Starting Dynare (version 6-unstable-2023-12-05-1855-3df48562).
Calling Dynare with arguments: none
Starting preprocessing of the model file ...
Found 7 equation(s).
Evaluating expressions...
Computing static model derivatives (order 1).
Normalizing the static model...
Finding the optimal block decomposition of the static model...
3 block(s) found:
3 recursive block(s) and 0 simultaneous block(s).
the largest simultaneous block has 0 equation(s)
and 0 feedback variable(s).
Computing dynamic model derivatives (order 2).
Normalizing the dynamic model...
Finding the optimal block decomposition of the dynamic model...
1 block(s) found:
1 recursive block(s) and 0 simultaneous block(s).
the largest simultaneous block has 0 equation(s)
and 0 feedback variable(s).
Preprocessing completed.
Preprocessing time: 0h00m00s.
Initial value of the log posterior (or likelihood): -67.9157
Gradient norm 8.1324
Minimum Hessian eigenvalue 1.5455
Maximum Hessian eigenvalue 1.5455
Iteration 1
Predicted improvement: 21.396624673
lambda = 1; f = 90.6882638
lambda = 0.33333; f = 69.5134213
lambda = 0.11111; f = 67.9246347
lambda = 0.037037; f = 66.3624854
lambda = 0.071599; f = 64.8670745
lambda = 0.13841; f = 67.9724805
lambda = 0.0932; f = 67.9156718
lambda = 0.073512; f = 64.7774855
lambda = 0.084761; f = 64.2191653
lambda = 0.09773; f = 67.9162603
lambda = 0.089728; f = 63.9486853
lambda = 0.094447; f = 67.9157204
lambda = 0.091587; f = 63.8422353
lambda = 0.093293; f = 67.9156724
lambda = 0.092265; f = 63.8025495
Norm of dx 5.2621
Predicted improvement: 33.068030274
lambda = 1; f = 133.9786588
lambda = 0.33333; f = 75.2397785
lambda = 0.11111; f = 68.7240649
lambda = 0.037037; f = 68.0037063
lambda = 0.012346; f = 67.9248696
lambda = 0.0041152; f = 67.9165110
lambda = 0.0013717; f = 67.9157160
lambda = 0.00045725; f = 63.7607262
lambda = 0.00088394; f = 67.9156789
lambda = 0.0005952; f = 67.9156717
lambda = 0.00046946; f = 63.7596012
lambda = 0.0005413; f = 63.7529780
lambda = 0.00062413; f = 67.9156719
lambda = 0.00057302; f = 67.9156716
lambda = 0.00054439; f = 63.7526927
lambda = 0.00056139; f = 67.9156716
lambda = 0.00055113; f = 63.7520707
lambda = 0.00055726; f = 67.9156716
Norm of dx 8.1324
Predicted improvement: 1.644528203
lambda = 1; f = 67.9996134
lambda = 0.33333; f = 67.9249969
lambda = 0.11111; f = 67.9167072
lambda = 0.037037; f = 67.9157865
lambda = 0.012346; f = 67.9156843
lambda = 0.0041152; f = 67.9156730
lambda = 0.0013717; f = 67.9156718
lambda = 0.00045725; f = 67.9156716
lambda = 0.00015242; f = 67.9156716
lambda = 5.0805e-05; f = 67.9156716
lambda = 1.6935e-05; f = 63.7520150
lambda = 3.2739e-05; f = 63.7519630
lambda = 6.329e-05; f = 67.9156716
lambda = 4.2616e-05; f = 67.9156716
lambda = 3.3613e-05; f = 63.7519601
lambda = 3.8757e-05; f = 63.7519432
lambda = 4.4687e-05; f = 67.9156716
lambda = 4.1028e-05; f = 63.7519358
lambda = 4.3186e-05; f = 67.9156716
lambda = 4.1878e-05; f = 67.9156716
lambda = 4.1112e-05; f = 63.7519355
lambda = 4.157e-05; f = 67.9156716
Norm of dx 0.28974
Done for param alphaa = 0.9900
Sequence of univariate steps!!
Actual dxnorm 0.49
FVAL 63.7519
Improvement 4.1637
Ftol 1e-05
Htol 1e-05
Elapsed time for iteration 0.13884 s.
Iteration 2
Predicted improvement: 8.124342272
lambda = 1; f = 65.8006071
lambda = 0.33333; f = 63.9795656
lambda = 0.11111; f = 63.7772277
lambda = 0.037037; f = 63.7547457
lambda = 0.012346; f = 63.7522477
lambda = 0.0041152; f = 63.7519702
lambda = 0.0013717; f = 63.7519393
lambda = 0.00045725; f = 63.7519359
lambda = 0.00015242; f = 63.7519355
lambda = 5.0805e-05; f = 63.7519355
lambda = 1.6935e-05; f = 63.7519355
lambda = 5.645e-06; f = 63.7519355
lambda = 1.8817e-06; f = 63.7519355
lambda = 6.2723e-07; f = 63.7519355
lambda = 2.0908e-07; f = 63.7519355
lambda = 6.9692e-08; f = 63.7519355
lambda = 2.3231e-08; f = 63.7519351
lambda = 4.4909e-08; f = 63.7519355
lambda = 3.0239e-08; f = 63.7519350
lambda = 3.8338e-08; f = 63.7519355
lambda = 3.325e-08; f = 63.7519349
lambda = 3.6215e-08; f = 63.7519355
lambda = 3.4406e-08; f = 63.7519349
lambda = 3.548e-08; f = 63.7519349
lambda = 3.6589e-08; f = 63.7519355
lambda = 3.592e-08; f = 63.7519355
lambda = 3.5524e-08; f = 63.7519349
Norm of dx 1.4313
Sequence of univariate steps!!
Try diagonal Hessian
Predicted improvement: 8.124342272
lambda = 1; f = 65.8006072
lambda = 0.33333; f = 63.9795657
lambda = 0.11111; f = 63.7772277
lambda = 0.037037; f = 63.7547457
lambda = 0.012346; f = 63.7522477
lambda = 0.0041152; f = 63.7519702
lambda = 0.0013717; f = 63.7519393
lambda = 0.00045725; f = 63.7519359
lambda = 0.00015242; f = 63.7519355
lambda = 5.0805e-05; f = 63.7519355
lambda = 1.6935e-05; f = 63.7519355
lambda = 5.645e-06; f = 63.7519355
lambda = 1.8817e-06; f = 63.7519355
lambda = 6.2723e-07; f = 63.7519355
lambda = 2.0908e-07; f = 63.7519355
lambda = 6.9692e-08; f = 63.7519355
lambda = 2.3231e-08; f = 63.7519355
lambda = 7.7435e-09; f = 63.7519355
lambda = 2.5812e-09; f = 63.7519355
lambda =
-6.2723e-07
lambda = -6.2723e-07; f = 63.7519451
lambda = -2.0908e-07; f = 63.7519383
lambda = -6.9692e-08; f = 63.7519360
lambda = -2.3231e-08; f = 63.7519353
lambda = -7.7435e-09; f = 63.7519350
lambda = -2.5812e-09; f = 63.7519349
Norm of dx 1.4313
Try gradient direction
Predicted improvement: 0.006443681
lambda = 1; f = 63.7519368
lambda = 0.33333; f = 63.7519356
lambda = 0.11111; f = 63.7519355
lambda = 0.037037; f = 63.7519355
lambda = 0.012346; f = 63.7519355
lambda = 0.0041152; f = 63.7519355
lambda = 0.0013717; f = 63.7519355
lambda = 0.00045725; f = 63.7519355
lambda = 0.00015242; f = 63.7519355
lambda = 5.0805e-05; f = 63.7519355
lambda = 1.6935e-05; f = 63.7519355
lambda = 5.645e-06; f = 63.7519355
lambda = 1.8817e-06; f = 63.7519355
lambda = 6.2723e-07; f = 63.7519355
lambda = 2.0908e-07; f = 63.7519355
lambda = 6.9692e-08; f = 63.7519349
lambda = 1.3473e-07; f = 63.7519355
lambda = 9.0717e-08; f = 63.7519349
lambda = 1.1501e-07; f = 63.7519355
lambda = 9.975e-08; f = 63.7519349
lambda = 1.0865e-07; f = 63.7519355
lambda = 1.0322e-07; f = 63.7519355
lambda = 1.0009e-07; f = 63.7519349
lambda = 1.0196e-07; f = 63.7519355
lambda = 1.0083e-07; f = 63.7519355
Norm of dx 0.0011352
No further improvement is possible!
Actual dxnorm 5.096e-08
FVAL 63.7519
Improvement 5.7851e-07
Ftol 1e-05
Htol 1e-05
Gradient norm 11.3523
Minimum Hessian eigenvalue 7.9313
Maximum Hessian eigenvalue 7.9313
Estimation successful.
Final value of minus the log posterior (or likelihood):63.751935
[Warning: Matrix is singular, close to singular or badly scaled. Results may be inaccurate. RCOND = NaN.]
[> In dynare_estimation_1 (line 320)
In dynare_estimation (line 105)
In Model1.driver (line 289)
In dynare (line 310)
]
RESULTS FROM POSTERIOR ESTIMATION
parameters
prior mean mode s.d. prior pstdev
alphaa 0.5000 0.9900 NaN norm 0.5000
Log data density [Laplace approximation] is NaN.