$$
\begin{align*}
& \lambda_{t}=\left(C_{t}-h_{C} C_{t-1}\right)^{\left(-\sigma_{C}\right)} \tag{1}\\
& 1=Q_{t}\left(1-\frac{\kappa_{I}}{2}\left(\frac{I_{t}}{I_{t-1}}-1\right)^{2}-\left(\frac{I_{t}}{I_{t-1}}-1\right) \kappa_{I} \frac{I_{t}}{I_{t-1}}\right)+\kappa_{I} \beta_{C} \frac{\lambda_{t+1}}{\lambda_{t}} Q_{t+1}\left(\frac{I_{t+1}}{I_{t}}\right)^{2}\left(\frac{I_{t+1}}{I_{t}}-1\right) \tag{2}\\
& Q_{t}=\beta_{C} \frac{\lambda_{t+1}}{\lambda_{t}}\left(1+r^{K}{ }_{t+1}+Q_{t+1}(1-\delta)\right) \tag{3}\\
& 1=\beta_{C} \frac{\lambda_{t+1}}{\lambda_{t}} \frac{P_{t}}{P_{t+1}}\left(1+R_{t}\right) \tag{4}\\
& \pi_{t}=\beta_{C} \rho_{P} \frac{\lambda_{t+1}}{\lambda_{t}} \pi_{t+1} \frac{P^{*}{ }_{t+1}}{P^{*} t} \frac{Y_{t+1}}{Y_{t}}+\frac{\psi_{P}}{\kappa_{P}}\left(\frac{M C_{t+1}}{P_{t+1}}-\frac{\psi_{P}-1}{\psi_{P}}\right)+\varepsilon^{\pi}{ }_{t} \tag{5}\\
& P_{t}=\left(\rho_{P} P_{t-1}^{1-\psi_{P}}+\left(1-\rho_{P}\right) P_{t}^{* 1-\psi_{P}}\right)^{\frac{1}{1-\psi_{P}}}+\varepsilon^{W}{ }_{t} \tag{6}\\
& K_{t}=(1-\delta) K_{t-1}+I_{t}\left(1-\frac{\kappa_{I}}{2}\left(\frac{I_{t}}{I_{t-1}}-1\right)^{2}\right) \tag{7}\\
& M C_{t}=\frac{P_{S S} W_{S S}}{(1-\gamma)\left(K_{t-1} C R_{t}\right)^{\gamma} \varepsilon_{t}^{A_{t}^{1-\gamma}}} \tag{8}\\
& P^{*}{ }_{t}=M C_{t} \frac{\psi_{P}}{\psi_{P}-1} \tag{9}\\
& Y_{t}=C_{t}+I_{t}+G_{t} \tag{10}\\
& r^{D}{ }_{t}=\left(1+R_{t}\right)(1-\tau)-\frac{P_{t+1}}{P_{t}} \frac{\tau}{\beta_{B}} \frac{\lambda_{t}}{\lambda_{t+1}}-1 \tag{11}\\
& r^{C} R_{t}=R_{t}+\sigma_{C R}+\xi^{C} R_{t} \tag{12}\\
& R_{t}=\phi_{R} R_{t-1}+\left(1-\phi_{R}\right)\left(\pi_{t}-\bar{\pi}\right)+\varepsilon^{R}{ }_{t} \tag{13}\\
& W^{*}{ }_{t}=\left(\frac{\left(K_{t-1} C R_{t}{ }_{t}\right)^{\gamma} P_{t} \varepsilon^{A}{ }_{t}(1-\gamma) \varepsilon^{L}{ }_{t}}{\lambda_{t}}\right)^{\frac{\sigma_{L}}{\gamma-\sigma_{L}}} \tag{14}\\
& W_{t}=\left(\rho_{W} W_{t-1}^{1-\psi_{W}}+\left(1-\rho_{W}\right) W_{t}^{* 1-\psi_{W}}\right)^{\frac{1}{1-\psi_{W}}}+\varepsilon^{W}{ }_{t} \tag{15}
\end{align*}
$$

$$
\begin{equation*}
M_{t}=P_{t}\left(\frac{\beta_{C} \lambda_{t+1}}{\frac{P_{t+1}}{P_{t}} \varepsilon^{M}{ }_{t}}+\left(\frac{\lambda_{t} \frac{P_{t+1}}{P_{t}}}{\varepsilon^{M}{ }_{t}}\right)^{\frac{(-1)}{\sigma_{M}}}\right) \tag{16}
\end{equation*}
$$

$$
\begin{equation*}
C R^{C}=\frac{1}{\varepsilon^{C R^{C}}{ }_{t}-\Psi_{U} \Psi_{C R^{C}}}\left(\varepsilon^{C R^{C}}{ }_{t} h_{C R^{C}} C R^{C}{ }_{t-1}-\Psi_{U} \Psi_{D} D_{t}+\frac{\lambda_{t}}{P_{t}}\left(1+r^{C} R_{t}\right)+\beta_{C} \frac{\lambda_{t+1}}{P_{t+1}}\right) \tag{17}
\end{equation*}
$$

$$
C R_{t}^{P}=\left(\frac{Q_{t-1} \frac{1}{\beta_{C}} \frac{\lambda_{t-1}}{\lambda_{t}}-Q_{t}(1-\delta)-1}{\gamma \varepsilon_{t}^{A} K_{t}^{\gamma-1} L_{t}^{1-\gamma}}\right)^{\frac{1}{\gamma}}
$$

$$
D_{t}=\frac{1}{\varepsilon^{D}{ }_{t}+\Psi_{D} P_{t} \Psi_{U}}\left(\Psi_{C R^{C}} P_{t} \Psi_{U}+\lambda_{t}\left(1+r^{D}{ }_{t}\right)+\beta_{C} \frac{\lambda_{t+1}}{\frac{P_{t+1}}{P_{t}}}\right)
$$

$$
r_{t}^{K}=Q_{t-1} \frac{1}{\beta_{C}} \frac{\lambda_{t-1}}{\lambda_{t}}-Q_{t}(1-\delta)-1
$$

$$
\log \left(\varepsilon^{L}{ }_{t}\right)=\rho_{L} \log \left(\varepsilon^{L}{ }_{t-1}\right)+\eta_{t}^{L}
$$

$$
\log \left(\varepsilon^{M}{ }_{t}\right)=\rho_{M} \log \left(\varepsilon^{M}{ }_{t-1}\right)+\eta^{M}{ }_{t}
$$

$$
\log \left(\varepsilon^{C R^{C}}{ }_{t}\right)=\rho_{C R^{C}} \log \left(\varepsilon^{C R^{C}}{ }_{t-1}\right)+\eta_{t}^{C R^{C}}
$$

$$
\begin{equation*}
\log \left(\varepsilon^{D}{ }_{t}\right)=\rho_{D} \log \left(\varepsilon^{D}{ }_{t-1}\right)+\eta^{D}{ }_{t} \tag{24}
\end{equation*}
$$

$$
\begin{equation*}
\log \left(\varepsilon_{t}^{A}\right)=\rho_{A} \log \left(\varepsilon_{t-1}^{A}\right)+\eta_{t}^{A} \tag{25}
\end{equation*}
$$

$$
\begin{equation*}
\xi^{C} R_{t}=\rho_{C R} \xi^{C} R_{t-1}+\eta^{C} E_{t} \tag{26}
\end{equation*}
$$

$$
\begin{equation*}
\varepsilon^{R}{ }_{t}=\rho_{R} \varepsilon^{R}{ }_{t-1}+\eta_{t}^{R} \tag{27}
\end{equation*}
$$

$$
\begin{equation*}
I_{t}=\eta_{t}^{I}+I_{t-1} \rho_{I}+\left(1-\rho_{I}\right) A U X _E N D O _L A G_{-} 3_{-} 1_{t-1} \tag{28}
\end{equation*}
$$

$$
\begin{equation*}
\varepsilon^{W}{ }_{t}=\rho_{W_{S S}} \varepsilon^{W}{ }_{t-1}+\eta_{t}^{W} \tag{29}
\end{equation*}
$$

$$
\begin{equation*}
\varepsilon^{W}{ }_{t}=\rho_{P_{S S}} \varepsilon^{W}{ }_{t-1}+\eta_{t}^{P} \tag{30}
\end{equation*}
$$

$$
\begin{equation*}
\varepsilon_{t}^{\pi}=\rho_{\pi_{S S}} \varepsilon_{t-1}^{\pi}+\eta_{t}^{\pi} \tag{31}
\end{equation*}
$$

$$
\begin{equation*}
\log \left(G_{t}\right)=\rho_{G} \log \left(G_{t-1}\right)+\eta_{t}^{G} \tag{32}
\end{equation*}
$$

$$
\begin{equation*}
A U X_{-} E N D O _L A G_{-} 3_{-} 1_{t}=I_{t-1} \tag{33}
\end{equation*}
$$

Table 1: Endogenous

Variable	$\mathrm{EAT}_{\mathrm{E}} \mathrm{X}$	Description
lambda	λ	Magrginal utility of consumption
C	C	Consumer consumption
G	G	Government consumption
I	I	Investments
Q	Q	Tobins q
rK	r^{K}	Gross return rate of capital
R	R	Central bank key rate
Pi	π	Inflation rate YoY
P	P	Aggregate price level
Pstar	P^{*}	Optimal price level
MC	MC	Firms marginal cost
K	K	Firms capital
Y	Y	GDP level
CRC	$C R^{C}$	Credits to consumer consumption
CRP	$C R^{P}$	Credits to firms production
rD	r^{D}	Bank deposit interest rate
rCR	$r^{C} R$	Bank lending interest rate
M	M	Money in Utility
W	W	Wage level
Wstar	W^{*}	Optimal wage level
L	L	Labour
D	D	Aggregate level of consumer deposits
epsL	ε^{L}	Labour preferences shock rule
epsM	ε^{M}	Money holding preferences shock rule
epsCRC	$\varepsilon^{C R^{C}}$	Consumer credit preferences shock rule
epsD	ε^{D}	Consumer deposit preferences shock rule
epsA	ε^{A}	Total factor productivity shock rule
ksiCR	$\xi^{C} R$	Bank lending risk-premium shock rule
epsR	ε^{R}	Inflation targeting shock rule
epsW	ε^{W}	Wage shock rule
epsP	ε^{W}	Price shock rule
epsPi	ε^{π}	Price shock rule
AUX_ENDO_LAG_3_1	$A U X _E N D O _L A G _3 _1$	AUX_ENDO_LAG_3_1

Table 2: Exogenous

Variable	$\mathbf{A T}_{\mathbf{E}} \mathbf{X}$	Description
nuL	η^{L}	Labour preferences shock
nuI	η^{I}	Investments shock
nuM	η^{M}	Money preferences shock
nuCRC	$\eta^{C R^{C}}$	Consumer credit preferences shock

Table 2 - Continued

Variable	$\mathbf{A T}_{\mathbf{E}} \mathbf{X}$	Description
nuD	η^{D}	Consumer deposits preferences shock
nuA	η^{A}	Technology shock
nuCR	$\eta^{C} E$	Bank lending risk-premium shock
nuR	η^{R}	Taylor rule shock
nuW	η^{W}	Wage rule shock
nuP	η^{P}	Price rule shock
nuPi	η^{π}	Inflation rule shock
nuG	η^{G}	Government spending rule shock

Table 3: Parameters

Variable	$\mathbf{A T}_{\mathbf{E}} \mathbf{X}$	Description
HC	h_{C}	Consumption habbit formation
SIGMAC	σ_{C}	Inverse of the intertemporal elasticity of substitution
KAPPAI	κ_{I}	Rotemberg investments adjustment weight
BETAC	β_{C}	Consumers discount-factor rate
DELTA	δ	Depreciation rate of capital formation
PITARGET	$\bar{\pi}$	Inflation target
BETAP	β_{C}	Firms discount-factor rate
ROP	ρ_{P}	Share of firms changing their prices
PSIP	ψ_{P}	Elasticity of substitution in the production of goods
PSIW	ψ_{W}	Elasticity of substitution in the wage settings
KAPPAP	κ_{P}	Firms average adjustment cost
TAU	τ	Banks reserve ratio
BETAB	β_{B}	Banks discount-factor rate
FIR	ϕ_{R}	Taylor rule weight
GAMMA	γ	Elasticity of firms factors production
SIGMAL	σ_{L}	Inverse Frisch elasticity of labor supply
ROW	ρ_{W}	Wage shock persistence rate
SIGMAM	σ_{M}	Elasticity of money in utility
PSIU	Ψ_{U}	General tendency to substitute deposits for loans
PSICRC	$\Psi_{C R^{C}}$	Measure of replacing deposits with loans
HCRC	$h_{C R^{C}}$	Consumer credit habbit formation
PSID	Ψ_{D}	Measure of replacing loans with deposits
ROL	ρ_{L}	Labour preferences shock persistence rate
ROM	ρ_{M}	Money holding preferences shock persistence rate
ROCRC	$\rho_{C R^{C}}$	Credits using preferences shock persistence rate
ROD	ρ_{D}	Deposits using preferences shock persistence rate
ROA	ρ_{A}	Technology shock persistence rate
ROAD	$\rho_{A D}$	Total supply shock persistence rate
ROCR	$\rho_{C R}$	Bank lending risk-premium shock persistence rate
ROR	ρ_{R}	Taylor rule shock persistence rate

Table 3 - Continued

Variable	$\mathbf{A T}_{\mathbf{E}} \mathbf{X}$	Description
ROI	ρ_{I}	Investment dynamic acceleration rate
PSS	$P_{S S}$	Steady-State level of prices (DLOG price level)
WSS	$W_{S S}$	Steady-State level of wages (DLOG wage level)
YSS	$Y_{S S}$	Steady-State level of GDP (DLOG GDP level)
LSS	$L_{S S}$	Steady-State level of labour (DLOG employment (in persons) level)
PiSS	$\pi_{S S}$	Steady-State level of inflation (average level of inflation rate)
SIGCR	$\sigma_{C R}$	Bank risk-premium shifter
ROPP	$\rho_{P_{S S}}$	Aggregate price dynamic shock persistence rate
ROWW	$\rho_{W_{S S}}$	Wage correction shock persistence rate
ROPi	$\rho_{\pi_{S S}}$	Price correction shock persistence rate
ROG	ρ_{G}	Government spending rule persistence rate

Table 4: Parameter Values

Parameter	Value	Description
h_{C}	0.600	Consumption habbit formation
σ_{C}	0.750	Inverse of the intertemporal elasticity of substitution
κ_{I}	2.500	Rotemberg investments adjustment weight
β_{C}	1.042	Consumers discount-factor rate
δ	0.025	Depreciation rate of capital formation
$\bar{\pi}$	0.040	Inflation target
β_{C}	0.800	Firms discount-factor rate
ρ_{P}	0.800	Share of firms changing their prices
ψ_{P}	9.000	Elasticity of substitution in the production of goods
ψ_{W}	3.000	Elasticity of substitution in the wage settings
κ_{P}	0.300	Firms average adjustment cost
τ	0.200	Banks reserve ratio
β_{B}	0.900	Banks discount-factor rate
ϕ_{R}	0.200	Taylor rule weight
γ	0.100	Elasticity of firms factors production
σ_{L}	3.000	Inverse Frisch elasticity of labor supply
ρ_{W}	0.800	Wage shock persistence rate
σ_{M}	1.500	Elasticity of money in utility
Ψ_{U}	0.550	General tendency to substitute deposits for loans
$\Psi_{C R^{C}}$	0.500	Measure of replacing deposits with loans
$h_{C R^{C}}$	0.900	Consumer credit habbit formation
Ψ_{D}	0.150	Measure of replacing loans with deposits
ρ_{L}	0.720	Labour preferences shock persistence rate
ρ_{M}	0.910	Money holding preferences shock persistence rate
$\rho_{C R^{C}}$	0.840	Credits using preferences shock persistence rate
ρ_{D}	0.710	Deposits using preferences shock persistence rate
ρ_{A}	0.670	Technology shock persistence rate
$\rho_{A D}$	0.580	Total supply shock persistence rate
$\rho_{C R}$	0.730	Bank lending risk-premium shock persistence rate
ρ_{R}	0.760	Taylor rule shock persistence rate
ρ_{I}	0.430	Investment dynamic acceleration rate
$P_{S S}$	1.510	Steady-State level of prices (DLOG price level)
$W_{S S}$	2.390	Steady-State level of wages (DLOG wage level)
$Y_{S S}$	2.430	Steady-State level of GDP (DLOG GDP level)
$L_{S S}$	0.100	Steady-State level of labour (DLOG employment (in persons) level)
$\pi_{S S}$	0.000	Steady-State level of inflation (average level of inflation rate)
$\sigma_{C R}$	1.200	Bank risk-premium shifter
$\rho_{P_{S S}}$	0.900	Aggregate price dynamic shock persistence rate
$\rho_{W_{S S}}$	0.900	0.200
$\rho_{S S}$	0.800	Wage correction shock persistence rate
	Gricenting shock persistence rate	

$$
\begin{align*}
& \lambda_{t}=\left(C_{t}-h_{C} C_{t-1}\right)^{\left(-\sigma_{C}\right)} \tag{34}\\
& 1=Q_{t}\left(1-\frac{\kappa_{I}}{2}\left(\frac{I_{t}}{I_{t-1}}-1\right)^{2}-\left(\frac{I_{t}}{I_{t-1}}-1\right) \kappa_{I} \frac{I_{t}}{I_{t-1}}\right)+\kappa_{I} \beta_{C} \frac{\lambda_{t+1}}{\lambda_{t}} Q_{t+1}\left(\frac{I_{t+1}}{I_{t}}\right)^{2}\left(\frac{I_{t+1}}{I_{t}}-1\right) \tag{35}\\
& Q_{t}=\beta_{C} \frac{\lambda_{t+1}}{\lambda_{t}}\left(1+r^{K}{ }_{t+1}+Q_{t+1}(1-\delta)\right) \tag{36}\\
& 1=\beta_{C} \frac{\lambda_{t+1}}{\lambda_{t}} \frac{P_{t}}{P_{t+1}}\left(1+R_{t}\right) \tag{37}\\
& \pi_{t}=\beta_{C} \rho_{P} \frac{\lambda_{t+1}}{\lambda_{t}} \pi_{t+1} \frac{P^{*}{ }_{t+1}}{P^{*} t} \frac{Y_{t+1}}{Y_{t}}+\frac{\psi_{P}}{\kappa_{P}}\left(\frac{M C_{t+1}}{P_{t+1}}-\frac{\psi_{P}-1}{\psi_{P}}\right)+\varepsilon^{\pi}{ }_{t} \tag{38}\\
& P_{t}=\left(\rho_{P} P_{t-1}^{1-\psi_{P}}+\left(1-\rho_{P}\right) P_{t}^{* 1-\psi_{P}}\right)^{\frac{1}{1-\psi_{P}}}+\varepsilon^{W}{ }_{t} \tag{39}\\
& K_{t}=(1-\delta) K_{t-1}+I_{t}\left(1-\frac{\kappa_{I}}{2}\left(\frac{I_{t}}{I_{t-1}}-1\right)^{2}\right) \tag{40}\\
& M C_{t}=\frac{P_{S S} W_{S S}}{(1-\gamma)\left(K_{t-1} C R_{t}\right)^{\gamma} \varepsilon_{t}^{A_{t}^{1-\gamma}}} \tag{41}\\
& P^{*}{ }_{t}=M C_{t} \frac{\psi_{P}}{\psi_{P}-1} \tag{42}\\
& Y_{t}=C_{t}+I_{t}+G_{t} \tag{43}\\
& r^{D}{ }_{t}=\left(1+R_{t}\right)(1-\tau)-\frac{P_{t+1}}{P_{t}} \frac{\tau}{\beta_{B}} \frac{\lambda_{t}}{\lambda_{t+1}}-1 \tag{44}\\
& r^{C} R_{t}=R_{t}+\sigma_{C R}+\xi^{C} R_{t} \tag{45}\\
& R_{t}=\phi_{R} R_{t-1}+\left(1-\phi_{R}\right)\left(\pi_{t}-\bar{\pi}\right)+\varepsilon^{R}{ }_{t} \tag{46}\\
& W^{*}{ }_{t}=\left(\frac{\left(K_{t-1} C R_{t}{ }_{t}\right)^{\gamma} P_{t} \varepsilon^{A}{ }_{t}(1-\gamma) \varepsilon^{L}{ }_{t}}{\lambda_{t}}\right)^{\frac{\sigma_{L}}{\gamma-\sigma_{L}}} \tag{47}\\
& W_{t}=\left(\rho_{W} W_{t-1}^{1-\psi_{W}}+\left(1-\rho_{W}\right) W_{t}^{* 1-\psi_{W}}\right)^{\frac{1}{1-\psi_{W}}}+\varepsilon^{W}{ }_{t} \tag{48}
\end{align*}
$$

$$
\begin{align*}
& M_{t}=P_{t}\left(\frac{\beta_{C} \lambda_{t+1}}{\frac{P_{t+1}}{P_{t}} \varepsilon^{M}{ }_{t}}+\left(\frac{\lambda_{t} \frac{P_{t+1}}{P_{t}}}{\varepsilon^{M}{ }_{t}}\right)^{\frac{(-1)}{\sigma_{M}}}\right) \tag{49}\\
& C R^{C}{ }_{t}=\frac{1}{\varepsilon^{C R^{C}}{ }_{t}-\Psi_{U} \Psi_{C R^{C}}}\left(\varepsilon^{C R^{C}}{ }_{t} h_{C R^{C}} C R^{C}{ }_{t-1}-\Psi_{U} \Psi_{D} D_{t}+\frac{\lambda_{t}}{P_{t}}\left(1+r^{C} R_{t}\right)+\beta_{C} \frac{\lambda_{t+1}}{P_{t+1}}\right) \tag{50}\\
& C R^{P}{ }_{t}=\left(\frac{Q_{t-1} \frac{1}{\beta_{C}} \frac{\lambda_{t-1}}{\lambda_{t}}-Q_{t}(1-\delta)-1}{\gamma \varepsilon^{A}{ }_{t} K_{t}^{\gamma-1} L_{t}^{1-\gamma}}\right)^{\frac{1}{\gamma}} \tag{51}\\
& D_{t}=\frac{1}{\varepsilon^{D}{ }_{t}+\Psi_{D} P_{t} \Psi_{U}}\left(\Psi_{C R^{C}} P_{t} \Psi_{U}+\lambda_{t}\left(1+r^{D}{ }_{t}\right)+\beta_{C} \frac{\lambda_{t+1}}{\frac{P_{t+1}}{P_{t}}}\right) \tag{52}\\
& r^{K}{ }_{t}=Q_{t-1} \frac{1}{\beta_{C}} \frac{\lambda_{t-1}}{\lambda_{t}}-Q_{t}(1-\delta)-1 \tag{53}\\
& \log \left(\varepsilon^{L}{ }_{t}\right)=\rho_{L} \log \left(\varepsilon^{L}{ }_{t-1}\right)+\eta^{L}{ }_{t} \tag{54}\\
& \log \left(\varepsilon^{M}{ }_{t}\right)=\rho_{M} \log \left(\varepsilon^{M}{ }_{t-1}\right)+\eta^{M}{ }_{t} \tag{55}\\
& \log \left(\varepsilon^{C R^{C}}{ }_{t}\right)=\rho_{C R^{C}} \log \left(\varepsilon^{C R^{C}}{ }_{t-1}\right)+\eta^{C R^{C}}{ }_{t} \tag{56}\\
& \log \left(\varepsilon^{D}{ }_{t}\right)=\rho_{D} \log \left(\varepsilon^{D}{ }_{t-1}\right)+\eta_{t}^{D} \tag{57}\\
& \log \left(\varepsilon^{A}{ }_{t}\right)=\rho_{A} \log \left(\varepsilon^{A}{ }_{t-1}\right)+\eta^{A}{ }_{t} \tag{58}\\
& \xi^{C} R_{t}=\rho_{C R} \xi^{C} R_{t-1}+\eta^{C} E_{t} \tag{59}\\
& \varepsilon^{R}{ }_{t}=\rho_{R} \varepsilon^{R}{ }_{t-1}+\eta^{R}{ }_{t} \tag{60}\\
& I_{t}=I_{t-1} \rho_{I}+\left(1-\rho_{I}\right) I_{t-2}+\eta_{t}^{I} \tag{61}\\
& \varepsilon^{W}{ }_{t}=\rho_{W_{S S}} \varepsilon^{W}{ }_{t-1}+\eta^{W}{ }_{t} \tag{62}\\
& \varepsilon^{W}{ }_{t}=\rho_{P_{S S}} \varepsilon^{W}{ }_{t-1}+\eta^{P}{ }_{t} \tag{63}\\
& \varepsilon^{\pi}{ }_{t}=\rho_{\pi_{S S}} \varepsilon^{\pi}{ }_{t-1}+\eta^{\pi}{ }_{t} \tag{64}\\
& \log \left(G_{t}\right)=\rho_{G} \log \left(G_{t-1}\right)+\eta^{G}{ }_{t} \tag{65}
\end{align*}
$$

$$
\begin{align*}
& \lambda=\left(C-C h_{C}\right)^{\left(-\sigma_{C}\right)} \tag{66}\\
& 1=Q \tag{67}\\
& Q=\beta_{C}\left(1+r^{K}+Q(1-\delta)\right) \tag{68}\\
& 1=\beta_{C}(1+R) \tag{69}\\
& \pi=\pi \beta_{C} \rho_{P}+\frac{\psi_{P}}{\kappa_{P}}\left(\frac{M C}{P}-\frac{\psi_{P}-1}{\psi_{P}}\right)+\varepsilon^{\pi} \tag{70}\\
& P=\left(\rho_{P} P^{1-\psi_{P}}+\left(1-\rho_{P}\right) P^{* 1-\psi_{P}}\right)^{\frac{1}{1-\psi_{P}}}+\varepsilon^{W} \tag{71}\\
& K=I+(1-\delta) K \tag{72}\\
& M C=\frac{P_{S S} W_{S S}}{(1-\gamma)\left(K C R^{P}\right)^{\gamma} \varepsilon^{A^{1-\gamma}}} \tag{73}\\
& P^{*}=M C \frac{\psi_{P}}{\psi_{P}-1} \tag{74}\\
& Y=C+I+G \tag{75}\\
& r^{D}=(1+R)(1-\tau)-\frac{\tau}{\beta_{B}}-1 \tag{76}\\
& r^{C} R=R+\sigma_{C R}+\xi^{C} R \tag{77}\\
& R=R \phi_{R}+\left(1-\phi_{R}\right)(\pi-\bar{\pi})+\varepsilon^{R} \tag{78}\\
& W^{*}=\left(\frac{\left(K C R^{P}\right)^{\gamma} P \varepsilon^{A}(1-\gamma) \varepsilon^{L}}{\lambda}\right)^{\frac{\sigma_{L}}{\gamma-\sigma_{L}}} \tag{79}\\
& W=\left(\rho_{W} W^{1-\psi_{W}}+\left(1-\rho_{W}\right) W^{* 1-\psi_{W}}\right)^{\frac{1}{1-\psi_{W}}}+\varepsilon^{W} \tag{80}\\
& M=P\left(\frac{\lambda \beta_{C}}{\varepsilon^{M}}+\left(\frac{\lambda}{\varepsilon^{M}}\right)^{\frac{(-1)}{\sigma_{M}}}\right) \tag{81}
\end{align*}
$$

$$
\begin{equation*}
C R^{C}=\frac{1}{\varepsilon^{C R^{C}}-\Psi_{U} \Psi_{C R^{C}}}\left(C R^{C} \varepsilon^{C R^{C}} h_{C R^{C}}-\Psi_{U} \Psi_{D} D+\frac{\lambda}{P}\left(1+r^{C} R\right)+\beta_{C} \frac{\lambda}{P}\right) \tag{82}
\end{equation*}
$$

$$
\begin{gather*}
C R^{P}=\left(\frac{Q \frac{1}{\beta_{C}}-Q(1-\delta)-1}{\gamma \varepsilon^{A} K^{\gamma-1} L^{1-\gamma}}\right)^{\frac{1}{\gamma}} \tag{83}\\
D=\frac{1}{\varepsilon^{D}+\Psi_{D} P \Psi_{U}}\left(\lambda \beta_{C}+\Psi_{C R^{C}} P \Psi_{U}+\lambda\left(1+r^{D}\right)\right) \tag{84}\\
r^{K}=Q \frac{1}{\beta_{C}}-Q(1-\delta)-1 \tag{85}\\
\log \left(\varepsilon^{L}\right)=\log \left(\varepsilon^{L}\right) \rho_{L}+\eta^{L} \tag{86}\\
\log \left(\varepsilon^{M}\right)=\log \left(\varepsilon^{M}\right) \rho_{M}+\eta^{M} \tag{87}\\
\log \left(\varepsilon^{C R^{C}}\right)=\log \left(\varepsilon^{C R^{C}}\right) \rho_{C R^{C}}+\eta^{C R^{C}} \tag{88}
\end{gather*}
$$

$$
\begin{equation*}
\log \left(\varepsilon^{D}\right)=\log \left(\varepsilon^{D}\right) \rho_{D}+\eta^{D} \tag{89}
\end{equation*}
$$

$$
\begin{equation*}
\log \left(\varepsilon^{A}\right)=\log \left(\varepsilon^{A}\right) \rho_{A}+\eta^{A} \tag{90}
\end{equation*}
$$

$$
\begin{equation*}
\xi^{C} R=\xi^{C} R \rho_{C R}+\eta^{C} E \tag{91}
\end{equation*}
$$

$$
\begin{equation*}
\varepsilon^{R}=\varepsilon^{R} \rho_{R}+\eta^{R} \tag{92}
\end{equation*}
$$

$$
\begin{equation*}
I=\eta^{I}+I \rho_{I}+I\left(1-\rho_{I}\right) \tag{93}
\end{equation*}
$$

$$
\begin{equation*}
\varepsilon^{W}=\varepsilon^{W} \rho_{W_{S S}}+\eta^{W} \tag{94}
\end{equation*}
$$

$$
\begin{equation*}
\varepsilon^{W}=\varepsilon^{W} \rho_{P_{S S}}+\eta^{P} \tag{95}
\end{equation*}
$$

$$
\begin{equation*}
\varepsilon^{\pi}=\varepsilon^{\pi} \rho_{\pi_{S S}}+\eta^{\pi} \tag{96}
\end{equation*}
$$

$$
\begin{equation*}
\log (G)=\log (G) \rho_{G}+\eta^{G} \tag{97}
\end{equation*}
$$

$$
\begin{equation*}
A U X _E N D O _L A G_{-} 3 _1=I \tag{98}
\end{equation*}
$$

$$
\left.\begin{array}{c}
Q=1 \\
I=\exp \left(\eta^{I}\right) \\
K=\frac{I}{\delta} \\
R=\pi_{S S}-\bar{\pi} \\
Y=Y_{S S} \\
L=L_{S S} \\
G=\exp \left(\frac{\eta^{G}}{1-\rho_{G}}\right) \\
\varepsilon^{L}=\exp \left(\frac{\eta^{L}}{1-\rho_{L}}\right) \\
\varepsilon^{W}=\frac{\eta^{W}}{1-\rho_{W_{S S}}} \\
\varepsilon^{M}=\exp \left(\frac{\eta^{M}}{1-\rho_{M}}\right) \\
\varepsilon^{R}=\frac{\eta^{R}}{1-\rho_{R}} \\
\varepsilon^{A}=\exp \left(\frac{\eta^{A}}{1-\rho_{A}}\right) \\
\varepsilon^{C R^{C}}=\exp \left(\frac{\eta^{C} E}{1-\rho_{C R}}\right) \\
\xi^{C} R=\frac{\eta^{C} E}{1-\rho_{C R}} \\
1-\rho_{D} \tag{113}
\end{array}\right)
$$

$$
\begin{align*}
& \varepsilon^{W}=\frac{\eta^{P}}{1-\rho_{P_{S S}}} \tag{114}\\
& \varepsilon^{\pi}=\frac{\eta^{\pi}}{1-\rho_{\pi_{S S}}} \tag{115}\\
& C=Y-I-G \tag{116}\\
& \beta_{C}=\frac{1}{1+R} \tag{117}\\
& \lambda=\left(C\left(1-h_{C}\right)\right)^{\left(-\sigma_{C}\right)} \tag{118}\\
& r^{D}=(1+R)(1-\tau)-\frac{\tau}{\beta_{B}}-1 \tag{119}\\
& C R^{P}=\left(\frac{Q \frac{1}{\beta_{C}}-Q(1-\delta)-1}{\gamma K^{\gamma-1} L^{1-\gamma}}\right)^{\frac{1}{\gamma}} \tag{120}\\
& M C=\frac{P_{S S} W_{S S}}{(1-\gamma)\left(K C R^{P}\right)^{\gamma}} \tag{121}\\
& P^{*}=M C \frac{\psi_{P}}{\psi_{P}-1} \tag{122}\\
& P=P^{*} \tag{123}\\
& \pi=\frac{\frac{\psi_{P}}{\kappa_{P}}\left(\frac{M C}{P}-\frac{\psi_{P}-1}{\psi_{P}}\right)}{1-\beta_{C} \rho_{P}} \tag{124}\\
& D=\frac{1}{1+P \Psi_{U} \Psi_{D}}\left(P \Psi_{U} \Psi_{C R^{C}}+\lambda\left(1+r^{D}\right)+\beta_{C} \lambda\right) \tag{125}\\
& r^{C} R=R+\sigma_{C R} \tag{126}\\
& C R^{C}=\frac{D \Psi_{D}\left(-\Psi_{U}\right)+\frac{\lambda}{P}\left(\beta_{C}+1+r^{C} R\right)}{1-h_{C R^{C}}-\Psi_{U} \Psi_{C R^{C}}} \tag{127}\\
& W^{*}=\left(\frac{\left(K C R^{P}\right)^{\gamma}(1-\gamma) P}{\lambda}\right)^{\frac{\sigma_{L}}{\gamma-\sigma_{L}}} \tag{128}\\
& W=W^{*} \tag{129}\\
& M=P\left(\beta_{C} \lambda+\lambda^{\frac{(-1)}{\sigma_{M}}}\right) \tag{130}\\
& r^{K}=\frac{Q}{\beta_{C}}-Q(1-\delta)-1 \tag{131}\\
& A U X _E N D O _L A G _3 _1=I \tag{132}
\end{align*}
$$

