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Abstract: This document provides a derivation of Ramsey optimal policy from
timeless perspective and describes its implementation in Dynare++.

1 Derivation of the First Order Conditions
Let us start with an economy populated by agents who take a number of variables
exogenously, or given. These may include taxes or interest rates for example. These
variables can be understood as decision (or control) variables of the timeless Ramsey
policy (or social planner). The agent’s information set at time t includes mass-point
distributions of these variables for all times after t. If it denotes an interest rate for
example, then the information set It includes it|t, it+1|t, . . . , it+k|t, . . . as numbers. In
addition the information set includes all realizations of past exogenous innovations uτ
for τ = t, t−1, . . . and distibutions uτ ∼ N(0,Σ) for τ = t+1, . . .. These information
sets will be denoted It.

An information set including only the information on past realizations of uτ and
future distributions of uτ ∼ N(0σ) will be denoted Jt. We will use the following
notation for expectations through these sets:

EIt [X] = E(X|It)
EJt [X] = E(X|Jt)

The agents optimize taking the decision variables of the social planner at t and
future as given. This means that all expectations they form are conditioned on the set
It. Let yt denote a vector of all endogenous variables including the planer’s decision
variables. Let the number of endogenous variables be n. The economy can be described
by m equations including the first order conditions and transition equations:

EIt [f(yt−1, yt, yt+1, ut)] = 0. (1)

This lefts n − m the planner’s control variables. The solution of this problem is a
decision rule of the form:

yt = g(yt−1, ut, ct|t, ct+1|t, . . . , ct+k|t, . . .), (2)
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where c is a vector of planner’s control variables.
Each period the social planner chooses the vector ct to maximize his objective such

that (2) holds for all times following t. This would lead to n−m first order conditions
with respect to ct. These first order conditions would contain unknown derivatives of
endogenous variables with respect to c, which would have to be retrieved from the
implicit constraints (1) since the explicit form (2) is not known.

The other way to proceed is to assume that the planner is so dumb that he is not
sure what are his control variables. So he optimizes with respect to all yt given the
constraints (1). If the planner’s objective is b(yt−1, yt, yt+1, ut) with a discount rate β,
then the optimization problem looks as follows:

max
{yτ}∞t

EJt

[ ∞∑
τ=t

βτ−tb(yτ−1, yτ , yτ+1, uτ )

]
s.t. (3)

EIτ [f(yτ−1, yτ , yτ+1, uτ )] = 0 for τ = . . . , t− 1, t, t + 1, . . .

Note two things: First, each constraint (1) in (3) is conditioned on Iτ not It. This is
very important, since the behaviour of agents at period τ = t + k is governed by the
constraint using expectations conditioned on t+k, not t. The social planner knows that
at t + k the agents will use all information available at t + k. Second, the constraints
for the planner’s decision made at t include also constraints for agent’s behaviour prior
to t. This is because the agent’s decision rules are given in the implicit form (1) and
not in the explicit form (2).

Using Lagrange multipliers, this can be rewritten as

max
yt

EJt

[ ∞∑
τ=t

βτ−tb(yτ−1, yτ , yτ+1, uτ )

+

∞∑
τ=−∞

βτ−tλTτ E
I
τ [f(yτ−1, yτ , yτ+1, uτ )]

]
, (4)

where λt is a vector of Lagrange multipliers corresponding to constraints (1). Note that
the multipliers are multiplied by powers of β in order to make them stationary. Taking
a derivative wrt yt and putting it to zero yields the first order conditions of the planner’s
problem:

EJt

 ∂

∂yt
b(yt−1, yt, yt+1, ut) + βL+1 ∂

∂yt−1
b(yt−1, yt, yt+1, ut)

+ β−1λTt−1E
I
t−1

[
L−1

∂

∂yt+1
f(yt−1, yt, yt+1, ut)

]
+ λTt E

I
t

[
∂

∂yt
f(yt−1, yt, yt+1, ut)

]

+ βλTt+1E
I
t+1

[
L+1 ∂

∂yt−1
f(yt−1, yt, yt+1, ut)

]  = 0, (5)
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where L+1 and L−1 are one period lead and lag operators respectively.
Now we have to make a few assertions concerning expectations conditioned on the

different information sets to simplify (5). Recall the formula for integration through
information on which another expectation is conditioned, this is:

E [E [u|v]] = E[u],

where the outer expectation integrates through v. Since Jt ⊂ It, by easy application of
the above formula we obtain

EJt
[
EIt [X]

]
= EJt [X] and

EJt
[
EIt−1 [X]

]
= EJt [X] (6)

EJt
[
EIt+1 [X]

]
= EJt+1 [X]

Now, the last term of (5) needs a special attention. It is equal to EJt
[
βλTt+1E

I
t+1[X]

]
.

If we assume that the problem (3) has a solution, then there is a deterministic func-
tion from Jt+1 to λt+1 and so λt+1 ∈ Jt+1 ⊂ It+1. And the last term is equal to
EJt
[
EIt+1[βλTt+1X]

]
, which is EJt+1

[
βλTt+1X

]
. This term can be equivalently written

as EJt
[
βλTt+1E

J
t+1[X]

]
. The reason why we write the term in this way will be clear

later. All in all, we have

EJt

 ∂

∂yt
b(yt−1, yt, yt+1, ut) + βL+1 ∂

∂yt−1
b(yt−1, yt, yt+1, ut)

+ β−1λTt−1L
−1 ∂

∂yt+1
f(yt−1, yt, yt+1, ut)

+ λTt
∂

∂yt
f(yt−1, yt, yt+1, ut)

+ βλTt+1E
J
t+1

[
L+1 ∂

∂yt−1
f(yt−1, yt, yt+1, ut)

]  = 0. (7)

Note that we have not proved that (5) and (7) are equivalent. We proved only that if (5)
has a solution, then (7) is equivalent (and has the same solution).

2 Implementation
The user inputs b(yt−1, yt, yt+1, ut), β, and agent’s first order conditions (1). The
algorithm has to produce (7).
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