Starting Dynare (version 6-unstable-2023-12-05-1855-3df48562). Calling Dynare with arguments: none Starting preprocessing of the model file ... Found 7 equation(s). Evaluating expressions... Computing static model derivatives (order 1). Normalizing the static model... Finding the optimal block decomposition of the static model... 3 block(s) found: 3 recursive block(s) and 0 simultaneous block(s). the largest simultaneous block has 0 equation(s) and 0 feedback variable(s). Computing dynamic model derivatives (order 2). Normalizing the dynamic model... Finding the optimal block decomposition of the dynamic model... 1 block(s) found: 1 recursive block(s) and 0 simultaneous block(s). the largest simultaneous block has 0 equation(s) and 0 feedback variable(s). Preprocessing completed. Preprocessing time: 0h00m00s. Initial value of the log posterior (or likelihood): -67.9157 Gradient norm 8.1324 Minimum Hessian eigenvalue 1.5455 Maximum Hessian eigenvalue 1.5455 Iteration 1 Predicted improvement: 21.396624673 lambda = 1; f = 90.6882638 lambda = 0.33333; f = 69.5134213 lambda = 0.11111; f = 67.9246347 lambda = 0.037037; f = 66.3624854 lambda = 0.071599; f = 64.8670745 lambda = 0.13841; f = 67.9724805 lambda = 0.0932; f = 67.9156718 lambda = 0.073512; f = 64.7774855 lambda = 0.084761; f = 64.2191653 lambda = 0.09773; f = 67.9162603 lambda = 0.089728; f = 63.9486853 lambda = 0.094447; f = 67.9157204 lambda = 0.091587; f = 63.8422353 lambda = 0.093293; f = 67.9156724 lambda = 0.092265; f = 63.8025495 Norm of dx 5.2621 Predicted improvement: 33.068030274 lambda = 1; f = 133.9786588 lambda = 0.33333; f = 75.2397785 lambda = 0.11111; f = 68.7240649 lambda = 0.037037; f = 68.0037063 lambda = 0.012346; f = 67.9248696 lambda = 0.0041152; f = 67.9165110 lambda = 0.0013717; f = 67.9157160 lambda = 0.00045725; f = 63.7607262 lambda = 0.00088394; f = 67.9156789 lambda = 0.0005952; f = 67.9156717 lambda = 0.00046946; f = 63.7596012 lambda = 0.0005413; f = 63.7529780 lambda = 0.00062413; f = 67.9156719 lambda = 0.00057302; f = 67.9156716 lambda = 0.00054439; f = 63.7526927 lambda = 0.00056139; f = 67.9156716 lambda = 0.00055113; f = 63.7520707 lambda = 0.00055726; f = 67.9156716 Norm of dx 8.1324 Predicted improvement: 1.644528203 lambda = 1; f = 67.9996134 lambda = 0.33333; f = 67.9249969 lambda = 0.11111; f = 67.9167072 lambda = 0.037037; f = 67.9157865 lambda = 0.012346; f = 67.9156843 lambda = 0.0041152; f = 67.9156730 lambda = 0.0013717; f = 67.9156718 lambda = 0.00045725; f = 67.9156716 lambda = 0.00015242; f = 67.9156716 lambda = 5.0805e-05; f = 67.9156716 lambda = 1.6935e-05; f = 63.7520150 lambda = 3.2739e-05; f = 63.7519630 lambda = 6.329e-05; f = 67.9156716 lambda = 4.2616e-05; f = 67.9156716 lambda = 3.3613e-05; f = 63.7519601 lambda = 3.8757e-05; f = 63.7519432 lambda = 4.4687e-05; f = 67.9156716 lambda = 4.1028e-05; f = 63.7519358 lambda = 4.3186e-05; f = 67.9156716 lambda = 4.1878e-05; f = 67.9156716 lambda = 4.1112e-05; f = 63.7519355 lambda = 4.157e-05; f = 67.9156716 Norm of dx 0.28974 Done for param alphaa = 0.9900 Sequence of univariate steps!! Actual dxnorm 0.49 FVAL 63.7519 Improvement 4.1637 Ftol 1e-05 Htol 1e-05 Elapsed time for iteration 0.13884 s. Iteration 2 Predicted improvement: 8.124342272 lambda = 1; f = 65.8006071 lambda = 0.33333; f = 63.9795656 lambda = 0.11111; f = 63.7772277 lambda = 0.037037; f = 63.7547457 lambda = 0.012346; f = 63.7522477 lambda = 0.0041152; f = 63.7519702 lambda = 0.0013717; f = 63.7519393 lambda = 0.00045725; f = 63.7519359 lambda = 0.00015242; f = 63.7519355 lambda = 5.0805e-05; f = 63.7519355 lambda = 1.6935e-05; f = 63.7519355 lambda = 5.645e-06; f = 63.7519355 lambda = 1.8817e-06; f = 63.7519355 lambda = 6.2723e-07; f = 63.7519355 lambda = 2.0908e-07; f = 63.7519355 lambda = 6.9692e-08; f = 63.7519355 lambda = 2.3231e-08; f = 63.7519351 lambda = 4.4909e-08; f = 63.7519355 lambda = 3.0239e-08; f = 63.7519350 lambda = 3.8338e-08; f = 63.7519355 lambda = 3.325e-08; f = 63.7519349 lambda = 3.6215e-08; f = 63.7519355 lambda = 3.4406e-08; f = 63.7519349 lambda = 3.548e-08; f = 63.7519349 lambda = 3.6589e-08; f = 63.7519355 lambda = 3.592e-08; f = 63.7519355 lambda = 3.5524e-08; f = 63.7519349 Norm of dx 1.4313 Sequence of univariate steps!! Try diagonal Hessian Predicted improvement: 8.124342272 lambda = 1; f = 65.8006072 lambda = 0.33333; f = 63.9795657 lambda = 0.11111; f = 63.7772277 lambda = 0.037037; f = 63.7547457 lambda = 0.012346; f = 63.7522477 lambda = 0.0041152; f = 63.7519702 lambda = 0.0013717; f = 63.7519393 lambda = 0.00045725; f = 63.7519359 lambda = 0.00015242; f = 63.7519355 lambda = 5.0805e-05; f = 63.7519355 lambda = 1.6935e-05; f = 63.7519355 lambda = 5.645e-06; f = 63.7519355 lambda = 1.8817e-06; f = 63.7519355 lambda = 6.2723e-07; f = 63.7519355 lambda = 2.0908e-07; f = 63.7519355 lambda = 6.9692e-08; f = 63.7519355 lambda = 2.3231e-08; f = 63.7519355 lambda = 7.7435e-09; f = 63.7519355 lambda = 2.5812e-09; f = 63.7519355 lambda = -6.2723e-07 lambda = -6.2723e-07; f = 63.7519451 lambda = -2.0908e-07; f = 63.7519383 lambda = -6.9692e-08; f = 63.7519360 lambda = -2.3231e-08; f = 63.7519353 lambda = -7.7435e-09; f = 63.7519350 lambda = -2.5812e-09; f = 63.7519349 Norm of dx 1.4313 Try gradient direction Predicted improvement: 0.006443681 lambda = 1; f = 63.7519368 lambda = 0.33333; f = 63.7519356 lambda = 0.11111; f = 63.7519355 lambda = 0.037037; f = 63.7519355 lambda = 0.012346; f = 63.7519355 lambda = 0.0041152; f = 63.7519355 lambda = 0.0013717; f = 63.7519355 lambda = 0.00045725; f = 63.7519355 lambda = 0.00015242; f = 63.7519355 lambda = 5.0805e-05; f = 63.7519355 lambda = 1.6935e-05; f = 63.7519355 lambda = 5.645e-06; f = 63.7519355 lambda = 1.8817e-06; f = 63.7519355 lambda = 6.2723e-07; f = 63.7519355 lambda = 2.0908e-07; f = 63.7519355 lambda = 6.9692e-08; f = 63.7519349 lambda = 1.3473e-07; f = 63.7519355 lambda = 9.0717e-08; f = 63.7519349 lambda = 1.1501e-07; f = 63.7519355 lambda = 9.975e-08; f = 63.7519349 lambda = 1.0865e-07; f = 63.7519355 lambda = 1.0322e-07; f = 63.7519355 lambda = 1.0009e-07; f = 63.7519349 lambda = 1.0196e-07; f = 63.7519355 lambda = 1.0083e-07; f = 63.7519355 Norm of dx 0.0011352 No further improvement is possible! Actual dxnorm 5.096e-08 FVAL 63.7519 Improvement 5.7851e-07 Ftol 1e-05 Htol 1e-05 Gradient norm 11.3523 Minimum Hessian eigenvalue 7.9313 Maximum Hessian eigenvalue 7.9313 Estimation successful. Final value of minus the log posterior (or likelihood):63.751935 [Warning: Matrix is singular, close to singular or badly scaled. Results may be inaccurate. RCOND = NaN.] [> In dynare_estimation_1 (line 320) In dynare_estimation (line 105) In Model1.driver (line 289) In dynare (line 310) ] RESULTS FROM POSTERIOR ESTIMATION parameters prior mean mode s.d. prior pstdev alphaa 0.5000 0.9900 NaN norm 0.5000 Log data density [Laplace approximation] is NaN.