4 Steady state:

We start of with few standard values of the variables as follows:

$$
\begin{gathered}
\Pi^{P}=1 \\
L^{p}=\frac{1}{3} \\
L^{i}=\frac{1}{3} \\
L=\frac{1}{3} \\
R^{d}=\frac{1}{\beta^{p}} \\
R^{b}=R \\
R^{b H}=\left(\frac{\epsilon^{b H}}{\epsilon^{b H}-1}\right)\left(R^{b}-1\right)+1 \\
R^{b E}=\left(\frac{\epsilon^{b E}}{\epsilon^{b E}-1}\right)\left(R^{b}-1\right)+1 \\
R^{d}=\left(\frac{\epsilon^{d}}{\epsilon^{d}-1}\right)(R-1)+1 \quad \text { Define } R \text { using this equation } \\
Q^{k}=1 \\
\frac{I}{K}=\delta
\end{gathered}
$$

Now lets derive the R^{k}. we start combining FOC for capital and firm loan for entrepreneurs i.e.

$$
\begin{aligned}
& (1-\delta) s^{e} m^{e}+\beta^{e} \lambda^{e}\left[(1-\delta)+R^{k}\right]=\lambda^{e} \\
& \lambda^{e}=\beta^{e} \lambda^{e} R^{b E}+s^{e} R^{b E}
\end{aligned}
$$

dividing both the equations by λ^{e}, we get,

$$
\begin{aligned}
& (1-\delta) \frac{s^{e}}{\lambda^{e}} m^{e}+\beta^{e}\left[(1-\delta)+R^{k}\right]=1 \\
& 1=\beta^{e} R^{b E}+\frac{s^{e}}{\lambda^{e}} R^{b E}
\end{aligned}
$$

Therefore we have

$$
\frac{s^{e}}{\lambda^{e}}=\frac{1-\beta^{e} R^{b E}}{R^{b E}}
$$

using this in the first equation, we get,

$$
\begin{aligned}
& (1-\delta) \frac{1-\beta^{e} R^{b E}}{R^{b E}} m^{e}+\beta^{e}\left[(1-\delta)+R^{k}\right]=1 \\
& \beta^{e}\left[(1-\delta)+R^{k}\right]=1-(1-\delta) \frac{1-\beta^{e} R^{b E}}{R^{b E}} m^{e} \\
& (1-\delta)+R^{k}=\frac{1}{\beta^{e}}-(1-\delta) \frac{m^{e}}{\beta^{e}} \frac{1-\beta^{e} R^{b E}}{R^{b E}}
\end{aligned}
$$

Finally, we have

$$
\begin{gathered}
R^{k}=\frac{1}{\beta^{e}}-(1-\delta) \frac{m^{e}}{\beta^{e}} \frac{1-\beta^{e} R^{b E}}{R^{b E}}-(1-\delta) \\
M C=\frac{\epsilon^{P}}{\epsilon^{P}-1} \\
\frac{Y}{K}=\frac{R^{k}}{\alpha} \frac{1}{M C} \\
\frac{I}{Y}=\frac{I / K}{Y / K} \\
\frac{C}{Y}=1-I / Y \\
w=\mu(1-\alpha)\left(\frac{\mu}{1-\mu}\right)^{-(1-\mu)}\left[M C\left(\frac{R^{k}}{\alpha}\right)^{-\alpha}\right]^{\frac{1}{(1-\alpha)}}
\end{gathered}
$$

where $w=\left(w^{p}\right)^{\mu}\left(w^{i}\right)^{1-\mu}$. Given the calibration for respective labors, we have

$$
\frac{w^{p}}{w^{i}}=\frac{\mu}{1-\mu}
$$

We also have

$$
w=\left(\frac{w^{p}}{w^{i}}\right)^{\mu} w^{i}
$$

Therefore the impatient labor's wage in ss

$$
\begin{gathered}
w^{i}=w\left(\frac{w^{p}}{w^{i}}\right)^{-\mu}=w\left(\frac{\mu}{1-\mu}\right)^{-\mu} \\
w^{p}=w\left(\frac{\mu}{1-\mu}\right)^{1-\mu}
\end{gathered}
$$

Therefore the marginal rate of substitution becomes

$$
M R S^{p}=w^{p}\left(\frac{\epsilon^{w}-1}{\epsilon^{w}}\right) \quad M R S^{i}=w^{i}\left(\frac{\epsilon^{w}-1}{\epsilon^{w}}\right)
$$

Notice that,

$$
\begin{aligned}
& w L=\left(w^{p}\right)^{\mu}\left(w^{i}\right)^{1-\mu}\left(L^{p}\right)^{\mu}\left(L^{i}\right)^{1-\mu} \\
& =\left(w^{p} L^{p}\right)^{\mu}\left(w^{i} L^{i}\right)^{1-\mu} \\
& =\left(w^{p} L^{p}\right)^{\mu}\left(w^{i} L^{i}\right)^{1-\mu} \\
& =\left(\mu(1-\alpha) \frac{R^{k}}{\alpha} K\right)^{\mu}\left((1-\mu)(1-\alpha) \frac{R^{k}}{\alpha} K\right)^{1-\mu} \\
& =\mu^{\mu}(1-\mu)^{1-\mu}(1-\alpha) \frac{R^{k}}{\alpha} K
\end{aligned}
$$

Therefore,

$$
\frac{K}{L}=\frac{w}{\left[\mu^{\mu}(1-\mu)^{1-\mu}(1-\alpha) \frac{R^{k}}{\alpha}\right]}
$$

Now lets get the consumptions,

$$
C^{p}=\frac{M R S^{p}}{\left(L^{p}\right)^{\varphi}} \quad C^{i}=\frac{M R S^{i}}{\left(L^{i}\right)^{\varphi}}
$$

To obtain the total consumption, we use the resource constrain in ss,

$$
\begin{gathered}
\frac{C}{L}=(Y / K)(K / L)-\delta(K / L) \\
C=(C / L) L \\
C^{e}=C-C^{p}-C^{i}
\end{gathered}
$$

Given the consumptions, we can find the respective lagrange multipliers as,

$$
\lambda^{P}=1 / C^{p} \quad \lambda^{i}=1 / C^{i} \quad \lambda^{e}=1 / C^{e}
$$

From the FOC of the housing of patient hhs,

$$
H^{p}=\frac{J}{\left(1-\beta^{p}\right) \lambda^{p} Q^{h}}
$$

From the FOC of mortgage loan we get,

$$
s^{i}=\lambda^{i} \frac{\left(1-\beta^{i} R^{b H}\right)}{R^{b H}}
$$

From the FOC of housing for impatient hhs we get,

$$
H^{i}=\frac{J}{\left(1-\beta^{i}\right) \lambda^{i} Q^{h}-s^{i} m^{i} Q^{h}}
$$

Given relation $\bar{H}=H^{p}+H^{i}$, we can get Q^{h} as following,

$$
Q^{h}=\frac{J}{\bar{H}}\left[\frac{1}{\left(1-\beta^{p}\right) \lambda^{p}}+\frac{1}{\left\{\left(1-\beta^{i}\right)-m^{i}\left(\frac{1}{R^{b H}}-\beta^{i}\right)\right\} \lambda^{i}}\right]
$$

Remember to define Q^{h} in the dynare code before H^{p}, H^{i}.

The steady state demand for mortgage loan can be calculated from the constraint as,

$$
B^{i}=\frac{H^{i} m^{i} Q^{h}}{R^{b H}}
$$

From the FOC of firm loan,

$$
s^{e}=\lambda^{e} \frac{\left(1-\beta^{e} R^{b E}\right)}{R^{b E}}
$$

The steady state demand for firm loan can be calculated from the constraint as,

$$
B^{e}=(1-\delta)(K / L) L \frac{m^{e}}{R^{b E}}
$$

Since $B=B^{e}+B^{i}$ and $\frac{K^{b}}{B}=v_{i}$, we have

$$
K^{b}=v_{i} B
$$

Notice that this steady state is calculated for $\delta^{k B}=0$. Hence $J^{b}=0^{2}$. We can find out the steady state demand for deposit as,

$$
D=\frac{1}{R^{d}-1}\left(\left\{R^{b H}-1\right\} B^{i}+\left\{R^{b E}-1\right\} B^{e}\right)
$$

[^0]
[^0]:

