity with the following transformation:

Y[ ~ Ct = Kf+1

M . ? - —, C = —, =
0 t At t t+1 At

In models M, and A;, on the other hand, the labor supply shock B, induces a
stochastic trend into hours as well as output, consumption, and capital. To obtain a
stationary equilibrium these variables have to be detrended according to:

-~ H ~ Y .~ C ~ K
M Ht:_tv Yt:—ts Ct:—tﬂ K1 = Hl-
B, A B, A B, A B,

With these transformations, we obtain a system of rational expectations equations
that characterizes the equilibrium dynamics of the endogenous variables in the neigh-
borhood of the steady state. It can be solved by standard log-linearization methods
(e.g., King, Plosser, and Rebelo 1988, Sims 2002).

We note two important aspects of the model specification. First, a permanent labor
supply shock raises both hours worked and output permanently in models M and A;.
However, one can show that it does not have a permanent effect on labor productivity
Y,/ H;. Thus, all four versions of the stochastic growth model are consistent with the
following popular identification assumption: technology shocks are the only source
for a stochastic trend in labor productivity. Second, in models M and A, there is
a positive probability that hours worked exceed a given threshold H, for example,
24 hours per day. Our log-linear approximation ignores this bound and provides an
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1362 . MONEY, CREDIT AND BANKING

accurate characterization of the local dynamics only if hours worked are well below
this threshold.*

2. ECONOMETRIC APPROACH

We fit the DSGE models to observations on the log level of real per capita output
and hours worked, denoted by the 2 x 1 vector y,. Let €, = [€,,, €5]" and define
the vector of structural model parameters as 6 = [«, B, ¥, §, v, ¢, In Ay, In By,
Pb> 04, 0p) . It is well known that log-linearized DSGE models have a state space
representation:

yi =To+ s +Taso, + Tt (8)
51, = Prs1,-1 + Vie 9
§2p = 582,-1 + Woe. (10)

The system matrices of this state space representations are functions of the structural
parameters 6. The deterministic trend in (8) captures the effect of the drift in the
random walk technology process A,. Equation (9) represents the law of motion for the
state variables of the detrended model, and (10) describes the evolution of stochastic
trends: 5o, = In A, — yt in models M, and A¢ and 5o, = [In A, — y¢, In B,]' in
M1 and Al.

The Kalman filter can be used to compute the likelihood function £(6 | Y'T) for the
state space system (8)—(10). To initialize the Kalman filter a distribution for the state
vector in period ¢ = 0 has to be specified. If all state variables are stationary, a natural
choice is the unconditional distribution of s,. In our model, however, a part of the state
vector, s, is non-stationary. Hence, we factorize the initial distribution as p(s; )
p(s2,0) and set the first component equal to the unconditional distribution of s ;,
whereas the second component, composed of the distribution of In A (for My, A ()
and [In Ao, In Bo]’ (for My, A,), respectively, is absorbed into the specification of
our prior p(9). According to Bayes Theorem the posterior distribution of 8 is given
by

p@1Y") =LEOIYHp®)/pY"). Y

The fit of models can be assessed based on the marginal data densities:

p(Y") = fﬁ(O | YT)p(6)db. (12)

4. A similar issue arises when modeling nominal interest rates, which often appear to be locally
non-stationary but at the same time are bounded from below by zero. While linear time series models
cannot explain apparent unit root behavior of interest rates between, say 4% and 12%, and mean-reverting
behavior elsewhere, non-linear models can. For instance, Ait-Sahalia (1996) estimates a diffusion model
with a non-linear drift function that is consistent with interest rates appearing to be non-stationary processes
over extended time periods while being overall stationary.
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If the prior odds of two models are equal to one, then the ratio of marginal data densities
provides the posterior odds. Log marginal data densities penalize the maximized log
likelihood function by a measure of model complexity and can be interpreted as a mea-
sure of one-step-ahead out-of-sample predictive performance. The Bayesian analysis
is implemented with Markov Chain Monte Carlo methods described in Schorfheide
(2000).

3. EMPIRICAL ANALYSIS

We use three different data sets composed of quarterly U.S. real per capita GDP and
hours worked from 1954:Q2 to 2001:Q4. The observations from 1954:Q2 to 1958:Q4
are treated as pre-sample to quantify prior distributions. Since we are comparing the
fit of the DSGE model specifications to that of a VAR with four lags, we reserve the
observations from 1959:Q1 to 1959:Q4 for the initialization of lags. Since the VAR
likelihood function is conditional on the observations from the year 1959, we adjust
the DSGE model likelihood function accordingly.> For Data Set 1 we use real GDP
from the DRI-Global Insight database (GDPQ) and divide it by population of age 20
or older (PM20 + PF20). Hours worked is measured as average weekly hours of all
people in the non-farm business sector compiled by the Bureau of Labor Statistics
(EEU00500005). We multiply the hours series by the employment ratio, which is
the number of people employed (LHEM, DRI-Global Insight) divided by population
(PM20 4 PF20). Data Set 2 is obtained from CEV. Per capita output is obtained by
dividing GDPQ by civilian population age 16 or older (P16, DRI-Global Insight).
Hours worked are measured as total hours (LBMN, DRI-Global Insight) divided by
P16. Data Set 3 has been used by Gali and Rabanal (2004) and is extracted from
Haver Analytics’ USECON database. Output is defined as non-farm business sector
output (LXNFO) divided by civilian non-institutional population age 16 or older
(LNN). Hours are measured as non-farm business sector hours (LXNFH) divided
by the same population measure. All series are seasonally adjusted and transformed
by taking natural logs.® The observations on hours worked, in percentage deviations
from their respective sample means, are depicted in Figure 1. An informal inspection
of the plots suggests that hours worked are highly persistent in all three data sets.’
Hence, the specifications with non-stationary labor supply shocks may provide an
empirically plausible alternative to Mg and A .

The benchmark prior distribution of the parameters is summarized in Table 1. We
assume all parameters to be a priori independent. By and large, the prior means are

5. This adjustment can be easily implemented by calculating £(8 | y_3, ..., Yo, YT)/L©O | y_3, ..., Yo)s
where y, corresponds to 1959:Q4 and Y7 denotes to sample 1960:Q1 to 2001:Q4.

6. We use the X-12 filter to adjust the BLS hours series EEU0050005.

7. The t-statistics for a standard augmented Dickey-Fuller test (4 lags, constant, no trend) are —2.80,
—2.55, and —2.44 for the three data sets, respectively. The critical values for the rejection of the unit root
hypothesis are —2.57 (10%), —2.86 (5%), and —3.46 (1%).
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Fic. 1. Hours Worked Data.
TABLE 1
BENCHMARK PRIOR DISTRIBUTIONS
Parameter Domain Density Data Set Model Para (1) Para (2)
o [0, 1) Beta all all 0.660 0.020
B [0, 1) Beta all all 0.995 0.002
y R Normal all all 0.005 0.005
8 [0, 1) Beta all all 0.025 0.005
v R* Gamma all all 1.000 0.500
o [0, 1) Beta all M, Ag 0.900 0.050
04 R* InvGamma all Mgy, M, 0.010 1.000
all M, A, 0.015 1.000
oy R* InvGamma all Mgy, M, 0.010 1.000
all M, A 0.015 1.000
InA, R Normal 1 Mo, Ay 5.647 0.200
1 My, A, 5.674 0.200
2 Ao 2.346 0.200
2 1 Ay 2.394 0.200
3 LA —1.857 0.200
3 M, A —1.821 0.200
In B, R Normal 1 Mo, Ay 3.236 0.200
1 M, A, 3.209 0.200
2 M, Ay 6.453 0.200
2 M, A 6.405 0.200
3 M, Ay 6.346 0.200
3 M, A 6.309 0.200
@ R* Gamma all Ao, A 33.00 15.00

Notes: In the non-stationary models M and Ay, pj, is fixed at 1. Para (1) and Para (2) list the means and the standard deviations for beta,

gamma, and normal distributions; s and v for the inverse gamma distribution, where pzg(o | v, s) o gV lemvst 207

chosen based on a pre-sample of observations from 1954:Q2 to 1958:Q4. The prior
mean of the labor share « is 0.66 and that for the quarter-to-quarter growth rate of
productivity, y, is 0.5%. The prior for S is centered at 0.995. Combined with the prior
mean of y, this corresponds to an annualized real return of about 4%. The depreciation
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rate § lies between 1.8% and 3.3% per quarter. The 90% probability interval for the
Frisch labor supply elasticity v ranges from 0.3 to 1.8.

We specify a prior for the adjustment cost parameter ¢ as follows. The adjustment
costs of labor can be viewed as the total expenditure spent for recruiting new workers.
In order to increase the amount of labor input by AH, firms incur the adjustment
cost of w(%)zY in our model. It is known that the average recruiting cost is about
50% of quarterly salary of a worker recruited.® This implies: ga(%)zY =¢WAH,
where ¢ is a fraction of the recruiting cost in terms of wage. With a labor share of
2/3(:@), ¢ = 0.5, and a 1% increase of employment (% = 1%), we obtain ¢ =
33. We use a fairly diffuse prior distribution that is centered at 33 and has a standard
deviation of 15.

The presence of adjustment costs dampens the effect of technology and labor supply
shocks on output and hours worked. In order to guarantee that the adjustment cost
specifications have a priori similar implications for the volatility of the endogenous
variable as M and M, we use slightly different priors for the standard deviations
of the structural shocks. Under M, and M the priors for o, and o, are centered at
0.010, whereas under A o and A, they are centered at 0.015.

For My and A the prior mean of In B is constructed by matching average hours
worked over the pre-sample period with the steady state level of hours worked H*,
evaluated at the prior mean values of the remaining structural parameters. For M,
and A, the prior mean of In By is obtained by equating hours worked in 1958:Q4
with the steady state level BoH*. Similarly, we select the prior mean of In Ao by
matching AoY™* and AgBoY*, respectively, with the level of output in 1958:Q4. The
prior standard deviations for In Ay and In B are 0.2. Finally, for M and A  the 90%
probability interval for the autoregressive parameter p;, ranges from 0.825 to 0.977,
implying a fairly persistent labor supply process.

The posterior means and 90% probability intervals based on Data Set 1 are reported
in Table 2. For convenience, we also report means and probability intervals for the
prior distribution. The estimates of «, 8, 8, and y are very similar across model spec-
ifications. While the data are not very informative about «, 8, and 8, the probability
interval of y shrinks by a factor of 4. The posterior means of the labor supply elasticity
v range from 0.15 to 0.53. The estimated standard deviation of the technology shock
is essentially the same across all four model specifications. The specifications A ¢ and
A, tend to generate larger estimates of o ;, because adjustment costs dampen the effect
of labor supply shocks on hours worked. We re-estimated® the four models based on
Data Sets 2 and 3 and obtained very similar results with one exception: for Data Set 3
the estimates of the labor supply elasticity range from 0.92 (A () to 1.05 (M) and are
somewhat larger than the microlevel estimates. However, these numbers are roughly

8. According to the headhunting service website www.staffing.org/recruitingefficiency/calculator2004.
aspx, the nation-wide average recruiting efficiency (total recruiting cost divided by the annual salary of the
recruited) is 87.6%. This corresponds to the recruiting cost of 12.4% of an annual salary and 49.6% of a
quarterly salary of the worker recruited.

9. Detailed estimates are provided in a technical appendix that is available from the authors upon
request.
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TABLE 2
POSTERIOR DISTRIBUTION—BENCHMARK PRIOR, DATA SET 1

Posterior

Prior Stationary B, Non-stationary B,

Parameter Mean 90% interval Mean 90% interval Mean 90% interval

No Adjustment Costs (¢ = 0)

o 0.660 [0.627, 0.693] 0.652 [0.624, 0.681] 0.654 [0.624, 0.685]
B 0.995 [0.992, 0.998] 0.995 [0.993, 0.998] 0.995 [0.992, 0.998]
y 0.005 [—0.003, 0.013] 0.004 [0.002, 0.006] 0.004 [0.003, 0.006]
8 0.025 [0.017, 0.033] 0.023 [0.016, 0.030] 0.024 [0.016, 0.031]
v 1.000 [0.233, 1.735] 0.527 [0.179, 0.865] 0.474 [0.160, 0.783]
Pg 0.900 [0.826, 0.978] 0.951 [0.919, 0.981]
04 N/A [0.003, 0.081] 0.011 [0.010, 0.013] 0.011 [0.010, 0.013]
o N/A [0.003, 0.081] 0.006 [0.005, 0.006] 0.006 [0.006, 0.007]
In Ay 5.647 [5.316, 5.970] 5.708 [5.474, 5.949]

5.674 [5.342, 6.000] 5.717 [5.444, 5.990]
InB, 3.236 [2.905, 3.562] 3.176 [3.150, 3.204]

3.209 [2.878, 3.535] 3.166 [2.894, 3.430]

With Adjustment Costs (¢ > 0)

a 0.660 [0.627, 0.693] 0.658 [0.631, 0.687] 0.661 [0.633, 0.689]
B 0.995 [0.992, 0.998] 0.995 [0.992, 0.998] 0.995 [0.992, 0.998]
y 0.005 [—0.003, 0.013] 0.004 [0.002, 0.006] 0.004 [0.003, 0.006]
8 0.025 [0.017,0.033] 0.023 [0.016, 0.031] 0.024 [0.016, 0.031]
v 1.000 [0.234, 1.736] 0.433 [0.024, 0.921] 0.153 [0.009, 0.337]
OB 0.900 [0.825, 0.977] 0.800 [0.657, 0.940] 1.000 [1.000, 1.000]
O N/A [0.004, 0.121] 0.011 [0.010, 0.012] 0.011 [0.010, 0.012]
op N/A [0.004, 0.120] 0.034 [0.009, 0.071] 0.012 [0.009, 0.015]
InA, 5.647 [5.321, 5.979] 5.748 [5.510, 5.981]

5.674 [5.342,5.999] 5.754 [5.521,5.979]
In B, 3.235 [2.905, 3.563] 3.171 [3.147,3.197]

3.209 [2.879, 3.537] 3.194 [2.870,3.518]
) 33.00 [9.636, 55.40] 11.36 [1.145,22.90] 8.054 [0.623, 16.69]

consistent with the estimates obtained by Chang and Kim (2006) and estimates
from an experimental survey by Kimball and Shapiro (2003), who report a value of
about 1.

For the stationary model without adjustment costs, we observe that the estimated
autocorrelations of the labor supply shocks, p, are near unity. The posterior means
are 0.95 (Data Set 1), 0.97 (Data Set 2), and 0.98 (Data Set 3). However, once
we allow for non-zero adjustment costs and enrich the internal propagation mech-
anism of the DSGE model the estimates of p;, drop to 0.80 (Data Set 1), 0.85
(Data Set 2), and 0.89 (Data Sets 3), respectively. In Figure 2, we plot draws
from the joint prior and posterior distributions of p, and ¢ for model A, and
Data Set 1. Even though the two parameters are independent a priori, the poste-
rior clearly exhibits a negative correlation: large values of the adjustment cost pa-
rameters are associated with relatively small values of p;, and persistence of hours
is generated endogenously.

To assess overall time series fit of the stochastic growth models, we report
marginal data densities in Table 3. If one assigns equal prior probabilities to the
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FiG. 2. Joint Distribution of ¢ and p,.
Nortes: Figure depicts 400 draws from prior (posterior) distribution. Intersection of dashed (solid) lines indicates prior
(posterior) mean. Results are based on Benchmark Prior and Data Set 1.

TABLE 3
LoG MARGINAL DATA DENSITIES

Data set Prior My My Ao Ay VAR(4)
1 B 1176.33 1178.45 1182.10 1180.21 1180.49
P1 1176.81
P2 1178.61
P3 1177.64
P4 1174.85
2 B 1161.35 1165.81 1187.39 1185.26 1163.75
P1 1164.62
P2 1165.83
P3 1164.15
P4 1159.73
3 B 1114.65 1119.26 1145.26 1144.29 1136.41
P1 1117.29
P2 1119.61
P3 1117.92
P4 1112.97

Notes: B denotes the benchmark prior in Table 1 whereas P1 through P4 refer to the alternative priors in Table 4. Posterior odds of, say, M
versus M can be obtained by multiplying prior odds with the Bayes factor exp[In p(YT | M1) —In p(¥T | Mg)].

model specifications, exponentiated differences of log marginal data densities can be
interpreted as posterior odds.'® Without adjustment costs the non-stationary model
M has a higher marginal data density than the stationary model M. The posterior
odds in favor of M range from 8:1 (Data Set 1) to 100:1 (Data Set 3). However,
once adjustment costs are introduced the ranking changes. Now the model with the
stationary labor supply shock, A, is preferred to the non-stationary model, .A;. The

10. According to the somewhat arbitrary but often cited classification in Appendix B of Jeffreys (1961),
a posterior odds ratio between 3 and 10, 10 and 32, 32 and 100, above 100 provides “substantial,” “strong,”
“very strong,” “decisive” evidence, respectively.
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FiG. 3. Sample Moments of Hours—Posterior Predictive Distribution.

Nortes: Figure depicts 400 draws from posterior predictive distribution of sample moments. Intersection of dashed lines
indicates the actual (Data Set 1) sample standard deviation and first-order autocorrelation. Results are based on benchmark
prior and Data Set 1.

posterior odds range from 2:1 to 9:1. Overall, the models with adjustment cost are
preferred to those without. In addition to the DSGE models we estimate a VAR in log
levels of output and hours

yl=q>0+q)lyl—1+"'+q>pyt—p+uta MtNiidN(Ov ) (13)

with p = 4 lags using a Minnesota prior.!! This prior shrinks the VAR estimates
toward univariate random walk representations. While the VAR dominates both M,
and M in terms of marginal data density, the adjustment cost specifications tend to
fit better than the VAR(4), in particular for Data Sets 2 and 3.

In Figure 3, we plot draws from the posterior predictive distribution of the sample
autocorrelation and standard deviation of hours worked. All calculations are based on

11. See Doan, Litterman, and Sims (1984). Our version is implemented via dummy observations based
on MATLAB code provided by Chris Sims. A description can be found in Appendix C of Lubik and
Schorfheide (2006). We use the following hyperparameters: d = 0.5, A =5, u = 2, T = 1. Mean and
standard observations of y, are calculated based on the pre-sample.
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TABLE 4
ALTERNATIVE PRIOR DISTRIBUTIONS

Parameter Domain Density Data set Model Para (1) Para (2)

Alternative Prior P1

In By R Normal 1 M, 3.209 2.000
2 M, 6.405 2.000
3 M, 6.309 2.000
Alternative Prior P2
In By R Normal 1 M, 3.209 0.020
2 M, 6.405 0.020
3 M, 6.309 0.020
Alternative Prior P3
P [0, 1) Beta all M, 0.980 0.005
Alternative Prior P4
Pb [0, 1) Beta all M, 0.800 0.100

Nortes: Para (1) and Para (2) list the means and the standard deviations for beta and normal distributions.

Data Set 1 and the benchmark prior. Each point in the plot is generated as follows: we
take a draw from the posterior distribution of the DSGE model parameters, simulate
T artificial observations from the linearized model, and compute sample moments
of hours worked. The intersection of the solid lines indicates the sample moments
calculated from the actual U.S. data. If the estimated model fits well and is able
to explain the salient features of the data, the actual sample moment should not
lie to far in the tails of the posterior predictive distribution.'? The top left panel of
Figure 3 indicates that the model with stationary labor supply shocks (M) has
difficulties reproducing the persistence of hours worked observed in the data. If we
make the labor supply shock non-stationary (M), the predicted autocorrelation of
hours worked rises and is consistent with the data. The lower left panel suggests that
once adjustment costs have been introduced, the stationary labor supply shock (A ¢)
is sufficient to generate realistic sample moments. In fact, non-stationary labor shocks
(A;) lead to too much serial correlation and volatility in hours worked. 13

We conduct a number of robustness checks by re-estimating M, and M/ un-
der alternative prior distributions presented in Table 4. Prior P1 uses a more dif-
fuse distribution for In B in the non-stationary model M, whereas Prior P2 is
more concentrated than the benchmark prior. Not surprisingly, the marginal data
density deteriorates under the less informative Prior P1 for all three data sets.
However, the change is small because our analysis is conditioned on four initial

12. The notion of Bayesian posterior predictive checks dates back at least to Box (1980) and is explained
in detail, for instance, in recent textbooks by Lancaster (2004) and Geweke (2005).

13. We also used the Kalman smoother to back out the exogenous processes In A, and In B,. Without
adjustment costs the smoothed exogenous processes under M, and M, are virtually identical. The NBER
recessions tend to be associated with adverse movements of the labor supply process, which in Chang and
Schortheide (2003) is interpreted as increase in the home production technology relative to the market
technology. Since in specification A, due to the presence of adjustment costs the estimated p, is less
than 0.9, the smoothed In B, process exhibits much more high frequency movements than under the
non-stationary hours specification A;.
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FiG. 4. Impulse Response Functions: A versus M.

Nores: Figure depicts impulse response functions to one-standard-deviation shocks: pointwise 90% intervals. Results are
based on benchmark prior and Data Set 1.

observations. Tightening the prior for In B leaves the marginal data density virtually
unchanged.

Priors P3 and P4 modify the distribution of p, in M/ by increasing (P3) and
decreasing (P4) the implied persistence of the labor supply shock. For all three data
sets P3 raises the marginal data density of M, and hence narrows the gap between
M and M. For instance, based on Data Set 1 the odds in favor of the non-stationary
specification drop from 8:1 to 2:1. If one compares M with Prior P3 to M with
Prior P1, then M slightly dominates. Under Prior P4, on the other hand, the marginal
data density of M falls relative to the benchmark prior. Without adjustment costs
the non-stationary specification M is preferred to M. However, the magnitude of
the posterior odds is sensitive to the prior, reflecting the difficulty of distinguishing
unit-root from stationary yet highly persistent dynamics in finite samples.

Based on Data Set 1, 90 percent posterior intervals for impulse responses of output
and hours are depicted in Figure 4. The estimated impulse response functions for
Data Set 2 and 3 are similar to those obtained from Data Set 1 and hence omitted.
Based on the evidence from the marginal data densities we restrict our attention
to the specifications M and A. In general, the responses of M/ (dotted lines)
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are monotonic because without adjustment costs there is little internal propagation.
After a permanent rise in technology, hours worked increase initially and return to
the steady state level (top left-hand panel). The hours response in A (solid lines)
exhibits a slight hump shape due to the adjustment costs. The output responses to a
positive technology shock in the two models are very similar: output monotonically
approaches a new steady state over time (bottom left-hand panel). In response to a
labor supply shock, the two models exhibit striking differences (right-hand panels).
After a mean-reverting labor supply shock both hours and output dynamics have clear
humps in the adjustment cost model (A o). A non-stationary labor supply shock, on the
other hand, generates monotonic responses in hours and output in the model without
adjustment costs (M).

4. CONCLUSION

In order to account for the joint movement of observed hours and consumption over
the business cycle, signified by a strongly pro-cyclical movement of the consumption-
leisure ratio without corresponding variations in the real wage, DSGE models are
often augmented with shifts in the marginal rate of substitution between leisure and
consumption. These labor supply shocks are typically assumed to be stationary. The
balanced-growth-path property of the standard neoclassical growth model, which
serves as basis for most DSGE models, implies that hours worked are stationary. This
implication, however, appears to be at odds with the persistent movements of per
capita hours in the data.

In this article we illustrate that DSGE models can be easily modified to incorporate
non-stationary labor supply shocks which generate permanent shifts in hours worked.
We then ask whether non-stationary labor supply shocks are required to account for the
persistence of per capita hours in the data. According to our time series analysis, the
model with permanent labor supply shocks provides a better fit than the specification
with transitory shocks, if one abstracts from labor adjustment frictions. However, once
one allows for adjustment costs in labor, the ranking is reversed and the model with
transitory labor supply shocks is preferred. Overall, the model specifications with
adjustment costs fit the data better than those without. The adjustment cost model
with stationary labor supply shocks, and hence stationary yet highly persistent labor
fluctuations, is able to reproduce the observed sample autocorrelation and variance
of hours worked.
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