
In the benchmark model, I consider only a single, composite consumption good. Unlike the social
planner’s problem, the representative household does not take into account their externality, leading to a
suboptimal decentralized solution since environmental quality is too low (i.e. air pollution is too high).

Definition 1. For a given series of taxes τ t, production shocks zt, and an initial condition K0, the compet-
itive equilibrium is a sequence of prices ({r∗t }, {w∗t }, and {f∗t }) and quantities ({K∗t }, {X∗t }, {H∗t }, {E∗t },
{C∗t }, {Y ∗t }, {ψ∗t }, {T ∗t }) such that

1. (Households): taking prices, taxes, environmental quality and transfers as given, {c∗t }, {h∗t }, and {k∗t+1}
are the solutions to

max
ct,ht,kt+1

∞∑
t=0

βt

[
ιc
σc−1
σc

t + (1− ι)
(

(χs)S
σs−1
σs

t + (1− χs)(1− ht)
σs−1
σs

) σs
σs−1

σc−1
σc

] σc
σc−1

subject to

ct(1 + τct) + xt(1 + τxt) = wtht(1− τht)(1 + Tt) + (1− τkt)(rt − δ)kt + δkt + ψt

Ht + Lt = 1; Kt, Ct, Ht ≥ 0

2. (Firms): taking prices as given, {Y ∗t }, {H∗t }, {E∗t }, and {K∗t } are the solution to
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where St = 1/(ξEt).

3. (Government): the government budget constraint is balanced each period

ψt + Tt = τhtwtHt + τdtξEt + τctCt + τxtXt + rtτktKt

4. Markets clear

Y ∗t = c∗t + x∗t

K∗t = k∗t ; H∗t = h∗t

Because there are three unknowns, three equilibrium conditions are needed. First, the intertemporal
Euler condition
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and Ψt =
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Second, the intratemporal Euler condition between labor and consumption
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Third, Hotelling’s rule equates the marginal net product of energy with the rental rate of return
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Fourth, the aggregate resource constraint
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Linearizing
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