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Abstract

This paper develops a method for combining the power of a dynamic, stochastic, general
equilibrium model with the 3exibility of a vector autoregressive time-series model to obtain a
hybrid that can be taken directly to the data. It estimates this hybrid model via maximum likeli-
hood and uses the results to address a number of issues concerning the ability of a prototypical
real business cycle model to explain movements in aggregate output and employment in the
postwar US economy, the stability of the real business cycle model’s structural parameters, and
the performance of the hybrid model’s out-of-sample forecasts.
? 2003 Elsevier B.V. All rights reserved.
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1. Introduction

Two distinct approaches to macroeconomic analysis emerged during the early 1980s
and continue to yield insights today. First, work following Sims (1980) character-
izes and attempts to explain the movements and co-movements of key aggregate vari-
ables using vector autoregressive (VAR) time-series models. Second, work following
Kydland and Prescott (1982) characterizes and attempts to explain the movements and
co-movements of many of the same variables using dynamic, stochastic, general equi-
librium (DSGE) models.
These two distinct approaches to macroeconomics both have their distinct strengths

and weaknesses. VAR models, for instance, can be taken directly to the data: they
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are easy to estimate and, once estimated, can be used to perform statistical hypothesis
tests as well as to generate out-of-sample forecasts. Moreover, since their speciFcation
requires little, if any, reference to detailed economic theory, VAR models remain 3ex-
ible enough to address a wide range of questions regarding the nature and sources of
business cycle 3uctuations. Because they rely so loosely on economy theory, however,
VAR models often fail to uncover parameters that are truly structural; thus, these mod-
els may exhibit instability across periods when monetary and Fscal policies change.
Indeed, Stock and Watson (1996) Fnd evidence of widespread instability in VAR mod-
els estimated with postwar US data.
DSGE models, by contrast, are Frmly grounded in economic theory. These models

draw tight links between the structural parameters describing private agents’ tastes and
technologies and the time-series behavior of endogenous variables such as aggregate
output and employment; in principle, at least, these structural parameters should remain
invariant to changes in policy regimes. Yet because they rely so heavily on economic
theory, DSGE models are often regarded as being too stylized to be taken directly to
the data, making traditional econometric methods for estimation, hypothesis testing, and
forecasting inapplicable. Moreover, since they take such a strong stance on so many
details concerning the structure of the economy, DSGE models often yield results
that appear to be fragile, at least at Frst glance. When Kydland and Prescott (1982)
report, for instance, that technology shocks can account for most of the observed output
variation in the postwar US data, one is still left to wonder whether this result will
survive modiFcations to their model, such as the introduction of other types of shocks.
This paper develops a method for combining the power of DSGE theory with the

3exibility of VAR time-series models, in hopes of obtaining a hybrid that shares the
desirable features of both approaches to macroeconomics. The method takes as its
starting point a fully-speciFed DSGE model, but also admits that while this model
may be powerful enough to account for and explain many key features of the US
data, it remains too stylized to possibly capture all of the dynamics that can be found
in the data. Hence, it augments the DSGE model so that its residuals – meaning the
movements in the data that the theory cannot explain – are described by a VAR,
making estimation, hypothesis testing, and forecasting feasible.
To illustrate how this method works, the rest of the paper unfolds as follows. The

next section outlines a prototypical DSGE model: Hansen’s (1985) real business cycle
model with indivisible labor. Section 3 then augments this model with VAR residuals to
arrive at the hybrid speciFcation described above. Section 4 estimates the hybrid model
via maximum likelihood and uses the estimated model to address a number of key
issues concerning the ability of the real business cycle model to explain movements in
output, consumption, investment, and hours worked in the postwar US data, the stability
of the real business cycle model’s structural parameters, and the performance of the
hybrid model’s out-of-sample forecasts. Section 5 summarizes and concludes, while
two appendices provide additional information for those readers who are especially
interested in the technical details behind the construction and estimation of the hybrid
model.
Before moving on, however, mention should be made of some previous research

that relates to the work presented here. Christiano (1988), Altug (1989), Bencivenga
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(1992), McGrattan (1994), Hall (1996), Ireland (1997, 2001a, b, 2002), McGrattan
et al. (1997), Chow and Kwan (1998), DeJong et al. (2000a, b), Kim (2000), and
Schorfheide (2000) also estimate the structural parameters of DSGE models using max-
imum likelihood methods. In fact, a number of these studies – Altug (1989), McGrattan
(1994), Hall (1996), and McGrattan et al. (1997) – draw on a framework for adding
error terms to the structural equations of DSGE models developed originally by Sargent
(1989). Sargent’s (1989) ideas also lie at the heart of the approach taken here; thus,
the connections between these earlier studies and the work presented here are discussed
in more detail below.
Work with structural VAR models, following Bernanke (1986), Blanchard and Wat-

son (1986), and Sims (1986), also attempts to draw on the power of economic theory
while retaining the 3exibility of more conventional VAR models; indeed, McKibbin
et al. (1998) also refer to their structural VAR as a hybrid model. The goal of re-
search with structural VAR models is the same as the goal of the work presented
here: to develop macroeconomic models that have theoretical foundations and that are
also successful in Ftting the data. Structural VAR models, however, typically rely on
economic theory only to the extent that it is absolutely required for identiFcation,
while the hybrid model constructed here is built around a fully-speciFed DSGE model.
Which approach one prefers, therefore, depends on how much conFdence on has in
the underlying theory.
Finally, Smith (1993), Canova et al. (1994), Kim (2000), Schorfheide (2000), and

Canova (2002) evaluate DSGE models by comparing their quantitative implications to
those of unconstrained VAR models. Each of these earlier studies stops short, however,
of suggesting how features of these two classes of macroeconomic models might be
combined to obtain hybrids like the one considered here.

2. A prototypical DSGE model

In Hansen’s (1985) real business cycle model with indivisible labor, a representative
consumer has preferences deFned over consumption Ct and hours worked Ht during
each period t = 0; 1; 2; : : :, as described by the expected utility function

E
∞∑
t=0

�t[ln(Ct)− �Ht]; (1)

where the discount factor satisFes 1¿�¿ 0 and where �¿ 0. The linearity of utility
in hours worked can be motivated, following Hansen (1985) and Rogerson (1988), by
assuming that the economy consists of many individual consumers, each of whom either
works full time or remains unemployed. The representative consumer produces output
Yt with capital Kt and labor Ht according to the constant-returns-to-scale technology
described by

Yt = AtK�
t (

tHt)1−�; (2)

where ¿ 1 measures the gross rate of labor-augmenting technological progress and
where 1¿�¿ 0. The technology shock At follows the Frst-order autoregressive
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process:

ln(At) = (1− �) ln(A) + � ln(At−1) + �t ; (3)

where A¿ 0 and 1¿�¿ − 1. The serially uncorrelated innovation �t is normally
distributed with mean zero and standard deviation �.
During each period t = 0; 1; 2; : : :, the representative consumer divides output Yt be-

tween consumption Ct and investment It , subject to the resource constraint

Yt = Ct + It : (4)

By investing It units of output during period t, the consumer increases the capital stock
Kt+1 available during period t + 1 according to

Kt+1 = (1− �)Kt + It ; (5)

where the depreciation rate satisFes 1¿�¿ 0.
Equilibrium allocations for this economy solve the representative consumer’s prob-

lem: choose sequences {Yt; Ct ; It ; Ht ; Kt+1}∞t=0 to maximize the utility function (1) sub-
ject to constraints (2)–(5) for all t = 0; 1; 2; : : : . The Frst-order conditions for this
problem include

�CtHt = (1− �)Yt; (6)

and

1=Ct = �Et{(1=Ct+1)[�(Yt+1=Kt+1) + 1− �]} (7)

for all t=0; 1; 2; : : : . The intratemporal eMciency condition (6) equates marginal rate of
substitution between consumption and leisure to the marginal product of labor, while
the intertemporal eMciency condition (7) equates the marginal rate of intertemporal
substitution to the marginal product of capital.
Eqs. (2)–(7) form a system of six non-linear stochastic diNerence equations in the

model’s six variables: Yt , Ct , It , Ht , Kt , and At . Approximate solutions to this system
can be constructed as follows. DeFne yt=Yt=t , ct=Ct=t , it= It=t , ht=Ht , kt=Kt=t ,
and at = At . Eqs. (2)–(7) imply that in the absence of technology shocks, when �t =0
for all t = 0; 1; 2; : : :, the economy converges to a steady state in which each of these
detrended variables remains constant, with yt=y, ct=c, it= i, ht=h, kt=k, and at=a.
Appendix A shows exactly how the steady-state values y, c, i, h, k, and a depend on
some of the model’s underlying parameters describing tastes and technologies: �, �, �,
, �, and A.
The Appendix A also describes how (2)–(7) can be log-linearized about this steady

state. The methods of Blanchard and Kahn (1980), when applied to the linear system,
then provide an approximate solution of the form

st = Ast−1 + B�t (8)

and

ft = Cst (9)

for all t=0; 1; 2; : : :, where the vectors st and ft keep track of logarithmic, or percentage,
deviations of each detrended variable from its steady-state level, with

st = [ln(kt=k) ln(at=a)]′
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and

ft = [ln(yt=y) ln(ct=c) ln(it=i) ln(ht=h)]′:

In (8) and (9), the elements of the matrices A, B, and C also depend on some of the
model’s structural parameters: �, �, , �, and �.

3. The hybrid model

In principle, one could use data on aggregate output, consumption, investment, and
hours worked, along with the solution described by (8) and (9), to estimate the real
business cycle model’s structural parameters. Many researchers, however, including
Kydland and Prescott (1982), argue that models of this type are too stylized to explain
many features of the data, making traditional econometric methods inapplicable. Indeed,
one dimension along which the real business cycle model is quite stylized lies in its
assumption that just one shock – the aggregate technology shock – drives all business
cycle 3uctuations. As emphasized by Ingram et al. (1994), this one-shock assumption
makes the real business cycle model stochastically singular: the model predicts that
certain combinations of the endogenous variables will be deterministic. If, in the data,
these exact linear relationships do not hold, any attempt to estimate (8) and (9) via
maximum likelihood will fail.
One approach to coping with this stochastic singularity problem involves elaborating

on the DSGE model by introducing additional structural disturbances – to preferences,
technologies, monetary and Fscal policy rules, and so on – until the number of shocks
equals the number of data series used in estimation. In fact, Bencivenga (1992), Ireland
(1997, 2001a, b, 2002), DeJong et al. (2000a, b), Kim (2000), and Schorfheide (2000)
all take exactly this approach. This strategy has its advantages: it serves to identify
sources of aggregate 3uctuations beyond the real business cycle model’s technology
shock and allows for a direct comparison of the relative importance of those additional
disturbances in driving aggregate 3uctuations. On the other hand, this strategy has
its disadvantages, too: in particular, it requires the researcher to lean even harder on
economic theory by making further, very speciFc, assumptions about the workings of
the economy.
As an alternative approach to coping with the stochastic singularity problem, there-

fore, consider augmenting each equation in (9) with a serially correlated residual, or
error term, so that the empirical model consists of (8),

ft = Cst + ut (10)

and

ut =Dut−1 + ^t (11)

for all t = 0; 1; 2; : : :, where the vector ^t of zero-mean, serially uncorrelated innova-
tions is normally distributed with covariance matrix E^t^′t = V and is uncorrelated
with the innovation �t to technology. This alternative approach – adding error terms
to the observation equation (9) – is also used by Altug (1989), McGrattan (1994),



1210 P.N. Ireland / Journal of Economic Dynamics & Control 28 (2004) 1205–1226

Hall (1996), and McGrattan et al. (1997) to estimate what would otherwise be stochas-
tically singular real business cycle models. Each of these earlier studied follows Sargent
(1989) by interpreting ut as a vector of measurement errors and by assuming that the
matrices D and V are diagonal, so that the measurement errors are uncorrelated across
variables. Here, by contrast, no such restrictions are imposed: the residuals in ut are
allowed to follow a general, Frst-order vector autoregression. Thus, the residuals may
still soak up measurement errors, but they can also be interpreted more liberally as
capturing all of the movements and co-movements in the data that the real business
cycle model, because of its elegance and simplicity, cannot explain. In this way, the
hybrid model consisting of (8), (10), and (11) combines the power of the DSGE model
with the 3exibility of a VAR.
Conveniently, the hybrid model takes the form of a state-space econometric model; it

can therefore be estimated via maximum likelihood, as described in Appendix B, once
analogs to the model’s variables Yt , Ct , It , and Ht are found in the US data. Thus,
in the data, Ct is deFned as real personal consumption expenditures in chained 1996
dollars, investment is deFned as real gross private domestic investment, also in chained
1996 dollars, and output Yt is deFned by the sum Ct + It . Hours worked Ht is deFned
as hours of wage and salary workers on private, non-farm payrolls. It is true that this
measure of hours, which accounts for labor used to produce goods for export and for
government purchase, does not correspond exactly to the measure of output Ct + It .
Unfortunately, no easy way of correcting the hours data for this discrepancy exists; but
extending the analysis using a more elaborate DSGE model that has implications for
imports, exports, and government spending as well as for consumption and investment
would certainly be a very useful task for future research.
Each series is converted to per-capita terms by dividing by the civilian, non-

institutional population, age 16 and over. All data, except for population, are sea-
sonally adjusted. Since the real business cycle model implies that output, consumption,
and investment grow at the common rate  in steady state, the data are automatically
detrended as part of the estimation process; they are not Fltered in any other way. Data
for consumption, investment, output, and population are taken from the Federal Reserve
Bank of St. Louis’ FRED database; data for hours worked come from the Bureau of
Labor Statistics’ Establishment Survey. The series are quarterly and run from 1948:1
through 2002:2.
The resource constraint (4) holds by construction in the data. Thus, only the series

for Yt , Ct , Ht are used in estimating the model; the series for It is redundant. For the
purposes of estimation, therefore, ft , ut , and ^t reduce to 3× 1 vectors, with

ft = [ln(yt=y) ln(ct=c) ln(ht=h)]′;

ut = [uyt uct uht]′;

and

^t = [�yt �ct �ht]′
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for all t = 0; 1; 2; : : :, and the matrices D and V can be written as

D=



dyy dyc dyh

dcy dcc dch

dhy dhc dhh




and

V =




v2y vyc vyh

vyc v2c vch

vyh vch v2h


 :

In estimating the hybrid model, the real business cycle model’s structural parameters are
constrained to satisfy the theoretical restrictions listed in Section 2, above. In addition,
the eigenvalues of the matrix D are constrained to lie inside the unit circle, so that the
residuals in ut must be stationary. Finally, the covariance matrix V is constrained to be
positive deFnite. Again, Appendix B provides full details of the estimation procedure.

4. Results from the hybrid model

4.1. Parameter estimates

Preliminary attempts to estimate all of the hybrid model’s parameters led, in partic-
ular, to an unreasonably low estimate of �= 0:7941 for the representative consumer’s
discount factor and an unreasonably high estimate of � = 0:1810 for the depreciation
rate, given the quarterly time period. Within the real business cycle model, the low
discount factor works to strengthen the consumer’s preference for consumption today
versus consumption tomorrow; similarly, the high depreciation rate works to make
saving and investment less attractive. These estimates suggest, therefore, that the data
might prefer a more elaborate version of the real business cycle model in which some
agents appear to be less forward-looking than others due, perhaps, to myopia in pref-
erences or borrowing constraints in Fnancing investment. To be sure, this possibility
deserves to be explored in more detail. Alternatively, data on interest rates and capital
stocks, if added to the list of series used in the maximum likelihood procedure, might
yield more satisfactory estimates of � and �. Here, however, these extensions are left
for future research; instead, the hybrid model is simply reestimated with � held Fxed
at 0.99 and � held Fxed at 0.025, the values originally suggested by Hansen (1985).
Altug (1989) also Fnds it necessary to adopt this strategy of calibrating � and � in
order to successfully estimate the remaining parameters of a real business cycle model.
Accordingly, Table 1 reports maximum likelihood estimates of 21 parameters: the six

structural parameters �, �, , A, �, and � from the real business cycle model, the nine
elements of the matrix D governing the persistence of the VAR residuals, and the six
elements of the covariance matrix V for the VAR residuals. The standard errors, also
reported in Table 1, correspond to the square roots of the diagonal elements of minus
one times the inverted matrix of second derivatives of the maximized log-likelihood
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Table 1
Full sample estimates and standard errors

Parameter Estimate Standard error

� 0.0045 0.0001
� 0.2292 0.0065
 1.0051 0.0005
A 5.1847 0.5048
� 0.9987 0.0018
� 0.0056 0.0004
dyy 1.3655 0.1572
dyc 0.3898 0.1402
dyh −0.4930 0.1342
dcy 0.1380 0.0712
dcc 0.9690 0.0565
dch −0.1046 0.0665
dhy 0.7153 0.2123
dhc 0.4605 0.1593
dhh 0.2219 0.1566
vy 0.0070 0.0013
vc 0.0069 0.0007
vh 0.0018 0.0021
vyc 0.00002989 0.00001064
vyh 0.00000903 0.00000722
vch 0.00001237 0.00000573

function. Calculating these standard errors requires two steps, numerically evaluating
the matrix of second derivatives of the log-likelihood function and then inverting that
very large matrix having elements of varying magnitudes, both of which may introduce
approximation error into the statistics. Hence, these standard errors, though useful, do
need to be interpreted with a bit of caution.
The point estimates of the real business cycle model’s parameters, however, all

appear quite reasonable. As discussed in the appendices, the estimates A = 5:1847
and � = 0:0045 help match steady-state output, consumption, and hours worked in
the model with the average levels of the same variables in the data. The estimate
�=0:2292 implies that capital’s share in production is slightly less than 25%. The
estimate  = 1:0051 makes the annualized, steady-state growth rate of real, per-capita
output in the model equal to 2.06%. Finally, the estimate �= 0:9987 implies that the
technology shock is extremely persistent, while the estimate �=0:0056 is of the same
order of magnitude used throughout the literature on real business cycles.
The other estimates in Table 1 suggest, however, that there are important features

of the data that the real business cycle model has diMculty explaining. The estimates
imply, for instance, that the matrix D has one real eigenvalue of modulus 0.9399 and
two complex eigenvalues of modulus 0.8179; evidently, the residuals in ut are also
quite persistent. Furthermore, the innovations in ^t have standard deviations of 0.0070,
0.0069, and 0.0018. Two of these three Fgures exceed the estimated standard deviation
of the innovation �t to technology. On the other hand, the implied time series for �t
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and the vector ^t , constructed using the Kalman smoothing algorithm alluded to in
Appendix B, come quite close to being uncorrelated, consistent with the orthogonality
assumption built into the hybrid model: calculations reveal that the correlation between
�t and �yt is −0:0634, the correlation between �t and �ct is 0.0133, and the correlation
between �t and �ht is 0.0010.

4.2. Explanatory power of the real business cycle model

What fraction of the observed output variation in the postwar US economy is ex-
plained by the real business cycle model? This question, Frst considered by Kydland
and Prescott (1982), can also be addressed by using the estimated hybrid model to de-
compose the k-step-ahead forecast error variances in output, consumption, investment,
and hours worked into two orthogonal components: one attributable to the real business
cycle model’s technology shock and the other attributable to the three residuals in ut .
Table 2 displays the results of these forecast error variance decompositions.
In Table 2, the last line of panel A, with k=∞, indicates that the technology shock

accounts for nearly 90% of the unconditional variance in detrended output, but here,
this result obtains despite the fact that the hybrid model also allows shocks to the
elements of ut to help explain the behavior of output. Presumably, the residuals in ut
pick up the combined eNects of shocks, including monetary and Fscal policy shocks,
not present in the real business cycle model. Here, therefore, Kydland and Prescott’s
(1982) Fnding appears to be robust to the inclusion of these additional shocks.
The robustness of Kydland and Prescott’s (1982) Fnding can also be assessed, using

the hybrid model estimated here, by attaching standard errors to each of the statistics
reported in Table 2. Thus, standard errors also appear in the table, where they are
computed by expressing each statistic as a function g of the vector # of estimated
parameters and by calculating [@g(#)=@#]′H[@g(#)=@#], where H is the covariance
matrix of the estimated parameters in # and the derivatives @g(#)=@# are evaluated
numerically, as suggested by Runkle (1987).
The standard errors shown in Table 2 indicate that the statistical uncertainty sur-

rounding the real business cycle model’s ability to explain a substantial fraction of the
observed output variation in the US data is large, though not as large as previously
suggested by Eichenbaum (1991), who estimates the model’s parameters via a method
of moments procedure instead of the more eMcient maximum likelihood technique used
here. Even if the true fraction of output variation explained by the real business cycle
model is two standard errors less than the point estimate of 90%, for instance, that
fraction remains greater than 60%.
Other results displayed in Table 2 show that the technology shock accounts for

more than 95% of the unconditional variance of detrended consumption and more than
50% of the unconditional variance of detrended investment, but almost none of the
unconditional variance of hours worked. Thus, as noted by Cooley and Prescott (1995)
among others, the real business cycle model does a much better job in explaining the
behavior of output and its components than it does in explaining the behavior of hours
worked.
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Table 2
Forecast error variance decompositions

Quarters ahead Percentage of variance Standard error
due to technology

(A) Output
1 61.8430 10.5671
4 35.5003 6.9624
8 28.7467 6.7700
12 29.4831 7.5183
20 35.3378 9.1640
40 48.4763 11.0600
∞ 89.9399 13.9401

(B) Consumption
1 31.0978 6.2456
4 32.9700 6.7755
8 35.7260 8.1005
12 39.5799 9.2015
20 48.5522 10.8000
40 65.4138 11.3685
∞ 95.7378 6.4410

(C) Investment
1 44.0529 8.0988
4 25.2808 4.8840
8 18.2636 4.3737
12 17.4674 4.6860
20 18.8007 5.3565
40 21.6648 6.1571
∞ 50.6782 32.5590

(D) Hours worked
1 84.8526 31.3148
4 10.5126 2.1338
8 4.0181 0.9832
12 2.8049 0.8210
20 2.2471 0.7983
40 2.0734 0.8574
∞ 2.0609 0.8770

As noted above, the technology shock accounts for almost 90% of the unconditional
variance in aggregate output, and as shown in Table 2, it also accounts for more than
60% of the one-quarter-ahead forecast error variance in output. On the other hand, the
technology shock accounts for less than half of the k-step-ahead forecast error variances
for values of k ranging from 4 to 40, implying that the real business cycle model has
more diMculty explaining output 3uctuations over horizons between 1 and 10 years.
These results are, of course, consistent with previous Fndings reported by Watson
(1993), Cogley and Nason (1995), and Rotemberg and Woodford (1996); Watson
(1993), in particular, Fnds that while the real business cycle model explains very high
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and very low frequency movements in output, it is less successful in explaining those
movements that take place at business cycle frequencies.
Finally, Table 2 contains a surprising result. Although, as noted above, technology

shocks account for almost none of the unconditional variance of hours worked, they
explain almost 85% of the one-quarter-ahead forecast error variance in the hours series.
This result is encouraging, since it suggests that the real business cycle model still has
some success in tracking quarter-to-quarter movements in aggregate employment, even
if it fares less well in explaining movements over longer horizons.

4.3. Tests for parameter stability

One great strength of the real business cycle model is that it is supposed to be
structural: it links the behavior of aggregate output and employment describing private
agents’ tastes and technologies – parameters that ought to remain constant, even across
periods when monetary and Fscal policy regimes change. Here, the hybrid model can be
used to test the hypothesis that these structural parameters do, in fact, appear stable over
time. To check for parameter stability, the hybrid model is estimated over two disjoint
subsamples: the Frst running from 1948:1 through 1979:4 and the second running from
1980:1 through 2002:2. The 1980 breakpoint corresponds, of course, to a date around
which major changes in US monetary and Fscal policies are widely thought to have
occurred.
Table 3 reports estimates of the hybrid model’s parameters, along with their standard

errors, for each of the two subsamples. For the six estimated parameters from the real
business cycle model, diNerences do appear across the breakpoint. SpeciFcally, the
estimate of � falls from 0.0046 before 1980 to 0.0042 after, probably in an attempt to
explain the upward trend in per-capita hours worked that is examined in more detail
by Motley (1997). The estimate of �, meanwhile, rises from 0.2190 before 1980 to
0.2457 after, perhaps in an attempt to account for the 1990s investment boom. On
the other hand, the estimate of  falls from 1.0053 before 1980 to 1.0046 after, and
the estimate of A falls as well, suggesting that the productivity slowdown generated a
downward shift in both the growth rate and the level of aggregate output. And while
both estimates of � look quite similar to their full-sample counterpart, the estimates of
� pre and post-1980 are smaller than the full-sample estimate shown in Table 1. This
last result – that aggregate shocks appear smaller when a one-time break in the process
for output is allowed for – can also be found in work by Perron (1989) and Rappoport
and Reichlin (1989).
Andrews and Fair (1988) describe procedures for testing whether diNerences like

these are statistically signiFcant. Let the vector #1
q contain any q parameters estimated

with pre-1980 data, let #2
q contain the same q parameters estimated with post-1980

data, and let H1
q and H2

q denote the covariance matrices for #1
q and #2

q. Andrews and
Fair (1988) show that the Wald statistic

W = (#1
q −#2

q)
′(H1

q +H
2
q)

−1(#1
q −#2

q)

is asymptotically distributed as a chi-square random variable with q degrees of freedom
under the null hypothesis of parameter stability: #1

q =#
2
q.
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Table 3
Subsample estimates and standard errors

Pre-1980 Standard Post-1980 Standard
Parameter estimate error estimate error

� 0.0046 0.0001 0.0042 0.0002
� 0.2190 0.0045 0.2457 0.0077
 1.0053 0.0005 1.0046 0.0012
A 5.6309 0.2842 5.0535 0.9839
� 0.9935 0.0099 0.9966 0.0135
� 0.0050 0.0015 0.0042 0.0009
dyy 1.2553 0.2013 1.1390 0.1360
dyc 0.1657 0.1558 0.6564 0.2970
dyh −0.3837 0.1633 −0.5332 0.1092
dcy 0.1216 0.0889 0.0768 0.0999
dcc 0.9065 0.0677 1.1172 0.1409
dch −0.1143 0.0601 −0.1479 0.2176
dhy 0.6380 0.2449 0.3722 0.1460
dhc 0.1689 0.2225 0.5337 0.6014
dhh 0.4232 0.2362 0.3562 0.1839
vy 0.0090 0.0024 0.0056 0.0013
vc 0.0084 0.0009 0.0051 0.0009
vh 0.0049 0.0032 0.0013 0.0010
vyc 0.00004982 0.00002080 0.00001542 0.00000774
vyh 0.00002959 0.00003403 0.00000682 0.00000379
vch 0.00002201 0.00001458 0.00000518 0.00000595

Table 4
Tests for parameter stability

Stability of all 21 estimated parameters: W = 74:5383∗∗∗
Stability of the 6 structural parameters: W = 15:3546∗∗
Stability of the 15 remaining parameters: W = 54:1925∗∗∗

Note: ∗∗ and ∗∗∗ indicate signiFcance at the 5% and 1% levels.

Table 4 reports Wald statistics for the stability of all 21 estimated parameters from
the hybrid model, the stability of the six structural parameters �, �, , A, �, and �
from the real business cycle model, and the stability of the 15 remaining parameters
from the matrices D and V governing the behavior of the VAR residuals. Across the
board, the tests reject the null hypothesis of parameter stability. Evidently, important
changes have taken place in the postwar US economy that neither the real business
cycle model nor the hybrid model’s residuals can fully account for. These test results
echo and extend previous Fndings from Stock and Watson (1996), who record evidence
of widespread instability in parameters from VAR models estimated with postwar US
data.
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4.4. Forecast accuracy

Table 5 reports on the accuracy of the hybrid model’s out-of-sample forecasts. As
noted above, the model has 21 estimated parameters. An unconstrained, Frst-order VAR
model for the logs of per-capita output, consumption, and hours worked with a constant
and a linear time trend for each variable also has 21 estimated parameters, making that
VAR(1) a natural benchmark against which to judge the hybrid model’s forecasting
performance. Thus, the table compares the root-mean-squared forecast errors from the
hybrid model to those from the VAR(1); for the sake of completeness, the table shows
results from an unconstrained, second-order VAR model as well.
To create the statistics shown in Table 5, each of the models is estimated with

data from 1948:1 through 1984:4 and used to generate out-of-sample forecasts one
through four quarters ahead. Next, the sample is extended to 1985:1, and additional
forecasts are generated using the updated estimates. Continuing in this way yields series
of one-quarter-ahead forecasts running from 1985:1 through 2002:2, series of two-
quarters-ahead forecasts running from 1985:2 through 2002:2, series of three-quarters-
ahead forecasts running from 1985:3 through 2002:2, and series of four-quarters-ahead
forecasts running from 1985:4 through 2002:2, all of which can be compared to the
actual data that were realized over those periods.
The results indicate that in many cases – particularly for output and its compo-

nents – forecasts from the hybrid model outperform those from the two unconstrained
VAR models. To determine whether any of these diNerences are signiFcant, Table 5
also reports a statistic that is used by Diebold and Mariano (1995) to test the null
hypothesis of equal forecast accuracy across two models. Let {eht }Tt=1 denote a series
of k-step-ahead forecast errors from the hybrid model, let {eut }Tt=1 denote the corre-
sponding forecast errors from one of the unconstrained VAR models, and construct
a sequence {lt}Tt=1 of loss diNerentials using lt = (eut )

2 − (eht )
2 for all t = 1; 2; : : : ; T .

Diebold and Mariano (1995) show that the test statistic

S = l=�l

is asymptotically distributed as a standard normal random variable, where l is the sam-
ple mean of {lt}Tt=1 and where �l, the standard error of l, can be estimated according to
the formulas given in their paper, under the null hypothesis of equal forecast accuracy:
l= 0.
In Table 5, positive values of S indicate cases where the hybrid model’s forecasts

outperform the VAR model’s, while negative values of S indicate cases where the
opposite is true. In fact, tests of the null hypothesis l=0 against the alternative l¿ 0
often reject the null of equal forecast accuracy. Meanwhile, only when the hybrid
model’s forecasts for hours worked are compared to those from the VAR(2) can the
null of l = 0 be rejected in favor of the alternative that l¡ 0. Overall, therefore, the
hybrid model’s forecasting performance appears quite good.
As a Fnal exercise, the hybrid model is reestimated while constraining the matrices

D and V to be diagonal. This diagonal version of the hybrid model requires the real
business cycle framework to account for all of the co-movements between the observed
variables; as in the measurement-error models of Altug (1989), McGrattan (1994), Hall
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Table 5
Forecast Accuracy, 1985:1-2002:2

Quarters Ahead 1 2 3 4

(A) Output
RMSE: Hybrid 0.8319 1.6810 2.5706 3.4501
RMSE: Diagonal 0.6935 1.2201 1.7117 2.1613
RMSE: VAR(1) 1.0163 1.8602 2.6015 3.2472
RMSE: VAR(2) 0.9490 1.9783 2.9944 3.8845

S: Hybrid vs. VAR(1) 4.2047∗∗∗ 1.7496∗ 0.2110 −0.9795
S: Diagonal vs. VAR(1) 3.9323∗∗∗ 2.3712∗∗ 1.7474∗ 1.4071
S: Hybrid vs. VAR(2) 2.1937∗∗ 1.5608 1.1815 0.8642
S: Diagonal vs. VAR(2) 2.8708∗∗∗ 2.1497∗∗ 1.7631∗ 1.5245

(B) Consumption
RMSE: Hybrid 0.5371 0.8849 1.2361 1.6208
RMSE: Diagonal 0.4781 0.7022 0.9093 1.1688
RMSE: VAR(1) 0.5554 0.8963 1.2110 1.5308
RMSE: VAR(2) 0.5854 1.0228 1.4828 1.9111

S: Hybrid vs. VAR(1) 0.9207 0.2572 −0.2818 −0.6440
S: Diagonal vs. VAR(1) 2.3321∗∗ 1.9189∗ 1.4721 1.1254
S: Hybrid vs. VAR(2) 1.1583 1.4070 1.2813 1.0203
S: Diagonal vs. VAR(2) 2.7518∗∗∗ 2.3575∗∗ 1.9652∗∗ 1.6083

(C) Investment
RMSE: Hybrid 3.2441 5.8452 8.8561 11.9088
RMSE: Diagonal 3.1803 4.6807 6.1267 7.4359
RMSE: VAR(1) 4.0511 6.7590 9.1619 11.2436
RMSE: VAR(2) 3.4950 6.6361 9.9190 12.8333

S: Hybrid vs. VAR(1) 4.2287∗∗∗ 2.0408∗∗ 0.5264 −0.9300
S: Diagonal vs. VAR(1) 3.0864∗∗∗ 2.3256∗∗ 1.7907∗ 1.4927
S: Hybrid vs. VAR(2) 1.2140 1.3146 0.9559 0.6083
S: Diagonal vs. VAR(2) 1.0464 1.7969∗ 1.6306 1.4754

(D) Hours worked
RMSE: Hybrid 0.5345 1.2973 2.2239 3.2436
RMSE: Diagonal 0.5663 1.0753 1.5589 2.0097
RMSE: VAR(1) 0.7439 1.4743 2.2072 2.9236
RMSE: VAR(2) 0.4458 1.1096 1.9253 2.7838

S: Hybrid vs. VAR(1) 4.3000∗∗∗ 1.5516 −0.0953 −1.1794
S: Diagonal vs. VAR(1) 3.5831∗∗∗ 2.5072∗∗ 2.2060∗∗ 2.0702∗∗
S: Hybrid vs. VAR(2) −4.4089∗∗∗ −2.6781∗∗∗ −2.1450∗∗ −1.9447∗
S: Diagonal vs. VAR(2) −3.4761∗∗∗ 0.3892 1.7386∗ 1.8918∗

Note: ∗, ∗∗, and ∗∗∗ indicate signiFcance at the 10%, 5%, and 1% levels.

(1996), and McGrattan et al. (1997), the residuals are assumed to be uncorrelated.
Table 6 displays the parameter estimates for this diagonal model, which diNer in some
cases from those shown for the more 3exible speciFcation in Table 1. Moreover, when
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Table 6
Full sample estimates and standard errors: diagonal model

Parameter Estimate Standard error

� 0.0038 0.0003
� 0.5126 0.0760
 1.0051 0.0011
A 0.9871 0.4904
� 0.9989 0.0015
� 0.0091 0.0006
dyy −0.9843 0.0279
dcc 0.9998 0.0003
dhh 0.9942 0.0061
vy 0.0001 0.0001
vc 0.0061 0.0003
vh 0.0073 0.0004

D and V are constrained to be diagonal, the maximized value of the log-likelihood
function falls from 2323.6 to 2204.2: a likelihood ratio test easily rejects the null
hypothesis that these constraints hold true. At the same time, however, Table 5 reveals
that the diagonal version of the hybrid model often generates out-of-sample forecasts
that outperform those from the more 3exible hybrid model; by extension, the diagonal
model’s forecasts also outperform those from the two unconstrained VAR models.

5. Conclusion

This paper adds to a prototypical dynamic, stochastic, general equilibrium model –
Hansen’s (1985) real business cycle model with indivisible labor – a vector of residuals
that follows a Frst-order autoregressive process. The result is a hybrid that exploits the
power of detailed economic theory but remains 3exible enough to be taken directly to
the data: the model can be estimated via maximum likelihood and, once estimated, can
be used to perform statistical hypothesis tests and to generate out-of-sample forecasts.
Some of the results presented above echo the well-known successes and shortcomings

of the real business cycle framework as documented by Watson (1993), Cogley and
Nason (1995), Cooley and Prescott (1995), and Rotemberg and Woodford (1996)
among others. The results show, for example, that technology shocks do a better job
in explaining the behavior of output and its components than they do in explaining
the behavior of hours worked. In addition, technology shocks account for much of
the variability in output that occurs over very short and very long horizons, but are
less successful in accounting for output variation at business cycle frequencies. And
Fnally, estimates of the model reveal that the statistical uncertainty surrounding Kydland
and Prescott’s (1982) Fnding that the real business cycle model explains a substantial
fraction of the output variation in the US data is large, though not as large as suggested
previously by Eichenbaum (1991).
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Other results, however, illuminate aspects of the real business cycle model’s perfor-
mance that are less widely appreciated. For example, a statistical hypothesis test rejects
the null hypothesis that the real business cycle model’s structural parameters have re-
mained stable over the postwar period. This result is disappointing, since it implies that
the real business cycle model fails to live up to its promise of identifying parameters,
describing private agents’ tastes and technologies, that remain constant over time. On
the other hand, the hybrid model developed here – which takes the real business cycle
model as its starting point – delivers out-of-sample forecasts that frequently outperform
those from an unconstrained VAR. This result is quite encouraging, since it indicates
that the real business cycle model – often criticized for being an oversimpliFed ab-
straction – can actually help in answering the most practical of questions such as:
what movements can we expect to see in aggregate output and employment in the US
economy over the next quarter or the next year?
Finally, as the surveys in Cooley’s (1995) volume make clear, work on dynamic,

stochastic, general equilibrium theory has now moved well beyond its real business
cycle origins to consider the eNects of monetary and Fscal policy shocks, household
production, imperfectly competitive market structures, and numerous other extensions.
The method developed here can be applied more generally to take these extended
models to the data and to assess their explanatory power, both within sample and out
of sample. Doing so remains a task for future research.
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Appendix A. Solving the DSGE model

A.1. Equilibrium conditions

Eqs. (2)–(7) in the text describe the behavior of the model’s six variables: Yt , Ct , It ,
Ht , Kt , and At . These equations can be rewritten in terms of the six detrended variables

http://www2.bc.edu/~irelandp
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yt = Yt=t , ct = Ct=t , it = It=t , ht = Ht , kt = Kt=t , and at = At as

yt = atk�t h
1−�
t ; (A.1)

ln(at) = (1− �) ln(A) + � ln(at−1) + �t ; (A.2)

yt = ct + it ; (A.3)

kt+1 = (1− �)kt + it ; (A.4)

�ctht = (1− �)yt; (A.5)

and

=ct = �Et{(1=ct+1)[�(yt+1=kt+1) + 1− �]}: (A.6)

A.2. The steady state

In the absence of shocks, the economy converges to a steady state, in which each
of the six stationary variables is constant, with yt = y, ct = c, it = i, ht = h, kt = k, and
at = a for all t = 0; 1; 2; : : : . Eq. (A.2) immediately provides the solution a= A.
Now suppose that the steady-state value y is in hand, and use (A.6) to solve for

k =
(

�
=� − 1 + �

)
y:

Use (A.4) to solve for

i =
[
�(− 1 + �)
=� − 1 + �

]
y;

use (A.3) to solve for

c =
{
1−

[
�(− 1 + �)
=� − 1 + �

]}
y;

and use (A.5) to solve for

h=
(
1− �
�

){
1−

[
�(− 1 + �)
=� − 1 + �

]}−1

:

Finally, substitute these results back into (A.1) to solve for y:

y = a1=(1−�)
(

�
=� − 1 + �

)�=(1−�) (1− �
�

){
1−

[
�(− 1 + �)
=� − 1 + �

]}−1

:

These equations show how the steady-state values y, c, i, h, k, and a depend on the
parameters �, �, �, , �, and A. By contrast, the parameters � and � have no impact
on the model’s steady state.
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A.3. The linearized system

Eqs. (A.1)–(A.6) can be log-linearized to describe the behavior of the stationary
variables as they 3uctuate about their steady-state values in response to shocks. Let
ŷ t = ln(yt=y) , ĉt = ln(ct=c), –̂t = ln(it=i), ĥt = ln(ht=h), k̂ t = ln(kt=k), and ât = ln(at=a).
Then Frst-order Taylor approximations to (A.1)–(A.6) yield

ŷ t = ât + �k̂t + (1− �)ĥt ; (A.7)

ât = �ât−1 + �t ; (A.8)

(=� − 1 + �)ŷ t = [(=� − 1 + �)− �(− 1 + �)]ĉt + �(− 1 + �)–̂t ; (A.9)

k̂t+1 = (1− �)k̂ t + (− 1 + �)–̂t ; (A.10)

ĉt + ĥt = ŷ t ; (A.11)

and

0 = (=�)ĉt − (=�)Et ĉt+1 + (=� + 1− �)Et ŷ t+1 − (=� + 1− �)k̂ t+1: (A.12)

Eqs. (A.7)–(A.12) show that the model’s dynamics depend on the model’s param-
eters �, �, , �, and �. By contrast, the parameters � and A have no impact on the
dynamics; they serve only to determine the steady state. And in this linearized system,
of course, the standard deviation parameter � determines the size of the technology
shocks, but has no eNect on the shapes of the impulse responses.
Eqs. (A.7)–(A.12) now form a system of linear stochastic diNerence equations. An

application of Blanchard and Kahn’s (1980) method yields a solution to this system—
and hence an approximate solution to the real business cycle model—that takes the
form of Eqs. (8) and (9) in the text.

Appendix B. Estimating the hybrid model

The hybrid model’s likelihood function has as its arguments the real business cycle
model’s eight structural parameters, �, �, �, , �, A, �, and �, the nine elements of
the matrix D governing the persistence of the residuals, and the six elements of the
covariance matrix V for the residuals. For any given set of values for these parameters,
the procedure for evaluating the likelihood function begins by transforming the data
series for output Yt , consumption Ct , and hours worked Ht using the deFnitions

ŷ t = ln(Yt)− t ln()− ln(y);

ĉt = ln(Ct)− t ln()− ln(c);

and

ĥt = ln(Ht)− ln(h)

for all t = 1; 2; : : : ; T , where T is the sample size. As noted in the text, these trans-
formations work to detrend the data for output and consumption in a manner that is
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consistent with the theoretical model: they assume that both variables grow at the com-
mon rate  in steady state. And as noted in Appendix A, the steady-state values y, c,
and h are themselves functions of the structural parameters �, �, �, , �, and A. Thus,
these data transformations imply that information on the average level and growth rate
of each variable helps identify the parameters �, �, �, , �, and A.
Once these transformations are made,

ft = [ŷ t ĉt ĥt]′

becomes a 3× 1 vector of observables. Meanwhile, the 5× 1 vector

xt = [s′t u
′
t ]
′

keeps track of the hybrid model’s unobserved state variables: the capital stock k̂ t and
technology shock ât from the real business cycle model in st and the VAR residuals in
ut . Now the empirical model consisting of (8), (10), and (11) can be rewritten more
compactly as

xt = Fxt−1 + vt (B.1)

and

ft =Gxt (B.2)

for all t = 1; 2; : : : ; T , where

F=

[
A 02×3

03×2 D

]
;

G = [C I3×3];

and 0 and I denote zero and identity matrices with dimensions indicated by their
subscripts. The serially uncorrelated innovation vector, constructed as

vt = [B′�t ^′t]′

where �t is the innovation to the real business cycle model’s technology shock and ^t
contains the innovations to the VAR residuals, is normally distributed with mean zero
and covariance matrix

Evtv′t =Q=

[
�BB′ 02×3

03×2 V

]
:

Conveniently, (B.1) and (B.2) take the form of a state-space econometric model,
allowing the procedure for evaluating the likelihood function to continue using the
Kalman Fltering algorithms outlined, for example, by Hamilton (1994, Chapter 13).
Let

x̂t = E(xt |ft−1; ft−2; : : : ; f1)

denote the best estimate of the unobservable state vector xt for period t based on past
observations of ft , and let

.t = E(xt − x̂t)(xt − x̂t)′
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denote the associated forecast error covariance matrix. Similarly, let

f̂ t = E(ft |ft−1; ft−2; : : : ; f1)

denote the best forecast of ft based on past observations.
The Kalman Flter takes the observations of ft for t=1; 2; : : : ; T as inputs, and works

recursively to construct an implied series of forecast errors

wt = ft − f̂ t = ft −Gx̂t
using the formulas

x̂t+1 = Fx̂t + Ktwt ;

Kt = F.tG′(G.tG′)−1;

and

.t+1 =Q+ F.tF′ − F.tG′(G.tG′)−1G.tF′

for all t=1; 2; : : : ; T , together with the initial conditions x̂1 and .1, derived from (B.1)
and (B.2) as

x̂1 = Ex1 = 05×1

and

vec(.1) = vec(Ex1x′1) = (I25×25 − F⊗ F)−1vec(Q):

Since, by construction, the forecast error wt is serially uncorrelated and normally
distributed for all t = 1; 2; : : : ; T with mean zero and covariance matrix

Ewtw′
t =G.tG′;

the hybrid model’s log-likelihood function can at last be calculated as

ln L=−3T
2

ln(2))− 1
2

T∑
t=1

ln |G.tG′| − 1
2

T∑
t=1

w′
t(G.tG′)−1wt :

The matrices A, B, and C from (8) and (9), the approximate solution to the real
business cycle model, enter into these Kalman Fltering calculations. Since, as noted
in the text and Appendix A, the elements of these matrices depend on the struc-
tural parameters �, �, , �, and �, the dynamics in the data for output, consumption,
and hours worked, together with the theoretical restrictions imposed by the real busi-
ness cycle model, help identify �, �, , �, and �. The matrices D and V, describing
the persistence and volatility of the VAR residuals, and the parameter �, describing
the volatility of the real business cycle model’s technology shock, also enter into the
Kalman Fltering calculations. Hence, the dynamics in the data also help identify the
elements of D and V and the parameter �.
Of course, once the hybrid model’s likelihood function can be evaluated for any

given set of parameter values, a numerical search algorithm can be employed to Fnd
the parameter values that maximize the likelihood function; these parameter values cor-
respond to the maximum likelihood estimates reported in the text. In implementing this
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maximum likelihood estimation procedure, additional constraints are imposed in various
ways. For the real business cycle model’s structural parameters, the numerical search
algorithm is allowed to select values for the transformed parameters �̃, �̃, ̃, Ã, and
�̃ that lie anywhere between positive and negative inFnity; the original parameters are
then calculated as �= |�̃|, �= �̃ 2=(1+ �̃ 2), =1+ |̃|, A= |Ã|, and �= |�̃| to insure that
each satisFes the theoretical restrictions listed in Section 2. The parameter �, governing
the persistence of the real business cycle model’s technology shock, and eigenvalues
of the matrix D, governing the persistence of the VAR residuals, are constrained to be
less than one in modulus by subtracting a very large number from the log likelihood
function whenever one of these constraints is violated. Finally, the covariance matrix
V for the VAR residuals is constrained to be positive deFnite following the sugges-
tion given by Hamilton (1994, p. 147), by calculating the Cholesky decomposition
V = ṼṼ

′
, where Ṽ is lower triangular, and allowing the numerical search algorithm

to select values for the 6 non-zero elements of Ṽ that lie anywhere between positive
and negative inFnity; regardless, the implied matrix V turns out to be symmetric and
positive deFnite.
The Kalman Fltering equations listed above can also be extended, using the cal-

culations displayed by Hamilton (1994, pp. 394–397), to construct estimates of the
innovations �t to technology and ^t to the VAR residuals based on the entire sample
of data. These smoothed estimates are used above, in the text, to conFrm that �t and
^t come close to being uncorrelated, consistent with the hybrid’s model’s assumptions.
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