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1 Introduction

This set of notes formulates a “medium scale” DSGE model. This model incorporates essentially all

of the twists to an RBC model that we have previously investigated. In particular, the model fea-

tures capital, sticky prices and wages, habit formation in consumption, variable capital utilization,

and adjustment costs to investment. Monetary policy is characterized by a Taylor rule, and there

are stochastic shocks to the policy rule, neutral productivity, investment-specific productivity, and

government spending.

This model is similar to the models in Christiano, Eichenbaum, and Evans (2005) and Smets

and Wouters (2007). The former is solely focused on accounting for the dynamics after a monetary

policy shock, while the latter includes many shocks (many more shocks than I include in the model

here). Like Smets and Wouters (2007), I estimate the model via Bayesian maximum likelihood,

and then briefly examine the properties of the model in terms of moments and impulse responses.

2 Production

As in earlier models, we split production into two sectors: a competitive final goods sector that ag-

gregates intermediate inputs, and a continuum of monopolistically competitive intermediate goods

firms that produce output that is sold to the final good firm, which bundles it into a good available

for households to consume. The only twist relative to what we did earlier is that output is produced

using both capital and labor.

2.1 Final Good Firm

The final output good is a CES aggregate of a continuum of intermediates:

Yt =

(∫ 1

0
Yt(j)

εp−1

εp

) εp
εp−1

(1)
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Here εp > 1. Profit maximization by the final goods firm yields a downward-sloping demand

curve for each intermediate:

Yt(j) =

(
Pt(j)

Pt

)−εp
Yt (2)

This says that the relative demand for the jth intermediate is a function of its relative price,

with εp the price elasticity of demand. The price index (derived from the definition of nominal

output as the sum of prices times quantities of intermediates) can be seen to be:

Pt =

(∫ 1

0
Pt(j)

1−εpdj

) 1
1−εp

(3)

2.2 Intermediate Goods Firms

There are a continuum of intermediate goods firms indexed by j. I normalize the mass of these firms

to be 1. A typical intermediate producer produces output according to a constant returns to scale

technology in labor and capital services, with a common productivity shock, At. Denote capital

services by K̂t = utKt, where ut is utilization, so that capital services is the product of utilization

and physical capital. I assume that households make the capital accumulation and utilization

decisions, and rent capital services to firms at nominal rental rate Rpt . This seems perhaps a bit

strange that households make utilization decisions, but it simplifies the analysis. Labor is paid

nominal wage W p
t . Firms take factor prices as given.

Yt(j) = AtK̂t(j)
αNt(j)

1−α (4)

Firms are not free to update prices each period, but will choose inputs so as to minimize

cost, given a price, subject to the constraint that it produce enough to meet demand. The cost-

minimization problem is:

min
K̂t(j),Nt(j)

W p
t Nt(j) +Rpt K̂t(j)

s.t.

AtK̂t(j)
αNt(j)

1−α ≥
(
Pt(j)

Pt

)−εp
Yt

A Lagrangian is:

L = −W p
t Nt(j)−Rpt K̂t(j) + ϕt(j)

(
AtK̂t(j)

αNt(j)
1−α −

(
Pt(j)

Pt

)−εp
Yt

)
The FOC are:
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∂L
∂K̂t(j)

= 0⇔ Rpt = ϕt(j)αAtK̂t(j)
α−1Nt(j)

1−α

∂L
∂Nt(j)

= 0⇔W p
t = ϕt(j)(1− α)AtK̂t(j)

αNt(j)
−α

We can combine these two to eliminate the multiplier, and get:

W p
t

Rpt
=

1− α
α

K̂t(j)

Nt(j)

Since firms face the same factor prices, it is obvious from above that they will hire capital and

labor in the same ratio, which will in turn be equal to the aggregate ratio. We can also write the

ratio of factor prices in terms of their real equivalents, with wt ≡ W p
t

Pt
and Rt ≡ Rpt

Pt
:

wt
Rt

=
1− α
α

K̂t

Nt
(5)

Since firms hire capital and labor in the same ratio and face the same factor prices, we then can

see that they have the same marginal cost, which I’ll now write in real terms as mct = ϕt
Pt

. This is

implicitly defined by

wt = mct(1− α)At

(
K̂t

Nt

)α
(6)

This condition just has the interpretation that real marginal cost is the ratio of the real wage

to the marginal product of labor. We could also have defined this in terms of the rental rate and

the marginal product of capital:

Rt = mctαAt

(
K̂t

Nt

)α−1

(7)

This means that we can write real flow profit for the jth firm as:

Πp
t (j)

Pt
=
Pt(j)

Pt
Yt(j)−mct(1− α)AtK̂t(j)

αNt(j)
1−α −mct(1− α)AtK̂t(j)

αNt(j)
1−α

Or:

Πp
t (j)

Pt
=
Pt(j)

Pt
Yt(j)−mctYt(j)

Plugging in the demand function, this is just:

Πp
t (j)

Pt
= Pt(j)

1−εpP
εp−1
t Yt −mctPt(j)−εpP

εp
t Yt
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Firms are not freely able to adjust price each period. In particular, each period there is a fixed

probability of 1−φp that a firm can adjust its price. This means that the probability a firm will be

stuck with a price one period is φp, for two periods is φ2
p, and so on. Consider the pricing problem

of a firm given the opportunity to adjust its price in a given period. Since there is a chance that the

firm will get stuck with its price for multiple periods, the pricing problem becomes dynamic. Firms

will discount profits s periods into the future by M̃t+sφ
s
p, where M̃t+s = βs λt+sλt

is the stochastic

discount factor, where λt is the marginal value of an extra unit of income. As a slight twist to what

I had done before, I allow the possibility that firms can index their prices to lagged inflation at

ζp ∈ (0, 1). ζp = 0 means no indexation, while ζp = 1 means full indexation. Values in between are

permitted and imply partial indexation. The price that a firm can charge in period t+ s if it is still

charging a price set in period t is Π
ζp
t−1,t+s−1Pt(j), where Πt−1,t+s−1 is cumulative gross inflation

between t− 1 and t+ s− 1, so Pt+s−1

Pt−1
. When s = 0, this is just 1. When s = 1, it is (1 + πt) where

πt is net inflation between t and t− 1. When s = 2, it is (1 + πt+1)(1 + πt) = Pt+1

Pt−1
, and so on.

The dynamic problem can be written:

max
Pt(j)

Et

∞∑
s=0

(βφp)
s λt+s
λt

Π
ζp
t−1,t+s−1Pt(j)

Pt+s

(
Π
ζp
t−1,t+s−1Pt(j)

Pt+s

)−εp
Yt+s −mct+s

(
Π
ζp
t−1,t+s−1Pt(j)

Pt+s

)−εp
Yt+s


Multiplying out, we get:

max
Pt(j)

Et

∞∑
s=0

(βφp)
s λt+s
λt

(
Π
ζp(1−εp)
t−1,t+s−1Pt(j)

1−εpP
εp−1
t+s Yt+s −mct+sΠ

−ζpεp
t−1,t+s−1Pt(j)

−εpP
εp
t+sYt+s

)
The first order condition can be written:

(1−εp)Pt(j)−εpEt
∞∑
s=0

(βφp)
s
λt+sΠ

ζp(1−εp)
t−1,t+s−1P

εp−1
t+s Yt+s+εpPt(j)

−εp−1Et

∞∑
s=0

(βφp)
s
λt+sΠ

−ζpεp
t−1,t+s−1mct+sP

εp
t+sYt+s = 0

Simplifying:

Pt(j) =
εp

εp − 1

Et

∞∑
s=0

(βφp)
s λt+sΠ

−ζpεp
t−1,t+s−1mct+sP

εp
t+sYt+s

Et

∞∑
s=0

(βφp)
s λt+sΠ

ζp(1−εp)
t−1,t+s−1P

εp−1
t+s Yt+s

First, note that since nothing on the right hand side depends on j, all updating firms will update

to the same reset price, call it P#
t . We can write the expression more compactly as:

P#
t =

εp
εp − 1

X1,t

X2,t
(8)
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Here:

X1,t = λtmctP
εp
t Yt + φpβ(1 + πt)

−ζpεpEtX1,t+1 (9)

X2,t = λtP
εp−1
t Yt + φpβ(1 + πt)

ζp(1−εp)EtX2,t+1 (10)

If φp = 0, then the right hand side would reduce to mctPt = ϕt. In this case, the optimal price

would be a fixed markup,
εp
εp−1 , over nominal marginal cost, ϕt.

3 Households

Households choose consumption, bond-holdings, wages, labor supply, capital accumulation, and

capital utilization. Households supply differentiated labor input and are index by l ∈ (0, 1). House-

hold labor input is “packed” into a bundled labor input that is sold to firms. Since household labor

is imperfectly substitutable, there is a downward-sloping demand for each variety of labor, which

gives the household some wage-setting power.

I first consider the problem of the labor packer, which generates a downward-sloping demand

for labor and implies a wage index. Then I consider the problem of the household.

3.1 Labor Packer

Total labor input is equal to:

Nt =

(∫ 1

0
Nt(l)

εw−1
εw dl

) εw
εw−1

(11)

Here εw > 1, and l indexes the differentiated labor inputs, which populate the unit interval.

The profit maximization problem of the competitive labor packer is:

max
Nt(l)

W p
t

(∫ 1

0
Nt(l)

εw−1
εw dl

) εw
εw−1

−
∫ 1

0
Wt(l)Nt(l)dl

The first order condition for the choice of labor of variety l is:

W p
t

εw
εw − 1

(∫ 1

0
Nt(l)

εw−1
εw dl

) εw
εw−1

−1
εw − 1

εw
Nt(l)

εw−1
εw
−1 = Wt(l)

This can be simplified somewhat:

Nt(l)
− 1
εw

(∫ 1

0
Nt(l)

εw−1
εw dl

) 1
εw−1

=
Wt(l)

W p
t

Or:
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Nt(l)

(∫ 1

0
Nt(l)

εw−1
εw dl

)− εw
εw−1

=

(
Wt(l)

W p
t

)−εw
Or:

Nt(l) =

(
Wt(l)

W p
t

)−εw
Nt (12)

In a way exactly analogous to intermediate goods, the relative demand for labor of type l is a

function of its relative wage, with elasticity εw. We can derive an aggregate wage index in a similar

way to above, by defining:

W p
t Nt =

∫ 1

0
Wt(l)Nt(l)dl =

∫ 1

0
Wt(l)

1−εwW εw
t Ntdl

Or:

(W p
t )

1−εw =

∫ 1

0
Wt(l)

1−εwdl

So:

W p
t =

(∫ 1

0
Wt(l)

1−εwdl

) 1
1−εw

(13)

3.2 Household Problem

Households are heterogenous and are indexed by l ∈ (0, 1), supplying differentiated labor input

to the labor packer above. I’m going to assume that preferences are additively separable in con-

sumption and labor, which turns out to be somewhat important. If wages are subject to frictions

like the Calvo (1983) pricing friction, households will charge different wages, meaning they will

work different hours, meaning they will have different incomes and therefore different consumption

and saving. Erceg, Henderson, and Levin (2000, JME ) show that if there exist state contingent

claims that insure households against idiosyncratic wage risk, and if preferences are separable in

consumption and leisure, households will be identical in their choice of consumption, capital accu-

mulation, capital utilization, and bond-holdings, and will only differ in the wage they charge and

labor supply. As such, in the notation below, I will suppress dependence on l for everything but

wages and labor input.

The twists relative to earlier are the following. First, I allow for internal habit formation

in consumption. I go ahead and assume that utility from consumption is logarithmic. Second,

households can choose capital utilization, and end up paying a resource cost for that utilization.

This is somewhat different than what I earlier showed, where the cost of utilization was faster

depreciation. Third, I assume that there are adjustment costs to the flow rate of investment as

in Christiano, Eichenbaum, and Evans (2005). These are a little different than what we had used

before, and the cost shows up in the capital accumulation equation, not the resource constraint.
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Third, I allow for an investment shock, Zt, to the efficiency of transforming investment into new

capital. The capital accumulation equation is:

Kt+1 = Zt

(
1− τ

2

(
It
It−1

− 1

)2
)
It + (1− δ)Kt (14)

What this adjustment cost specification does is that one unit of investment produces fewer

units of new capital the more the gross growth rate of investment differs from one, with τ ≥ 0

governing the magnitude of the cost. The cost for utilization is quadratic in utilization relative to

its normalized steady state value one, with the cost governed by the parameters χ1 and χ2, both

≥ 0, and proportional to the capital stock divided by the investment shock, Zt. The flow budget

constraint (written in real terms) is:

Ct+It+
Bt+1

Pt
≤ RtutKt+

Wt(l)

Pt
Nt(l)−

(
χ1(ut − 1) +

χ2

2
(ut − 1)2

) Kt

Zt
+(1+it−1)

Bt
Pt

+
Πt

Pt
+Tt (15)

A Lagrangian for the household with two constraints is:

L = E0

∞∑
t=0

(
ln (Ct − bCt−1)− ψNt(l)

1+η

1 + η
+ µt

(
Zt

(
1− τ

2

(
It
It−1

− 1

)2
)
It + (1− δ)Kt −Kt+1

)

+λt

(
RtutKt +

Wt(l)

Pt
Nt(l)−

(
χ1(ut − 1) +

χ2

2
(ut − 1)2

) Kt

Zt
+ (1 + it−1)

Bt
Pt

+
Πt

Pt
+ Tt − Ct − It −

Bt+1

Pt

))
The FOC for non-labor choices are:

∂L
∂Ct

= 0⇔ λt =
1

Ct − bCt−1
− βbEt

1

Ct+1 − bCt
(16)

∂L
∂ut

= 0⇔ Rt =
1

Zt
(χ1 + χ2(ut − 1)) (17)

∂L
∂Bt+1

= 0⇔ λt = βEtλt+1(1 + it)
Pt
Pt+1

(18)

∂L
∂It

= 0⇔ λt = µtZt

(
1− τ

2

(
It
It−1

− 1

)2

− τ
(

It
It−1

− 1

)
It
It−1

)
+ βEtµt+1Zt+1τ

(
It+1

It
− 1

)(
It+1

It

)2

(19)
∂L

∂Kt+1
= 0⇔ µt = βEt

(
λt+1

(
Rt+1ut+1 −

1

Zt+1

(
χ1(ut+1 − 1) +

χ2

2
(ut+1 − 1)2

))
+ µt+1(1− δ)

)
(20)

Now let’s think about wage-setting. As with pricing, households are not freely able to adjust

their nominal wages each period. Each period there is a 1−φw probability that they can adjust their

wage. If they cannot adjust their wage, they can index to lagged inflation at ζw ∈ (0, 1). Hence,

in period t+ s a household that last adjusted its wage in period t has nominal wage Πζw
t,t+s−1Wt(l),

where again Πt,t+s−1 is cumulative gross price inflation between period t− 1 and period t+ s− 1.

When s = 0, this is 1. When s = 1, this is just (1 + πt), and so on. For a non-updated household,
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the nominal wage it will have in period t+ s is given by:

Wt+s(l) = Wt(l)Π
ζw
t−1,t+s−1

For example, suppose s = 0. Then Πt−1,t+s−1 = 1. When s = 1, we have Πt−1,t+s−1 = (1 + πt).

This means that the household can adjust its wage in period t + 1 by (1 + πt)
ζw relative to its

nominal wage in period t, and so on. We also want to write this in real terms. So divide both sides

by Pt+s:

Wt+s(l)

Pt+s
=
Wt(l)

Pt+s
Πζw
t−1,t+s−1

Multiply and divide the right hand side by Pt, and define Πt,t+s as gross cumulative inflation

between t and t+ s, or Πt,t+s = Pt+s
Pt

. Then we have:

wt+s(l) = wt(l)Π
−1
t,t+sΠ

ζw
t−1,t+s−1

Because of the probability that they will be stuck with a given wage going into the future, the

problem of a household with the ability to adjust its wage becomes dynamic, and it discounts future

(dis)utility flows from labor by (βφw)s, where 1 − φw is the probability that a firm can adjust its

wage in any period. Eliminating labor as a choice by plugging in labor demand, we can re-produce

the parts of the Lagrangian related to wage-setting as:

L = Et

∞∑
s=0

(βφw)s

−ψ
(
wt(l)Π

−1
t,t+sΠ

ζw
t−1,t+s−1

wt+s

)−εw(1+η)

N1+η
t+s

1 + η
+ . . . .

· · ·+ λt+s

wt(l)Π−1
t,t+sΠ

ζw
t−1,t+s−1

(
wt(l)Π

−1
t,t+sΠ

ζw
t−1,t+s−1

wt+s

)−εw
Nt+s


The first order condition is:

∂L
∂wt(l)

= 0⇔ εwwt(l)
−εw(1+η)−1Et

∞∑
s=0

(βφw)s ψw
εw(1+η)
t+s Π

εw(1+η)
t,t+s Π

−ζwεw(1+η)
t−1,t+s−1 N1+η

t+s . . .

· · ·+ (1− εw)wt(l)

∞∑
s=0

(βφw)s λt+sΠ
εw−1
t,t+sΠ

ζw(1−εw)
t−1,t+s−1w

εw
t+sNt+s = 0

Noting that nothing on the right hand side depends on l, and calling w#
t the common reset

price, this can be written:
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w#,1+εwη
t =

εw
εw − 1

Et

∞∑
s=0

(βφw)s ψw
εw(1+η)
t+s Π

εw(1+η)
t,t+s Π

−ζwεw(1+η)
t−1,t+s−1 N1+η

t+s

Et

∞∑
s=0

(βφw)s λt+sΠ
εw−1
t,t+sΠ

ζw(1−εw)
t−1,t+s−1w

εw
t+sNt+s

(21)

This can be written recursively as:

w#,1+εwη
t =

εw
εw − 1

f1,t

f2,t
(22)

Where:

f1,t = ψw
εw(1+η)
t N1+η

t + φwβ(1 + πt)
−ζwεw(1+η)Et(1 + πt+1)εw(1+η)f1,t+1 (23)

f2,t = λtw
εw
t Nt + φwβ(1 + πt)

ζw(1−εw)Et(1 + πt+1)εw−1f2,t+1 (24)

4 Policy and Exogenous Processes

I assume there exists a government that each period consumes a share of output. The share of

output it consumes is ωgt and is stochastic:

Gt = ωgt Yt (25)

ωgt = (1− ρg)ωg + ρgω
g
t−1 + εg,t (26)

I assume that the government balances its budget each period with lump sum taxes. Since there

are no distortionary taxes, the assumption of budget balance each period is innocuous because the

mix between bond and tax finance is indeterminate:

Tt = Gt (27)

Monetary policy follows an inertial Taylor rule that responds to inflation and output growth

(which is easier to measure than the gap, and often turns out to have desirable normative proper-

ties):

it = (1− ρi)i+ ρiit−1 + (1− ρi) (φπ(πt − π) + φy(lnYt − lnYt−1)) + εi,t (28)

The exogenous processes for At and Zt both follow mean 0 AR(1)s in the log:

lnAt = ρa lnAt−1 + εa,t (29)

lnZt = ρz lnZt−1 + εz,t (30)

9



5 Aggregation

Start with aggregate production. We have:

AtK̂t(j)
αNt(j)

1−α =

(
Pt(j)

Pt

)−εp
Yt

We can write this in terms of the capital-labor ratio, noting that all firms will hire capital and

labor in the same ratio:

At

(
K̂t

Nt

)α
Nt(j) =

(
Pt(j)

Pt

)−εp
Yt

Integrate over j:

At

(
K̂t

Nt

)α ∫ 1

0
Nt(j)dj = Yt

∫ 1

0

(
Pt(j)

Pt

)−εp
dj

Now, note that market-clearing for labor requires that total labor supply by the labor packer

must equal the sum of demand from firms, or

∫ 1

0
Nt(j)dj = Nt. Define vpt =

∫ 1

0

(
Pt(j)

Pt

)−εp
dj.

Then we have:

Yt =
AtK̂

α
t N

1−α
t

vpt
(31)

Using the properties of Calvo pricing, we can write the price dispersion term as:

vpt = (1− φp)P
#,−εp
t P

εp
t +

∫ 1

1−φw
(1 + πt−1)−ζpεpPt−1(j)−εpP

εp
t dj

The right hand side follows because non-updating firms can index their price by (1 + πt−1)ζp .

We can simplify this as follows:

vpt = (1− φp)P
#,−εp
t P

εp
t + (1 + πt−1)−ζpεp

∫ 1

1−φw
Pt−1(j)−εpP

εp
t−1P

−εp
t−1 P

εp
t dj

Or:

vpt = (1− φp)P
#,−εp
t P

εp
t + (1 + πt−1)−ζpεp(1 + πt)

εp

∫ 1

1−φw

(
Pt−1(j)

Pt−1

)−εp
dj

By the properties of Calvo pricing, the right hand side becomes:

vpt = (1− φp)P
#,−εp
t P

εp
t + (1 + πt−1)−ζpεp(1 + πt)

εpφpv
p
t−1

The first part can be written in terms of inflation and reset price inflation 1 + π#
t =

P#
t

Pt−1
:

vpt = (1 + πt)
εp
(

(1− φp)(1 + π#
t )−εp + (1 + πt−1)−ζpεpφpv

p
t−1

)
(32)
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We can describe the evolution of aggregate prices as:

P
1−εp
t = (1− φp)P

#,1−εp
t +

∫ 1

1−φp
(1 + πt−1)ζp(1−εp)Pt−1(j)1−εpdj

Or, by properties of Calvo pricing:

P
1−εp
t = (1− φp)P

#,1−εp
t + φp(1 + πt−1)ζp(1−εp)P

1−εp
t−1

To write this in terms of inflation rates, divide both sides by P
1−εp
t−1 :

(1 + πt)
1−εp = (1− φp)(1 + π#

t )1−εp + φp(1 + πt−1)ζp(1−εp) (33)

To write the optimal pricing condition in terms of inflation rates, define x1,t ≡ X1,t

P
εp
t

and x2,t ≡
X2,t

P
εp−1
t

. We get:

1 + π#
t =

εp
εp − 1

(1 + πt)
x1,t

x2,t
(34)

x1,t = λtmctYt + φpβ(1 + πt)
−ζpεpEt(1 + πt+1)εpx1,t+1 (35)

x2,t = λtYt + φpβ(1 + πt)
ζp(1−εp)Et(1 + πt+1)εp−1x2,t+1 (36)

We can break up the aggregate nominal wage index by using properties of Calvo pricing:

(W p
t )

1−εw = (1− φw)W#,1−εw
t +

∫ 1

1−φw
(1 + πt−1)ζp(1−εw)Wt−1(l)1−εwdl

Now, to write this in real terms divide both sides by P 1−εw
t :

w1−εw
t = (1− φw)w#,1−εw

t + (1 + πt−1)ζw(1−εw)φwP
εw−1
t W 1−εw

t−1

Or:

w1−εw
t = (1− φw)w#,1−εw

t + (1 + πt−1)ζw(1−εw)(1 + πt)
εw−1φww

1−εw
t−1 (37)

6 Full set of Equilibrium Conditions

λt =
1

Ct − bCt−1
− βbEt

1

Ct+1 − bCt
(38)

Rt =
1

Zt
(χ1 + χ2(ut − 1)) (39)

λt = βEtλt+1(1 + it)(1 + πt+1)−1 (40)

λt = µtZt

(
1− τ

2

(
It
It−1

− 1

)2

− τ
(

It
It−1

− 1

)
It
It−1

)
+ βEtµt+1Zt+1τ

(
It+1

It
− 1

)(
It+1

It

)2

(41)

11



µt = βEt

(
λt+1

(
Rt+1ut+1 −

1

Zt+1

(
χ1(ut+1 − 1) +

χ2

2
(ut+1 − 1)2

))
+ µt+1(1− δ)

)
(42)

w#,1+εwη
t =

εw
εw − 1

f1,t

f2,t
(43)

f1,t = ψw
εw(1+η)
t N1+η

t + φwβ(1 + πt)
−ζwεw(1+η)Et(1 + πt+1)εw(1+η)f1,t+1 (44)

f2,t = λtw
εw
t Nt + φwβ(1 + πt)

ζw(1−εw)Et(1 + πt+1)εw−1f2,t+1 (45)

w1−εw
t = (1− φw)w#,1−εw

t + (1 + πt−1)ζw(1−εw)(1 + πt)
εw−1φww

1−εw
t−1 (46)

Yt =
AtK̂

α
t N

1−α
t

vpt
(47)

vpt = (1 + πt)
εp
(

(1− φp)(1 + π#
t )−εp + (1 + πt−1)−ζpεpφpv

p
t−1

)
(48)

(1 + πt)
1−εp = (1− φp)(1 + π#

t )1−εp + φp(1 + πt−1)ζp(1−εp) (49)

1 + π#
t =

εp
εp − 1

(1 + πt)
x1,t

x2,t
(50)

x1,t = λtmctYt + φpβ(1 + πt)
−ζpεpEt(1 + πt+1)εpx1,t+1 (51)

x2,t = λtYt + φpβ(1 + πt)
ζp(1−εp)Et(1 + πt+1)εp−1x2,t+1 (52)

wt
Rt

=
1− α
α

K̂t

Nt
(53)

wt = mct(1− α)At

(
K̂t

Nt

)α
(54)

it = (1− ρi)i+ ρiit−1 + (1− ρi) (φπ(πt − π) + φy(lnYt − lnYt−1)) + εi,t (55)

Yt = Ct + It +Gt +
(
χ1(ut − 1) +

χ2

2
(ut − 1)2

) Kt

Zt
(56)

Kt+1 = Zt

(
1− τ

2

(
It
It−1

− 1

)2
)
It + (1− δ)Kt (57)

K̂t = utKt (58)

lnAt = ρa lnAt−1 + εa,t (59)

lnZt = ρz lnZt−1 + εz,t (60)

Gt = ωgt Yt (61)

ωgt = (1− ρg)ωg + ρgω
g
t−1 + εg,t (62)

qt =
µt
λt

(63)

Here I have defined one more variable as Hayashi’s q, which is the ratio of the Lagrange multiplier
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on the capital accumulation equation to the Lagrange multiplier on the household budget constraint.

In total, this is 26 equations in 26 variables:{
λt, Ct, Rt, Zt, ut, it, πt, µt, It, w

#
t , f1,t, f2,t, wt, Yt, At, Nt, v

p
t , π

#
t , x1,t, x2,t,mct,Kt, K̂t, Gt, ω

g
t , qt

}
.

It is helpful to re-write the expression for the reset wage. The reason why is that the exponents

in the expression can get very large, which can lead to numerical problems. For convenience, the

conditions relating to wage-setting are reproduced here:

w#,1+εwη
t =

εw
εw − 1

f1,t

f2,t

f1,t = ψw
εw(1+η)
t N1+η

t + φwβ(1 + πt)
−ζwεw(1+η)Et(1 + πt+1)εw(1+η)f1,t+1

f2,t = λtw
εw
t Nt + φwβ(1 + πt)

ζw(1−εw)Et(1 + πt+1)εw−1f2,t+1

The exponent 1 + εwη could be very large for reasonable parameterizations of the model. Let’s

try to re-write this where on the right hand side we have ratios of the actual wage to the reset

wage. Divide both sides by w
#,εw(1+η)
t :

w#,1−εw
t =

εw
εw − 1

f1,t/w
#,εw(1+η)
t

f2,t

Define f̂1,t ≡ f1,t

w
#,εw(1+η)
t

. We have:

f̂1,t = ψ

(
wt

w#
t

)εw(1+η)

N1+η
t + φwβ(1 + πt)

−ζwεw(1+η)Et(1 + πt+1)εw(1+η)f1,t+1w
#,−εw(1+η)
t

Multiply and divide the second term by w
#,εw(1+η)
t+1 and simplify:

f̂1,t = ψ

(
wt

w#
t

)εw(1+η)

N1+η
t + φwβ(1 + πt)

−ζwεw(1+η)Et(1 + πt+1)εw(1+η) f1,t+1

w
#,εw(1+η)
t+1

w
#,εw(1+η)
t+1 w

#,−εw(1+η)
t

f̂1,t = ψ

(
wt

w#
t

)εw(1+η)

N1+η
t + φwβ(1 + πt)

−ζwεw(1+η)Et(1 + πt+1)εw(1+η)

(
w#
t+1

w#
t

)εw(1+η)

f̂1,t+1

Now, let’s multiply both sides by w#,εw
t . This yields:

w#
t =

εw
εw − 1

f̂1,tw
#,εw
t

f2,t

Now, define f̂2,t ≡ f2,t

w#,εw
t

. We have:

f̂2,t = λt

(
wt

w#
t

)εw
Nt + φwβ(1 + πt)

ζw(1−εw)Et(1 + πt+1)εw−1f2,t+1w
#,−εw
t

13



Multiply and divide the right hand side by w#,εw
t+1 and simplify:

f̂2,t = λt

(
wt

w#
t

)εw
Nt + φwβ(1 + πt)

ζw(1−εw)Et(1 + πt+1)εw−1 f2,t+1

w#,εw
t+1

w#,εw
t+1 w#,−εw

t

f̂2,t = λt

(
wt

w#
t

)εw
Nt + φwβ(1 + πt)

ζw(1−εw)Et(1 + πt+1)εw−1

(
w#
t+1

w#
t

)εw
f̂2,t+1

So the three wage-setting conditions are now:

w#
t =

εw
εw − 1

f̂1,t

f̂2,t

(64)

f̂1,t = ψ

(
wt

w#
t

)εw(1+η)

N1+η
t +φwβ(1+πt)

−ζwεw(1+η)Et(1+πt+1)εw(1+η)

(
w#
t+1

w#
t

)εw(1+η)

f̂1,t+1 (65)

f̂2,t = λt

(
wt

w#
t

)εw
Nt + φwβ(1 + πt)

ζw(1−εw)Et(1 + πt+1)εw−1

(
w#
t+1

w#
t

)εw
f̂2,t+1 (66)

7 Estimation

Rather than (somewhat arbitrarily) choosing parameters for the model, I instead estimate the

parameters using Bayesian maximum likelihood. This is relatively straightforward to do in Dynare,

though it’s a bit of a black box and often times estimation fails.

To estimate the model, you have to have observed series from the data on some of the variables.

You can use as many series as you have shocks. In the model I wrote down, there are four shocks, so

I can use up to four data series to estimate the model. There is no obvious way to pick which data to

use, but as a general guide you want to use series that are going to be sensitive to parameter values

(e.g. to help you identify the parameters), and you don’t want the data series you put in to be too

closely related to one another (too highly collinear, meaning there isn’t much new information in

the second series that isn’t already in the first).

The data series I use to estimate the model are the growth rates of output and investment,

and the levels of the interest rate and inflation. I measure output using standard NIPA real GDP.

Investment is defined as the sum of durable consumption expenditure and private non-residential

fixed investment.1 The interest rate is the 3 month T-Bill secondary market rate, converted from

a monthly to quarterly frequency by averaging across months. The inflation series is the growth

1To create this series, I first create real series of durable consumption and non-residential fixed investment using
NIPA quantities and own-price deflators. To combine into one series, I define the growth rate of real investment
expenditures as the weighted sum of the real growth rates of the individual components, where the weights are
one period lagged nominal ratios of each component relative to the total. In other words, the growth rate of real

investment is: ∆ ln It =

(
D

p
t−1

D
p
t−1+FI

p
t−1

)
∆ lnDt+

(
FI

p
t−1

D
p
t−1+FI

p
t−1

)
∆ lnFIt, where FI is fixed investment, D is durable

consumption, and superscript p denotes a nominal value, whereas the absence of a superscript p denotes a real value.
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rate of the GDP implicit price deflator. Because the model features no trend growth, and because I

assume zero trend inflation, I demean the growth rates of output and investment and the inflation

rate from the actual data. I leave the interest rate series in levels, though it’s important to “de-

annualize” it so that the interest rate measured in the data corresponds to the interest rate in the

model (interest rates are always quoted at annualized rates, whereas in the model it’s a quarterly

rate).

You’ll note that these series are basically scale-free, with the exception of the interest rate,

whose mean is defined by 1
β − 1. As a practical matter, I don’t want to estimate parameters that

govern long run scales, but rather parameters which govern cycles. So I fix several parameters prior

to estimation. I set β = 0.99, ψ = 2, and εw = εp = 10. I also fix the average government share

of output at ωg = 0.2. I fix α = 1/3. As noted above, I assume zero trend inflation, so π = 0. So

as to normalize steady state capital utilization to 1, I need to set χ1 = 1
β − (1 − δ). It turns out

that χ2 is difficult to estimate, so most people follow Christiano, Eichenbaum, and Evans (2005)

in setting it to a low value. I assume χ2 = 0.01.

The rest of the parameters are estimating using Bayesian maximum likelihood. Doing this

requires specifying prior distributions. I’m not going to go into much detail on how to do this.

It’s typical for parameters restricted to be between 0 and 1 to use a beta distribution, for shock

standard deviations to use an inverse gamma distribution, and for other parameters to use a normal

distribution. The prior means and standard errors are somewhat arbitrary but are chosen to fit in

line with what other folks have found.

Here is the Dynare code that I use to estimate the model:

1 % medium scale model graduate macro

2

3 var lam C R Z u int infl mu I wsharp f1 f2 w Y A N vp pisharp x1 x2 mc K

4 Khat G omegag q dY dC dI dN;

5 varexo ea ez eg ei;

6

7 parameters psi beta phip phiw alpha eta b chi1 chi2 tau ∆ epsw epsp

8 zetap zetaw rhoi phipi phiy rhog rhoa rhoz seg sea sez sei omega pistar;

9

10 load parameter medium scale;

11 set param value('psi',psi);

12 set param value('phip',phip);

13 set param value('phiw',phiw);

14 set param value('eta',eta);

15 set param value('beta',beta);

16 set param value('alpha',alpha);

17 set param value('b',b);

18 set param value('chi1',chi1);

19 set param value('chi2',chi2);

20 set param value('tau',tau);

21 set param value('∆',∆);

15



22 set param value('epsw',epsw);

23 set param value('epsp',epsp);

24 set param value('zetap',zetap);

25 set param value('zetaw',zetaw);

26 set param value('rhoi',rhoi);

27 set param value('phipi',phipi);

28 set param value('phiy',phiy);

29 set param value('rhog',rhog);

30 set param value('rhoa',rhoa);

31 set param value('rhoz',rhoz);

32 set param value('seg',seg);

33 set param value('sea',sea);

34 set param value('sez',sez);

35 set param value('sei',sei);

36 set param value('omega',omega);

37 set param value('pistar',pistar);

38

39 model;

40

41 % (1) marginal utility

42 exp(lam) = (exp(C) − b*exp(C(−1)))ˆ(−1) − beta*b*(exp(C(+1)) −
43 b*exp(C))ˆ(−1);
44

45 % (2) FOC on utilization

46 exp(R) = exp(Z)ˆ(−1)*(chi1 + chi2*(exp(u) − 1));

47

48 % (3) Euler equation

49 exp(lam) = beta*exp(lam(+1))*(1+int)*(1+infl(+1))ˆ(−1);
50

51 % (4) FOC on investment

52 exp(lam) = exp(mu)*exp(Z)*(1 − (tau/2)*(exp(I)/exp(I(−1)) − 1)ˆ2 −
53 tau*(exp(I)/exp(I(−1)) − 1)*(exp(I)/exp(I(−1)))) +

54 beta*exp(mu(+1))*exp(Z(+1))*tau*(exp(I(+1))/exp(I)−1)*(exp(I(+1))/exp(I))ˆ2;
55

56 % (5) FOC on capital

57 exp(mu) = beta*(exp(lam(+1))*(exp(R(+1))*exp(u(+1)) −
58 exp(Z(+1))ˆ(−1)*(chi1*(exp(u(+1)) − 1) + (chi2/2)*(exp(u(+1)) − 1)ˆ2))

59 + exp(mu(+1))*(1−∆));

60

61 % (6) Reset wage

62 exp(wsharp) = (epsw/(epsw−1))*exp(f1)/exp(f2);
63

64 % (7) f1

65 exp(f1) = psi*(exp(w)/exp(wsharp))ˆ(epsw*(1+eta))*exp(N)ˆ(1+eta) +

66 phiw*beta*(1+infl)ˆ(−zetaw*epsw*(1+eta))*(1+infl(+1))ˆ(epsw*(1+eta))*
67 (exp(wsharp(+1))/exp(wsharp))ˆ(epsw*(1+eta))*exp(f1(+1));

68

69 % (8) f2

70 exp(f2) = exp(lam)*(exp(w)/exp(wsharp))ˆ(epsw)*exp(N) +
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71 phiw*beta*(1+infl)ˆ(zetaw*(1−epsw))*(1+infl(+1))ˆ(epsw−1)*
72 (exp(wsharp(+1))/exp(wsharp))ˆ(epsw)*exp(f2(+1));

73

74 % (9) Real wage index

75 exp(w)ˆ(1−epsw) = (1−phiw)*exp(wsharp)ˆ(1−epsw) +

76 (1+infl(−1))ˆ(zetaw*(1−epsw))*(1 + infl)ˆ(epsw−1)*phiw*exp(w(−1))ˆ(1−epsw);
77

78 % (10) Production function

79 exp(Y) = exp(A)*exp(Khat)ˆ(alpha)*exp(N)ˆ(1−alpha)/exp(vp);
80

81 % (11) Price dispersion

82 exp(vp) = (1+infl)ˆ(epsp)*((1−phip)*(1+pisharp)ˆ(−epsp) +

83 (1+infl(−1))ˆ(−zetap*epsp)*phip*exp(vp(−1)));
84

85 % (12) Price evolution

86 (1+infl)ˆ(1−epsp) = (1−phip)*(1+pisharp)ˆ(1−epsp) +

87 phip*(1+infl(−1))ˆ(zetap*(1−epsp));
88

89 % (13) Reset price

90 1+pisharp = (epsp/(epsp−1))*(1+infl)*exp(x1)/exp(x2);
91

92 % (14) x1

93 exp(x1) = exp(lam)*exp(mc)*exp(Y) +

94 phip*beta*(1+infl)ˆ(−zetap*epsp)*(1+infl(+1))ˆ(epsp)*exp(x1(+1));
95

96 % (15) x2

97 exp(x2) = exp(lam)*exp(Y) +

98 phip*beta*(1+infl)ˆ(zetap*(1−epsp))*(1+infl(+1))ˆ(epsp−1)*exp(x2(+1));
99

100 % (16) Factor prices

101 exp(w)/exp(R) = ((1−alpha)/alpha)*exp(Khat)/exp(N);
102

103 % (17) Marginal cost

104 exp(w) = exp(mc)*(1−alpha)*exp(A)*exp(Khat)ˆ(alpha)*exp(N)ˆ(−alpha);
105

106 % (18) Taylor rule

107 int = (1−rhoi)*(1/beta − 1)*(1+pistar) + rhoi*int(−1) +

108 (1−rhoi)*(phipi*(infl − pistar) + phiy*(Y − Y(−1))) + ei;

109

110 % (19) Aggregate resource

111 exp(Y) = exp(C) + exp(I) + exp(G) + (chi1*(exp(u) − 1) +

112 (chi2/2)*(exp(u) − 1)ˆ2)*(exp(K(−1))/exp(Z));
113

114 % (20) Capital accumulation

115 exp(K) = exp(Z)*(1 − (tau/2)*(exp(I)/exp(I(−1)) − 1)ˆ2)*exp(I) +

116 (1−∆)*exp(K(−1));
117

118 % (21) Capital services

119 exp(Khat) = exp(u)*exp(K(−1));
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120

121 % (22) Process for A

122 A = rhoa*A(−1) + ea;

123

124 % (23) Process for Z

125 Z = rhoz*Z(−1) + ez;

126

127 % (24) Government spend

128 exp(G) = omegag*exp(Y);

129

130 % (25) Process for omegag

131 omegag = (1−rhog)*omega + rhog*omegag(−1) + eg;

132

133 % (26) q

134 exp(q) = exp(mu)/exp(lam);

135

136 % (27) Output growth

137 dY = Y − Y(−1);
138

139 % (28) Consumption growth

140 dC = C − C(−1);
141

142 % (29) Investment growth

143 dI = I − I(−1);
144

145 % (30) Hours growth

146 dN = N − N(−1);
147

148 end;

149

150 initval;

151 A = 0;

152 Z = 0;

153 int = (1/beta − 1)*(1+pistar);

154 N = log(0.5);

155 K = log(15);

156 Khat = log(15);

157 u = 0;

158 vp = 0;

159 Y = log(15ˆ(alpha)*0.5ˆ(1−alpha));
160 C = log(0.6*15ˆ(alpha)*0.5ˆ(1−alpha));
161 lam = −log(0.6*15ˆ(alpha)*0.5ˆ(1−alpha)) − log(1−b) + log(1−beta*b);
162 I = log(∆*15);

163 R = log(1/beta − 1 + ∆);

164 mc = log(epsp/(epsp−1));
165 w = log(((1−alpha)/alpha)*30*(1/beta − 1 + ∆));

166 infl = pistar;

167 pisharp = pistar;

168 wsharp = log(((1−alpha)/alpha)*30*(1/beta − 1 + ∆));
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169 f1 = log(psi*0.5ˆ(1+eta)/(1−phiw*beta));
170 f2 = log((0.5/(0.6*15ˆ(alpha)*0.5ˆ(1−alpha)))/(1−phiw*beta));
171 mu = −log(0.6*15ˆ(alpha)*0.5ˆ(1−alpha)) − log(1−b) + log(1−beta*b);
172 dY = 0;

173 dC = 0;

174 dI = 0;

175 dN = 0;

176 end;

177

178 varobs dY int dI infl;

179

180 estimated params;

181 b, beta pdf, 0.7, 0.1;

182 phiw, beta pdf, 0.5, 0.1;

183 phip, beta pdf, 0.5, 0.1;

184 zetaw, beta pdf, 0.5, 0.2;

185 zetap, beta pdf, 0.5, 0.2;

186 eta, normal pdf, 1, 0.25;

187 tau, normal pdf, 2, 0.5;

188 rhoi, beta pdf, 0.9, 0.05;

189 rhoa, beta pdf, 0.9, 0.05;

190 rhoz, beta pdf, 0.9, 0.05;

191 rhog, beta pdf, 0.9, 0.05;

192 phiy, normal pdf, 0.125, 0.05;

193 phipi, normal pdf, 1.5, 0.1;

194 stderr ea, inv gamma pdf, 0.01, 0.002;

195 stderr ez, inv gamma pdf, 0.01, 0.002;

196 stderr ei, inv gamma pdf, 0.002, 0.002;

197 stderr eg, inv gamma pdf, 0.005, 0.002;

198 end;

199

200 estimated params init(use calibration);

201 stderr ea, 0.01;

202 stderr ez, 0.01;

203 stderr eg, 0.01;

204 stderr ei, 0.01;

205 end;

206

207 estimation(datafile=estimation data short,mh replic=20000,mh jscale=0.5,

208 mode compute=4);

Basically, the first part of the .mod file is the same as it usually is. To do estimation, you

replace the “stoch simul” commant with the “estimation” command, with a prior block given prior

distributions for the parameters to be estimated. Dynare does the rest.

The following table shows the estimation results. It gives a posterior mode, mean, and standard

error. The parameter values end up looking pretty reasonable. There is a good bit of habit formation

(b = 0.72), prices and wages are both sticky, though prices seem to be stickier. The data want a

little bit of indexation in wages (ζw = 0.38), but virtually no price indexation. The implied Frisch
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labor supply elasticity is a little less than 1 (the inverse of η). The investment adjustment cost

parameter τ is near 2. The monetary policy rule has smoothing parameter of about 0.8, response to

inflation of about 1.3, and response to output growth of about 0.3. The autocorrelation parameters

in the other shock process are all high (the highest is for A, with ρa near 1). The shock standard

deviations are as shown.

Table 1: Estimated Parameters

Prior Posterior

Parameter Dist. Mean SE Mode Mean SE

b Beta 0.70 0.10 0.72 0.64 0.0944

φw Beta 0.50 0.10 0.43 0.42 0.0754

φp Beta 0.50 0.10 0.71 0.71 0.0271

ζw Beta 0.50 0.20 0.38 0.44 0.2568

ζp Beta 0.50 0.20 0.03 0.05 0.0237

η Normal 1.00 0.25 1.23 1.23 0.2241

τ Normal 2.00 0.50 1.87 1.93 0.2868

ρi Beta 0.50 0.20 0.79 0.78 0.0170

ρa Beta 0.90 0.05 0.99 0.99 0.0038

ρz Beta 0.90 0.05 0.90 0.90 0.0180

ρg Beta 0.90 0.05 0.96 0.95 0.0205

φπ Normal 1.50 0.10 1.35 1.31 0.0927

φy Normal 0.125 0.05 0.32 0.32 0.0412

sa Inv. Gamma 0.010 0.002 0.0074 0.0076 7.933e-04

sz Inv. Gamma 0.010 0.002 0.0091 0.0092 8.4717e-04

sg Inv. Gamma 0.010 0.002 0.0038 0.0039 2.8828e-04

si Inv. Gamma 0.002 0.002 0.0013 0.0013 9.8624e-05

To get a sense for how the model works, I have a separate Dynare file which uses the estimated

parameters and does the regular old “stoch simul” command. From this I can get moments of the

data, a variance decomposition, and impulse responses. In terms of a variance decomposition, pro-

ductivity shocks, investment shocks, and government spending shocks are all estimated to account

for about 30 percent of the variance of output growth, while monetary shocks only account for

about 6 percent. Investment shocks dominate the variance decomposition of investment growth

and q, while consumption growth is mostly explained by the neutral productivity shock.

The table below gives some business cycle moments from the simulated model. The model

does reasonably well. It generates too much output volatility relative to the data, though the

relative volatilities of consumption, investment, and hours are pretty close to what they are in the

data. It does pretty well at matching co-movements with output, though it misses the sign on the
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correlations of both the nominal interest rate and inflation with output growth. It does pretty well

on the estimated autocorrelations of output, but produces autocorrelations in consumption and

investment that are too high. It completely whiffs on the autocorrelation of hours growth. It does

pretty well on the autocorrelations of interest rates and inflation.

Table 2: Data vs. Model

Moment Data Model

σ(∆Yt) 0.0060 0.0105

σ(∆Ct) 0.0030 0.0035

σ(∆It) 0.0077 0.0145

σ(∆Nt) 0.0073 0.0119

σ(πt) 0.0024 0.0039

σ(it) 0.0062 0.0036

ρ(∆Yt,∆Ct) 0.2509 0.2378

ρ(∆Yt,∆It) 0.6063 0.7133

ρ(∆Yt,∆Nt) 0.6505 0.6867

ρ(∆Yt, πt) -0.1427 0.0481

ρ(∆Yt, it) -0.1232 0.2220

ρ(∆Yt,∆Yt−1) 0.4243 0.3510

ρ(∆Ct,∆Ct−1) 0.1968 0.7002

ρ(∆It,∆It−1) 0.3674 0.7100

ρ(∆Nt,∆Nt−1) 0.7108 0.0010

ρ(πt, πt−1) 0.6267 0.8087

ρ(it, it−1) 0.9850 0.9236

Next, I show impulse responses to each of the four shocks. I start with the neutral productivity

shock. It leads to persistent increases in output, consumption, and investment. As in the simpler

NK model, hours falls initially. The shock is also deflationary.
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Next, I look at the impulse responses to an investment-specific shock, Zt. This leads to a hump-

shaped expansion of output and investment and hours. Consumption initially declines. This shock

turns out to be inflationary given the parameterization.
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The government spending shock, which is really a shock to the share of government spending,

is quite large, resulting in a 2.5 percent increase in G on impact. This leads to an expansion in

output and hours, but crowds out private expenditure, witch consumption and investment declining.

Inflation goes up. The output multiplier comes out to be 1.14, which suggests that output rises

by more than the increase in government spending. How does this happen when both private

consumption and investment fall? It’s a consequence of the somewhat peculiar way in which we

modeled the cost of utilization, which show up as a resource cost. The rise in utilization on the

right hand side of the resource constraint is sufficient to overcome the declines in Ct and It which

makes total non-government expenditure go up, allowing the multiplier to exceed 1.
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Finally, I look at the impulse responses to the monetary policy shock. Output, consumption,

investment, and hours all go down, and follow a bit of a hump-shape, which is an important feature

of these models, since most estimated VAR responses feature hump-shapes of this sort.
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