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Abstract

This paper shows how models with heterogeneous agents and aggregate un-
certainty can be solved using Dynare or Dynare++ software that implements
a perturbation approach. Using the explicit aggregation algorithm (XPA) to
obtain aggregate laws of motion is possible by combining a Dynare program
with a very simple Matlab program. We calculate and compare 1st and 2nd-
order numerical solutions using both algorithms. These numerical procedures
are also compared with the algorithm that solves the individual policy rules
with a projection instead of a perturbation procedure. Finally, we discuss a
procedure that efficiently chooses which cross-sectional moments to include as
aggregate state variables when nonlinearities are important and the mean is
not a sufficient statistic.
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1 Introduction

The most popular model in macroeconomics is the New Keynesian model. There

are many quite sophisticated versions of this model, but most of them are based on

the representative agent paradigm. If there are heterogeneous agents in the model,

the degree of heterogeneity is limited, for example, to just having two representative

agents, such as a patient and an impatient agent. The assumptions made to justify

a representative agent framework, like perfect insurance of idiosyncratic risk, are

believed to be unrealistic. Even if there are representative agent models that can

describe the aggregate economy well, they obviously cannot explain any distribu-

tional aspects, although these are of interest to many economists. Fortunately, there

are now numerous papers in which heterogeneity and idiosyncratic risk play a key

role. There are even quite a few papers depicting both heterogeneity and aggregate

risk, a combination that makes it more cumbersome to obtain a numerical solu-

tion. Nevertheless, the overwhelming majority of papers still rely on models with a

representative agent.

One important reason for the ongoing dominance of models with a representative

agent is without doubt the availability of user-friendly software, like Dynare, to

solve and estimate these types of models. In principle, Dynare can handle many

state variables and, thus, should be able to solve models with multiple agents. The

problem is that in macroeconomic models we would like to have millions of agents

and such a large number of agents is problematic, even for Dynare.1 The standard

approach is to approximate these millions of agents as a continuum, but Dynare

1An interesting question is whether using a relatively small number, say 100, is enough to
approximate a macroeconomy with millions of agents. It would be cumbersome to use Dynare
to solve models with 100 agents, but this is likely to be feasible at least for some models and for
lower-order perturbation solutions.
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requires a finite number of agents.

In this paper, we show how to use Dynare to solve models with (i) a continuum

of heterogeneous agents and (ii) aggregate risk. To do this, two things are needed.

First, a mother program is needed to solve for the laws of motion that describe

the aggregate variables taking the solution of the individual policy rules as given.

Second, a Dynare program is needed to solve for the individual policy rules taking

the aggregate law of motion as given. This Dynare program, the *.mod file, needs

to be able to read the coefficients of the aggregate law of motion. We show that

this can be accomplished with an easy procedure for a Dynare program and with a

somewhat more cumbersome procedure for a Dynare++ program.

Preston and Roca [16] were the first to suggest that one can use perturbation

techniques to solve models with a continuum of heterogeneous agents and aggregate

risk. den Haan and Rendahl [7] developed the XPA algorithm with which aggregate

laws of motion are obtained by explicitly aggregating the individual policy rules,

even when the individual policy rules are not linear. In the algorithm of den Haan

and Rendahl [7], the individual policy rules can be obtained with any algorithm. In

this paper, we show that if the individual policy rules are obtained with perturbation

techniques, the XPA solution is identical to the one obtained by the algorithm of

Preston and Roca [16]. The advantage of the XPA algorithm is the simplicity and

transparency and this approach is used here to write the programs.

What, then, is required to be able to implement XPA with Dynare? The Dynare

program itself that solves for the individual laws of motion would be almost a stan-

dard Dynare program. However, it differs from a standard Dynare program in two

aspects. As explained above, the program needs to be able to incorporate the values

of the coefficients of the aggregate laws of motion. The second modification related
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to XPA is that auxiliary policy rules are needed in order to explicitly aggregate

higher-order individual policy functions. For example, if the model has a policy rule

for the capital choice, k, then one needs an auxiliary policy rule for k2 is needed

if a second-order perturbation solution is used. This would result in simply adding

one variable and one equation to the standard Dynare file. The two-part mother

program would be very simple. The first part would contain a few steps of algebra

to get the coefficients of the aggregate laws of motion from the individual laws of

motion. The second part has to contain a procedure to make the laws of motion

of the aggregate variables consistent with the laws of motion of the individual vari-

ables. For example, one might start with an aggregate policy rule, solve for the

individual policy rule using perturbation techniques, obtain the aggregate law of

motion by explicit aggregation of the individual policy rule, and iterate until the

aggregate law of motion has converged. However, there are better, more efficient

ways of obtaining consistency, and this paper will demonstrate a way to write the

mother program and to do this.

To summarize the approach, we use this algorithm to generate first and second-

order solutions. We then assess the accuracy and compare the solutions with those

obtained with alternative algorithms. The first alternative algorithm uses the same

Dynare program to solve for the individual policy rules, but obtains the aggregate

law using the simulation procedure proposed by Krusell and Smith [14] instead of

explicit aggregation. The mother program becomes somewhat more complicated

because it has to include a simulation procedure, but the structure of the program

remains the same. We also consider an algorithm in which the aggregate laws of

motion are still solved by explicit aggregation but the individual policy rules are

obtained using a projection method. Given that there is no standard software (yet)
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to implement projection methods, the procedure described is obviously much more

accessible than alternative algorithms.

The main contributions of this paper are to (i) establish the link between the

algorithm of Preston and Roca [16] and the XPA algorithm of Krusell and Smith

[14], (ii) describe how Dynare and Dynare++ can be used to implement these algo-

rithms, and (iii) compare the different numerical solutions and assess their accuracy.

Finally, one more important issue addressed in this paper is to describe a procedure

to limit the number of state variables. In several models considered so far, the

computational burden turns out to be low because only a small set of moments,

typically just the mean, is sufficient to capture the predictive information in the

distribution, a property referred to as approximate aggregation.2 This is not likely

to be a universal property. The key for the approximate aggregation to hold is that

the individual policy functions are close to being linear in the relevant part of the

state space.3 Linear policy rules are unlikely to be a realistic property in general

and it is (hopefully) only a matter of time until we will be using models in which

nonlinearities matter for aggregation. But if nonlinearities matter, then additional

moments have to be used as state variables. Following the logic of the XPA algo-

rithm implies that each nonlinear basis term used in the individual policy function

gives rise to an additional cross-sectional moment in the set of state variables. We

show how to reduce the dimension of this set by using combinations of these state

variables. This contribution is likely to be more important when the individual pol-

icy rules are solved with a projection procedure than with a perturbation procedure,

given that keeping the cost of projection methods low with a large number of state

2See Krusell and Smith [15].
3For example, nonlinearities do not matter for the very poor agents because their behavior is

not important for the aggregate anyway.
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variables is tricky.

2 The Problem

The model applied in this paper is a standard heterogeneous agents model with

aggregate productivity shocks similar to the one discussed in Aiyagari [2], Bewley [4]

and Huggett [9]. It describes a simple exchange economy with incomplete markets,

aggregate uncertainty and an infinite number of agents. The source of heterogeneity

comes from the assumption that there are idiosyncratic income shocks, which are

partially uninsurable.

Problem for the individual agent The economy is represented by a stochastic

growth model with a continuum of individuals indexed by i ∈ [0, 1]. The individual

agents are characterized as facing an idiosyncratic unemployment risk. All agents

are ex ante identical, however there is ex post heterogeneity due to incomplete

insurance markets and borrowing constraints. Every quarter, individuals differ from

each other through their asset holdings and employment opportunities. In order to

transfer their ressources over time, agents can only control their capital holdings.

We simplify the model with respect to the one described in Preston and Roca [16],

and assume that an employed agent earns a wage rate of w, while an unemployed

agent has no income. However, agents can insure themselves, at least partially,

against employment risks by building up a capital stock. To insure satisfaction

of intertemporal budget constraints, capital holdings are restricted by a borrowing

limit b ≥ 0, ensuring the repayment of loans and the absence of Ponzi schemes.
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Agent i’s maximization problem is given by

max
{cit,ai,t+1}

Et

∞
∑

t=0

βt c
1−γ
it − 1

1 − γ

s.t. cit + ai,t+1 = r(kt, lt, zt)ait + w(kt, lt, zt)eit l̄ + (1 − δ)ait (1)

ait ≥ b

The utility function is characterized by a standard constant relative risk aversion

(CRRA) utility function with risk aversion parameter γ > 0. This function is twice

continuously differentiable, increasing, and concave in the level of consumption of

household i, cit. Let ait be the agent’s beginning-of-period asset holdings, ai,t+1 is

the next period level of asset constrained, l̄ is the time endowment, β the subjective

discount rate, 0 < δ < 1 is the depreciation rate. rt and wt is the interest rate and

wage rate, respectively.

Each agent faces partially insurable labor market income risk and is endowed

with one unit of time. This endowment is transformed into labor input according

to lit = eit l̄. The stochastic employment opportunity eit follows an autoregressive

process of the form

ei,t+1 = (1 − ρe)µe + ρeeit + εe
i,t+1 , εe

t ∼ N (0, σ2
e) (2)

where 0 < ρe < 1, µe > 0 and εe
i,t+1 a bounded i.i.d. disturbance with mean and

variance (0, σ2
e).

Problem for the firm Markets are competitive and the production technology

of the firm is characterized by a Cobb-Douglas production function. Let kt and

lt stand for per capita capital and the employment rate, respectively. Per capita
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aggregate output takes as inputs the aggregate capital stock and labor supply

yt = ztk
α
t l1−α

t

In the original model, as described in Krusell and Smith [14], aggregate productiv-

ity, zt, is an exogeneous stochastic process that can take on two values, which are

interpreted as the good and bad states of the economy. For reasons that will be

detailed later, we transform the discrete space to a continuous support by assuming

that the aggregate technology shock zt, common to all households, satisfies

zt+1 = (1 − ρz)µz + ρzzt + εz
t+1 (3)

where 0 < ρz < 1, µz > 0 and εz
t+1 a bounded i.i.d. disturbance with mean and

variance (0, σ2
z). We assume that firms rent their factors of production from house-

holds in competitive spot markets. These aggregate inputs imply market interest

and wage rates equal to

r(kt, lt, zt) = αzt

(

kt

lt

)α−1

(4)

w(kt, lt, zt) = (1 − α)zt

(

kt

lt

)α

(5)

In order to solve the optimization program given by expression (1) agents must

forecast future prices. Under the maintained assumptions (lt, zt) follow an exoge-

neous stochastic process. Therefore in order to forecast future wage and rental rates,

agents must know the stochastic process that describes the evolution of the aggre-

gate capital stock. However, the stochastic properties of the aggregate capital stock

depend on the distribution of capital holdings in the population. As a consequence,
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the whole capital distribution becomes a state variable. In a setup with a continuum

of agents, capital distribution is a function, which cannot be used as an argument

of the individual policy rules. Krusell and Smith [14] propose to summarize this

distribution by a discrete and finite set of moments. For instance, if we take into

consideration only the first order moments, the law of motion for aggregate capital,

kt+1, is given by

kt+1 = ζ0 +

I
∑

i=1

ζiM(i) + ζI+1zt (6)

where M(i) is the cross-sectional average of ai with k = M(1), and s is a vector

containing the aggregate state variables.

Equilibrium An equilibrium for this benchmark model then consists of the fol-

lowing

• Optimality: given (4), (5), and (6) the household decision rules solve the

maximization problems given in expression (1).

• Factor prices: wage and rental rates are factor marginal productivities and

are determined by expressions (4) and (5), respectively.

• Aggregation: Factor inputs are generated by aggregation over agents with

kt ≡
∫

aitdi and lt ≡
∫

litdi. A transition law for the cross-sectional dis-

tributions of capital, that is consistent with the investment policy function.

Let kt represent the beginning-of-period aggregate capital with the following
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transition law

kt+1 = ζ0 +

I
∑

i=1

ζiM(i) + ζI+1zt

This law of motion reveals an advantage of working with a continuum of agents.

Because we apply a law of large numbers, we know that conditional on zt, there

is no uncertainty in determining kt+1

Penalty Function Perturbation methods cannot directly be applied to models

with occasionally-binding inequality constraints. In order to deal with the non-

negativity constraint for asset holdings, we replace the borrowing constraint by a

penalty function (Judd [10], pp. 123). The basic idea of this approach is that we

allow anything to be feasible, but we change the objective function so that it has

undesirable consequences if the constraints are violated. By using this approach

we have converted the original problem, given in expression (1) into an optimiza-

tion problem with only equality constraints, which allows us to apply a standard

perturbation method. Recent contributions that use this approach for heteroge-

neous agents models include Kim et al. [11] and Preston and Roca [16]. There are

many ways to represent the penalty function. We focus on three specifications from

the recent literature on heterogeneous agents models. We will use the specification

described in den Haan and de Wind [8]

P(ai,t+1) =
η1

η0
exp

(

− η0(ai,t+1 + b)
)

− η2(ai,t+1 + b) (7)

Alternative specification for the penalty function are discussed in the next chapter of

the present thesis. These functions have the property that as individual asset hold-
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ings approach the borrowing constraint b the interior function approaches infinity.

The first derivative with respect to ai,t+1 of expression (7) is given by

p(ai,t+1) = −η1 exp
(

− η0(ai,t+1 + b)
)

− η2 (8)

(9)

The modified model In order to solve this model by perturbation, we need to

transform the optimization problem, given in expression (1), so that we get rid of

the borrowing constraint. In fact, the inequality constraint is the reason of non-

differentiability. One way of avoiding this problem is to replace the inequality con-

straint with a function, so that the individual problem will be

max
{cit,ai,t+1}

Et

∞
∑

t=0

βt c
1−γ
it − 1

1 − γ
− φP(ai,t+1)

s.t. cit + ai,t+1 = r(kt, lt, zt)ait + w(kt, lt, zt)eit l̄ + (1 − δ)ait (10)

This maximization problem faced by an individual in the economy can be represented

as a dynamic programming problem in which ait, eit, Γt and zt are the state variables

and cit, ait+1 are the decision variables. The variable Γt represents the cross-sectional

distribution of assets in the economy. The optimality equation for this model is given
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by

V (ai, ei; z, Γ) = max
{ci,a

′

i
}

{

c
1−γ
i − 1

1 − γ
+ βE

[

V (a′
i, e

′
i; z

′, Γ′) − φP(a′
i)
]

}

s.t (1 − δ)ai + r(k, l, z)ai + w(k, l, z)ei l̄ − ci − a′
i ≥ 0

z′ = (1 − ρz)µz + ρzz + ε′z (11)

e′i = (1 − ρe)µe + ρeei + ε′ei

Γ′ = H(Γ, z)

where function V (·) is the value function of a type i household, r and w are functions

that describe the factor prices, and Γ denotes the distribution of capital holdings in

the population.

An important feature of the problem, as stated in expression (11), is that the

cross-sectional distribution, Γ, is a state variable. Even if the economic agents will

at some point require a limited set of information about this distribution, they will

always be faced with the situation in which they will require an approximation of

Γ. In the solution algorithm as proposed in Krusell and Smith [14], the individual

agents use only the first order moments of Γ to compute current and future market

prices. However, since they need an approximation of Γ to compute the first order

moment, Ma, we cannot replace the cross-sectional distribution, Γ, with the first

order moment, Ma, from the set of state variables.

The solution, as will be described later, differs from the traditional approach

in this particular regard. Now we no longer rely on the entire distribution Γ, but

use directly the approximated decision rules to compute the law of motion for the

first order moment, Ma. As can be seen in expression (13), the use of the explicit

aggregation algorithm, allows us to replace the cross-sectional distribution, Γ, with
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the first order moment, Ma, in the set of state variables.

The reader should also note that the dimension of the state space is endoge-

neously determined by the algorithm, unlike in the case of the traditional approach,

where the order of cross-sectional moments that are used is determined by the

economist. If the dynamic optimization problem is solved using a second order

polynomial approximation (or a second order Taylor expansion), then the second

order cross-sectional moments will become additional state variables. In order to

illustrate this, we will present the two Bellman equations for the cases of first- and

second order approximation of the decision rules. We have to keep in mind that sim-

ply substituting Γ by k is an abuse of notation, since the real model always depends

on the evolution of the whole distribution Γ. However, in our implementation, the

law of motion of the moments for the cross-sectional distribution are approximated

by directly using the individual decision rules instead of the whole distribution, Γ.

As a consequence, we can substitute variable Γ by the relevant moments in the list of

state variables. This means that if we use a first order approximation to the decision

rules, the original model (12) will be approximated by the model (13). By doing this,

we have reduced the large dimensional state space (ai, ei; z, Γ) to a more tractable

4-dimensional state space (ai, ei; z, k). When we use a first order approximation, the

problem can be represented as follows

V (ai, ei; z, k) = max
{ci,a

′

i
}

{

c
1−γ
i − 1

1 − γ
+ βE

[

V (a′
i, e

′
i; z

′, k′) − φP(a′
i)
]

}

s.t (1 − δ)ai + r(k, l, z)ai + w(k, l, z)eil̄ − ci − a′
i ≥ 0

z′ = (1 − ρz)µz + ρzz + ε′z (12)

e′i = (1 − ρe)µe + ρeei + ε′ei

k′ = ζ0 + ζ1k + ζ2z
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If we use a second order approximation to the individual decision rules, the

original problem (12) will be approximated by the model (13). In this case we have

reduced a large dimensional state space to a 6-dimensional one. By doing this, we

add the second order moments of the cross-sectional distribution to the list of state

variables. The optimality equation for the second order approximated model is

V (ai, ei; z, k, Mae, Ma2) = max
{ci,a

′

i
}

{

c
1−γ
i − 1

1 − γ
+ βE

[

V (a′
i, e

′
i; z

′, k′, M ′
ae, M

′
a2) − φP(a′

i)
]

}

(13)

subject to the following

ci = (1 − δ)ai + r(k, l, z)ai + w(k, l, z)eil̄ − a′
i

z′ = (1 − ρz)µz + ρzz + ε′z

e′i = (1 − ρe)µe + ρeei + ε′ei

k′ = ζ0 + ζ1k + ζ2z + ζ3Mae + ζ4Ma2 + ζ5k
2 + ζ6z

2 + ζ7kz

M ′
a2 = ζ̄0 + ζ̄1k + ζ̄2z + ζ̄3Mae + ζ̄4Ma2 + ζ̄5k

2 + ζ̄6z
2 + ζ̄7kz

M ′
ae = ζ̃0 + ζ̃1k + ζ̃2z + ζ̃3Mae + ζ̃4Ma2 + ζ̃5k

2 + ζ̃6z
2 + ζ̃7kz

3 Recursion

Since there is no analytical solution to this model, we have to rely on numerical

approximation methods. To give a general overview of the algorithm used to solve

the present model, we start by assuming that the agents only use the first I moments

of the wealth distribution in order to perceive current and future prices. This means
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that agents have access to the law of motion for the capital stock. Given this law of

motion, each agent can compute his optimal choice. The iterative procedure used

to approximate this aggregate law of motion will be decribed in the next section.

The general algorithm can be described as follows: (1) Select the order I of

the approximation (and hence of the moments that are used as state variables), (2)

choose an initial parameterization for the aggregate law of motion, (3) solve the

individual problem, (4) use the individual decision rules to update the aggregate

law of motion given in step (2), (5) iterate until convergence.

[Figure 1 about here.]

In order to study the sensitivity of the algorithm to the choice of various solution

methods, we solve the individual problem using two methods: a local and a global

method. Furthermore, we compare the updating procedure of the aggregate law of

motion using two different approaches. These procedures will be explained in more

detail in the following sections.

The overall algorithm is summarized in Figure 3, while the approximation for

the parameters of the aggregate law of motion, the ζ ’s, are presented in Table 5.

[Table 1 about here.]

[Figure 2 about here.]

3.1 A standard solution method

The basic idea of the Krusell and Smith [14] algorithm relies on summarizing the

cross-sectional distribution of capital and employment status with a limited set of

moments. The algorithm specifies a law of motion for these moments and finds
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the approximating function using a simulation procedure. Given a set of individual

policy rules, a time series of cross-sectional moments is generated and new laws of

motion for the aggregate moments are estimated using the simulated data.

However, this iterative procedure relies on simulation which generates two types

of sampling variation. One is related to the fact that we use a finite set of agents

instead of a continuum of agents. The other type generates from the aggregate

shock. Furthermore, since the method relies on simulated data to obtain numerical

solutions, it has two disadvantages. First, by introducing sampling noise the policy

functions themselves become stochastic. This effect can be reduced by using long

time series, but sampling noise disappears at a slow rate. Second, the values of

the state variables used to find the best fit for the aggregate law of motion are

endogeneous and are typically clustered around their mean.

3.2 Explicit aggregation solution method

An alternative approach is to obtain the law of motion, which describes aggregate

behaviour by explicitly aggregating the individual policy rule. This approach is

simpler than the methods that rely on parameterization of the cross-sectional distri-

bution (as in Algan, Allais and den Haan [3]), and it is not computationally intensive

(as in Krusell and Smith [14] and den Haan [6]) as the methods that rely on simu-

lation and regression. Another issue is the choice of the order of moments (of the

cross-sectional distribution) that have to be included into the solution algorithm. In

the previous method, this choice is made externally by the economist, depending on

the forecasting power of the moments in question.

Instead of using the approximated decision rules for the construction of the sim-

ulated cross-sectional distribution, the approach that is adopted here relies on the
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decision rules for directly evaluating the moments of the distribution without simu-

lating the entire distribution (den Haan and Rendahl [7]). This is done by explicitly

aggregating the economy conditional on the properties of the approximated decision

rules. As a consequence, the moments of the distribution that are included in the

solution algorithm depend on the properties of the polynomial that approximates

the decision rule. For instance, the aggregation of the first order (linear) approxi-

mation of the economy will only take into account the first order moments of the

cross-sectional distribution. A second order (nonlinear) approximation, however,

will take into account the first and second order moments of the distribution.

4 Explicit aggregation

The explicit aggregation algorithm for this particular model. is closely related to

den Haan and Rendahl [7]. A detailed description of the algorithm is laid out below.

4.1 First-order approximation

In order to present the algorithm, we consider, for the moment, the first order

approximation of a model with individual and aggregate uncertainty. Consider the

following simple model in which all agents are identical, except for their initial

capital stock, ai0, and their employment status, eit. The individual decision rule for

next periods asset holding is given by

ai,t+1 = θ0 + θ1ait + θ2eit + θ3zt + θ4Ma,t (14)
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From equation (14) it can be seen that the individual policy rule is assumed to be

a polynomial of order 1 in a, e, z and Ma. Using monomials as in equation (14)

simplifies the exposition; den Haan and Rendahl [7] show that other basis functions

can be used as well, such as orthogonal polynomials or B-splines.

The key issue for heterogeneous agents is to establish a law of motion for aggre-

gate capital, k. Given the expression in equation (14), this aggregate law of motion

for k follows directly from aggregating the individual policy rule over i. That is,

∫ 1

0

ai,t+1di = θ0 + θ1

∫ 1

0

aitdi + θ2

∫ 1

0

eitdi + θ3zt + θ4Ma,t (15)

Note that in order to apply this method, we need an expression for the average level

of the capital stock and not, for example, for the average of the log capital stock.

Consequently, the left-hand side of equation (14) has to be equal to the level of ait+1,

as is the case in our example.

Lemma 1. The economy-wide average for the employment status at a given time

period is constant, with

∫ 1

0

eidi = µe (16)

This is a direct consequence of the assumption that the employment status is an

exogeneous autoregressive process of order 1.

Proof. Here is the proof for expression 16:

Assume that the law of motion for employment status follows an autoregressive
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process of order 1, such that

ei,t+1 = (1 − ρe)µe + ρeeit + ǫi,t+1

By integrating the previous expression over all individuals yields the economy-wide

average for next periods employment status

∫ 1

0

ei,t+1di = (1 − ρe)µe + ρe

∫ 1

0

eitdi +

∫ 1

0

ǫi,t+1di

Using
∫ 1

0
ǫidi ≃ 0 and

∫ 1

0
ei,t+1di ≃

∫ 1

0
eitdi the previous expressions reduces to

∫ 1

0

eidi = µe

In order to motivate
∫ 1

0
ǫidi ≃ 0, we could rewrite the previous expression in discrete

time and use the law of large numbers

As N → 0 ,
1

N

N
∑

i=1

ǫi → 0 since ǫi ∼ N (0, σ2
e)

Using expression (16) and the definition for the first order moment of the cross-

sectional distribution for wealth, Ma =
∫ 1

0
aidi, we have

Ma,t+1 = (θ0 + θ2µe) + (θ1 + θ4)Ma,t + θ3zt (17)
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4.2 Second-order approximation

Equation (15) is obtained in a rather straightforward way as we have only first order

terms in equation (14). As soon as we have higher order polynomials in equation

(14), we will have higher order cross-sectional moments in equation (15). In other

words, we need to include higher order terms as inputs for predicting kt+1.

However, this raises additional problems, since it implies that including higher-

order cross-sectional moments requires additional aggregate laws of motions to pre-

dict those. This is because these higher order terms will appear as arguments in

next period’s policy function. In order to illustrate this, let us take the second order

approximation of the individual policy function, which is given by

ai,t+1 = θ0 + θ1ait + θ2eit + θ3zt + θ4Ma,t + θ5Mae,t + θ6Ma2,t

+ θ7a
2
it + θ8eitait + θ9e

2
it + θ10ztait + θ11zteit

+ θ12Ma,tait + θ13Ma,teit + θ14Ma,tzt + θ15M
2
a,t (18)

In equation (18), we see the appearance of second order terms. For this particular

model, we are especially interested in a2
it and aiteit. As noted previously, the presence

of these terms requires aggregate laws of motions to predict these moments.

Because of the cross-terms of the individual state variables ai and ei appear

additional state variables, Mae and Ma2 . By definition, the aggregation of these

second-order terms are equal to the uncentered second-order moments

∫ 1

0

a2
i di = Ma2 (19)

∫ 1

0

eiaidi = Mae (20)

20



One way to get a policy rule for a2
it+1 is to use the one that is implied by the

approximation of ait+1 given in equation (14). However by taking the square of

equation (14), we will end up with a polynomial of order higher than 2, which

means that additional moments would have to be added. Then additional policy

rules would be needed to predict these moments, which in turn would introduce

more state variables. Without modification, a solution based on explicit aggregation

requires including an infinite number of moments as state variables whenever the

order of approximation is higher than one.

The key approximating step of the algorithm described in den Haan and Rendahl

[7] is to break this infinite regress problem and to construct separate approximations

to the policy rules for a2
it+1 and ait+1eit+1.

For a2
it+1, we use an approximation, which has the same form as equation (18)

a2
it+1 = P2(ait, eit, zt, kt, Mae, Ma2 ; Θ̄) (21)

For ait+1eit+1, we have to be more careful

ait+1eit+1 = ait+1

(

(1 − ρe) + ρeeit + εit+1

)

= (1 − ρe)ait+1 + ρeait+1eit + ait+1εit+1 (22)

In order to compute the last expression, we need to approximate ait+1eit, and for

doing this we use again a similar approximation as in equation (14)

ait+1eit = P2(ait, eit, zt, kt, Mae, Ma2 , kt+1; Θ̃) (23)

The coefficients of the approximating functions in equations (18), (21) and (23)
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can now be solved for using projection methods or perturbation methods. Once we

obtain Θ, Θ̄ and Θ̃, we can deduce, by explicit aggregation, the laws of motions for

kt+1, Ma2,t+1 and Mae,t+1.

Law of motion for Ma2 . In order to compute the law of motion for Ma2 given

in expression (19), we introduce an auxiliary variable qi,t+1 = a2
i,t+1. The decision

rule for this additional control variable will be approximated in a similar way as for

the other control variables, which will yield an approximation for a2
i,t+1:

qi,t+1 = θ
q
0 + θ

q
1 ait + θ

q
2 eit + θ

q
3 zt + θ

q
4 Ma,t + θ

q
5 Mae,t + θ

q
6 Ma2,t

+ θ
q
7 a2

it + θ
q
8 eitait + θ

q
9 e2

it + θ
q
10ztait + θ

q
11zteit

+ θ
q
12Ma,tait + θ

q
13Ma,teit + θ

q
14Ma,tzt + θ

q
15M

2
a,t (24)

Law of motion for Mae. For the aggregate law of motion in expression (20) we

use the following

Mae,t+1 = (1 − ρe)µeMa,t+1 + ρe

∫ 1

0

pidi (25)

where pi is an auxiliary variable that approximates the following expression pi =

ai,t+1eit:

pi,t+1 = θ
p
0 + θ

p
1 ait + θ

p
2 eit + θ

p
3 zt + θ

p
4 Ma,t + θ

p
5 Mae,t + θ

p
6 Ma2,t

+ θ
p
7 a2

it + θ
p
8 eitait + θ

p
9 e2

it + θ
p
10ztait + θ

p
11zteit

+ θ
p
12Ma,tait + θ

p
13Ma,teit + θ

p
14Ma,tzt + θ

p
15M

2
a,t (26)

Proof. In order to compute the aggregate law of motions for the second order term
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Mae given in expression (20), we proceed as follows

ai,t+1ei,t+1 = ai,t+1[(1 − ρe)µe + ρeeit + ǫi,t+1]

= (1 − ρe)µeai,t+1 + ρeai,t+1eit + ai,t+1ǫi,t+1

Integrating this over i yields

∫ 1

0

ai,t+1ei,t+1di = (1 − ρe)µe

∫ 1

0

ai,t+1di + ρe

∫ 1

0

ai,t+1eitdi +

∫ 1

0

ai,t+1ǫi,t+1di

By using
∫ 1

0
ai,t+1ei,t+1di = Mae,t+1,

∫ 1

0
ai,t+1di = Ma,t+1,

∫ 1

0
ai,t+1ǫi,t+1di = 0 we can

derive the law of motion for the second order moment Mae

Mae,t+1 = (1 − ρe)µeMa,t+1 + ρe

∫ 1

0

pidi (27)

where pi is an auxiliary variable that approximates the following expression pi =
∫ 1

0
ai,t+1eitdi.

Lemma 2. The economy-wide average of the square of the employment status is a

constant

∫ 1

0

e2
i di =

1 − ρe

1 − ρ2
e

[

(1 − ρe)µ
2
e + 2µ2

eρe + 2µeMǫ + Mǫ2

]

(28)

This is a direct consequence of the assumption that the employment status is an

exogeneous autoregressive process of order 1.

Proof. Here is the proof for expression (28). Assume that the law of motion for
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employment status follows an autoregressive process of order 1, such that

ei,t+1 = (1 − ρe)µe + ρeeit + ǫi,t+1

Taking the square of the previous expression gives

e2
i,t+1 =

[

(1 − ρe)µe + ρeeit + ǫi,t+1

]2

= [(1 − ρe)µe]
2 + 2(1 − ρe)µeρeeit + 2ρeeitǫi,t+1

+ 2(1 − ρe)µeǫi,t+1 + ρ2
ee

2
it + ǫ2

i,t+1

Integrating the previous expression over i yields

∫ 1

0

e2
i,t+1di = [(1 − ρe)µe]

2 + 2(1 − ρe)µeρe

∫ 1

0

eitdi + 2ρe

∫ 1

0

eitǫi,t+1di

+ 2(1 − ρe)µe

∫ 1

0

ǫi,t+1di + ρ2
e

∫ 1

0

e2
itdi +

∫ 1

0

ǫ2
i,t+1di

Using the following equalities,
∫ 1

0
eitdi = µe,

∫ 1

0
eitǫi,t+1di = 0,

∫ 1

0
ǫi,t+1di = Mǫ,

∫ 1

0
e2

itdi = cst and
∫ 1

0
ǫ2
i,t+1di = Mǫ2, we get

∫ 1

0

e2
i,t+1di = [(1 − ρe)µe]

2 + 2(1 − ρe)µ
2
eρe

+ 2(1 − ρe)µeMǫ + ρ2
e

∫ 1

0

e2
itdi + Mǫ2

Assume
∫ 1

0
e2

i,t+1di =
∫ 1

0
e2

itdi, we get

(1 − ρe)

∫ 1

0

e2
itdi = [(1 − ρe)µe]

2 + 2(1 − ρe)µ
2
eρe + 2(1 − ρe)µeMǫ + Mǫ2

24



Hence

∫ 1

0

e2
i di =

1 − ρe

1 − ρ2
e

[

(1 − ρe)µ
2
e + 2µ2

eρe + 2µeMǫ + Mǫ2

]

Since Mǫ = 0 and Mǫ2 = σ2
e , we have4

∫ 1

0

e2
i di =

1 − ρe

1 − ρ2
e

[

(1 − ρe)µ
2
e + 2µ2

eρe + σ2
e

]

5 Simulation-based approach

The simulation-based algorithm for this particular model. is closely related to

Krusell and Smith [14]. A detailed description of the algorithm is laid out below.

5.1 First-order approximation

Using the solution to the decision rules from a first-order approximation we get

ai,t+1 = θ0 + θ1ait + θ2eit + θ3zt + θ4Ma,t

This decision rule is used to simulate the economy for N agents and T time periods.

Using the simulated time series ait for i = 1, . . . , N and t = 1, . . . , T , we compute

4Since ǫ ∼ N (0, σ2

e). The moments of ǫ are given by E(ǫi) = 1

N

∫ N

0
ǫidi → 0 as N → ∞. The

second order moment is given by E(ǫ2
i
) = 1

N

∫ N

0
ǫ2
i
di → σ2

e
as N → ∞.
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the mean of the distribution

Ma,t =
1

N

N
∑

i=1

ait , ∀t = 1, . . . , T (29)

Regressing Ma,t+1 on a constant, as well as on Mat and zt, will yield updated values

for the aggregate law of motion

Ma,t+1 = ζ̂0 + ζ̂1Ma,t + ζ̂2zt (30)

5.2 Second-order approximation

Using the solution to the decision rules from a second-order approximation we get

ai,t+1 = θ0 + θ1ait + θ2eit + θ3zt + θ4Ma,t + θ5Mae,t + θ6Ma2,t

+ θ7a
2
it + θ8eitait + θ9e

2
it + θ10ztait + θ11zteit

+ θ12Ma,tait + θ13Ma,teit + θ14Ma,tzt + θ15M
2
a,t (31)

In a way similar to the first-order solution, we will simulate the economy but this

time using second-order approximation to the decision rules. Using the simulated

time series for ait, with i = 1, . . . , N and t = 1, . . . , T , we compute the mean of the

distribution

Ma,t =
1

N

N
∑

i=1

ait , ∀t = 1, . . . , T (32)

Doing the same regression as for (30), we will find updated values for the coefficient

of the aggregate law of motion.

26



6 Solution method

6.1 Perturbation method

In the perturbation method we compute the deterministic steady state of the model

and then use an nth order Taylor expansion around this value.

Similarly, perturbation methods are typically performed on the optimality con-

ditions, which are given by5

Etf(yt+1, yt, yt−1, ǫt) = 0 (33)

where ǫt = σet and E(ǫt) = 0, E(ǫtǫ
′
t) = σ2Σe, and E(ǫtǫ

′
τ ) = 0 for t 6= τ . The policy

function of this model is given by

yt = h(yt−1, ǫt, σ)

For illustration purposes, we use the first order perturbation method to solve for

the decision rules. This section follows closely Preston and Roca [16].

The equilibrium for this model is determined by the following optimality condi-

tions:

c
−γ
it = βEt

[

c
−γ
i,t+1

(

r(kt+1, l̄, zt+1) + 1 − δ
)

+ p(ai,t+1)

]

ai,t+1 = (1 − δ)ait + r(kt, l̄, zt) + w(kt, l̄, zt)l̄ − cit

5Notation used is in line with the documentation of the Dynare project.
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and the exogeneous processes

zt+1 = (1 − ρz)µz + ρzzt + ǫz
t+1 , ǫz

t+1 ∼ N (0, σ2
z)

ei,t+1 = (1 − ρe)µe + ρeeit + ǫe
i,t+1 , ǫe

i,t+1 ∼ N (0, σ2
e)

as well as the aggregate law of motion for capital

kt+1 = ζ0 + ζ1kt + ζ2zt

The previous expressions can be written as in (33), so that

Et

[

f(yt+1, yt, yt−1, ǫt)

]

= Et



























c
−γ
it − βEt

[

c
−γ
i,t+1

(

r(kt+1, l̄, zt+1) + 1 − δ
)

− p(ai,t+1)

]

ai,t+1 − (1 − δ)ait − r(kt, l̄, zt) − w(kt, l̄, zt)l̄ + cit

zt+1 − (1 − ρz)µz − ρzzt − ǫz
t+1

ei,t+1 − (1 − ρe)µe − ρeeit − ǫe
i,t+1

kt+1 − ζ0 − ζ1kt − ζ2zt



























= 0 (34)

where y = (c k a z e)′.

The solution to this model is given by the following decision rules

cit = gc(ait, eit, zt, kt) (35)

ait = ga(ait, eit, zt, kt) (36)
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and

kt = gk(ait, eit, zt, kt) (37)

zt = gz(ait, eit, zt, kt) (38)

eit = ge(ait, eit, zt, kt) (39)

where σ is a scale parameter and determines the degree of uncertainty in ǫ. However,

gz(·) and ge(·) are known and determined by an autoregressive process of order 1.

Since (34) is a system of nonlinear equations, (36) give a non-linear mapping

from the current state variables to the optimal allocations for consumption and

next period values for individual asset holdings.

Perturbation methods are local solution methods, hence the approximation to

the functions g(·) are always taken in the neighborhood of the deterministic steady

state of the model (ā, ē, z̄, k̄).

Since the solution algorithm described in the previous sections relies on the

decision rule for the next period’s individual asset holding, we will focus on the first

order approximation of ga(·) around the steady state (ā; ē, z̄, k̄)

a′
i(ai, ei, z, k; σ) = ga(ai, ei, z, k; σ)

= ga(āi, ēi, z̄, k̄; 0) + (ai − ā)ga
a(āi, ēi, z̄, k̄; 0)

+(ei − ē)ga
e (āi, ēi, z̄, k̄; 0) + (z − z̄)ga

z (āi, ēi, z̄, k̄; 0)

+(k − k̄)ga
k(āi, ēi, z̄, k̄; 0) + σga

σ(āi, ēi, z̄, k̄; 0)

(40)
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The unknowns in this Taylor expansion are given by the set of first order derivatives

ga
a, ga

e , g
a
z , g

a
k , g

a
σ (41)

These unknown coefficients are solved in Dynare.

6.2 Projection method

Let us remind the equilibrium conditions for this model:

c
−γ
it = βEt

[

c
−γ
i,t+1

(

r(kt+1, l̄, zt+1) + 1 − δ
)

+ p(ai,t+1)

]

ai,t+1 = (1 − δ)ait + r(kt, l̄, zt) + w(kt, l̄, zt)l̄ − cit

zt+1 = (1 − ρz)µz + ρzzt + ǫz
t+1 , ǫz

t+1 ∼ N (0, σ2
z)

ei,t+1 = (1 − ρe)µe + ρeeit + ǫe
i,t+1 , ǫe

i,t+1 ∼ N (0, σ2
e)

kt+1 = ζ0 + ζ1kt + ζ2zt (42)

To solve the model using projection methods, it is useful to first represent it

by an operator equation, R(f). There is some freedom in choosing which function

to approximate by parametric forms and which equilibrium conditions to use as

residual functions.

In the present application, we need to parameterize the decision rule for next pe-

riods’ individual asset holdings and we use as residual functions the Euler equation

in (42). By using the barrier method, the decision rule for individual asset holdings

is relatively smooth with a limited degree of nonlinearity, and hence it can be rea-

sonably well approximated by polynomials. Then, for a given parameterization of

the decision rule for individual asset holdings, the remaining choices of variables can
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be computed using the remaining expressions from (42). For instance, by plugging

the solution for a′
i(ai, ei, z, k) into the budget constraint we can deduce ci, which

will allow us to compute the Euler equation and hence the residual function R(f).

Again, we can compute the level of aggregate capital by explicitly aggregating the

decision rule for individual asset holdings. This procedure involves numerical opti-

mization routines in order to minimize the square residual R(f) over a finite set of

points in the bounded state space.

In the present version of the model, agents differ only in the realizations of the

shocks that determine their employment status. As a consequence, the policy rules

for each agent will be the same. The first step in the projection method is to

define a bounded state space. Let Pn(x) denote a polynomial of degree n on the

vector x. In the projection method we replace next periods asset holding, ait+1,

by a function of the state variables of the agent that is, Pn(a, e, z, k; Θn). We will

choose Pn(·), and Θn, the vector of parameters, to make the marginal utility of

consumption c(a, e, z, k; Θn)−γ as close as possible to the conditional expectation.

Note that Pn(a, e, z, k; Θn) has been used to compute c(a, e, z, k; Θn)−γ. Since the

objective of this paper is to compare two numerical approximation methods up to

order n = 2, we can use ordinary polynomials.

After fixing n, we need to find Θn. The algorithm starts with an initial guess of

Θn, Θ0
n. Starting from Θ0

n, we choose a new Θn in order to minimize the residual

function

R(·, Θn) ≡ c(a, e, z, k; Θn)−γ (43)

−βEt

[

c′(a′, e′, z′, k′; Θn)−γ

(

r′(a′, e′, z′, k′; Θn) + 1 − δ

)

+ p(a′)

]
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The expectation is computed using a deterministic integration method, more

specifically the Gauss-Hermite method Abramowitz and Stegun [1]. In general, the

algorithm starts with a first-order polynomial and then adds higher-order terms

until the results do not change anymore. However, we have decided to stop at order

n = 2, as the current version of Dynare is able to do second order approximations

only6 .

6.3 Perturbation vs. Projection

First order perturbation methods have been widely used since the work of Blanchard

and Kahn [5], and is described in King and Watson [12], Klein [13] and Sims [18].

The perturbation principle differs from the projection method in several respects.

For instance, first order perturbation linearizes the system around a point of the

state space, such as the steady state of the economy. Next, we take first order

Taylor expansions around this steady state value, which requires calculations of the

first derivatives of the functions h and f . First order perturbation methods are fast

and widely used.

However, this approximation may be insufficient when analyzing the impact

risk has on the behaviour of the economy. For this reason we may want to solve

the model using second order approximations. This method may produce locally

accurate approximations for capturing the dynamics of the model without ignoring

the nonlinear features of it, as well as the higher order effects. In this case, we

compute a second order Taylor expansion of the model. The method is described

in Schmitt-Grohé and Uribe [17]. First and second order perturbation methods are

implemented in the open-source software Dynare; Dynare++ is available for higher

6For higher-order perturbation methods, we could use Dynare++
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order perturbation methods.

6.4 Complete polynomials

In both solution methods we use complete polynomials as base functions (Judd [10]).

There are two reasons for this choice: first, the version of perturbation method that

we use, and which is implemented in Dynare, uses 2nd-degree Taylor series expansion

around the deterministic steady state. Using a first-degree Taylor series (k = 1) for

our four-dimensional problem uses the linear functions

P4
1 = {1, ai, ei, z, Ma}

where the subscript gives the degree of the Taylor series expansion and the super-

script gives the dimension of the state space. For (k = 2), Taylors theorem uses

P6
2 = P4

1 ∪
{

a2
i , e

2
i , z

2, M2
a , M2

a2 , M
2
ae, aiei, aiz, aiMa, aiMa2 , aiMae, eiz, eiMa, zMa

}

The second reason for preferring complete polynomials over, for instance, tensor

product collections is that the dimension with the former one grows only polynomi-

ally as the dimension increases.

7 Accuracy Checks

The maximal and average Euler equation errors for both procedures are given in

Table 6. These numbers are the logarithm values. They represent the percentage

cost in terms of steady state consumption due to the approximation. A value of −4,

for example, implies a mistake of $1 for every $10 000 spent.
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It is clear from the numbers reported in these tables that the perturbation and

projection methods produce roughly the same level of accuracy. A closer look at

these methods, however, suggests that the perturbation method performs slightly

better in the case of low idiosyncratic uncertainty, while the projection method

performs better as the level of idiosyncratic risk increases.

The sensitivity of the results to the number of Chebyshev nodes, and for the

Gauss-Hermite nodes used in the numerical integration, is examined by increasing

the limit from 10 to 20, and 10 to 50, respectively. These changes had a negligible

effect on the results, and in order to keep the computational time low, we chose 10

nodes for each method.

In order to check for the accuracy of the numerical approximation, we compute

the Euler equation errors, as described in Judd [10]

E(a, e, z, k; Θn) =
R(a, e, z, k; Θn)

ĉ(a, e, z, k; Θn)−γ

This term is a dimension-free quantity that expresses optimization error as a frac-

tion of current consumption. In economic terms, it tells us how irrational agents

would be in using the approximating rule. For instance, in our benchmark model

the maximum value of the error is found to be 0.0046, which is to say that this ap-

proximation implies that agents make 0.46 percent errors in their period-to-period

consumption decisions. This value is very low (Table 6), and we can conclude that

the approximation is very good. This is not surprising, as the calibration of our

benchmark model implies low uncertainty and quasi-linear policy functions.

Table 6 shows the log Euler equation errors, where log ||E||∞ and log ||E||1 rep-

resent respectively the maximum error and the average error in the bounded state
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space [amin, amax]× [emin, emax]× [zmin, zmax]× [kmin, kmax]. Finally, the Euler equa-

tion errors and the least squares projection method is computed in a 4-D state space

with 10000 nodes.

[Table 2 about here.]

8 Parameterization

The parameterization of the benchmark model is standard (Table 7). To briefly

recapitulate, the time period is one quarter; the intertemporal discount factor β is

set equal to 0.99, and the depreciation rate δ to 0.1. We choose for the benchmark

model a value for γ equal to 1. Most studies estimate the relative risk aversion

parameter γ to be between one and two. For this reason, we include different values

within this range in our sensitivity analysis. The share of capital α is 0.33. The

normalizing constant l̄ is set equal to 1. The aggregate technology shock is specified

by µz = 1, ρz = 0.9 and σz = 0.01 to correspond the two state Markov process

close to the one adopted in Krusell and Smith [14]. As mentioned earlier, the law of

motion for individual’s employment status is transformed to continuous support, as

shown in equation (2). Labor market conditions therefore depend on the aggregate

state. The individual’s employment status is specified as µe = 1, ρe = 0.95 and

σe = 0.005.

The analysis assumes that agents are constrained to hold positive quantities of

assets, so that the borrowing limit is set to b = 0. In other words, the credit

limit is set at 0, which means that agents are not allowed to hold net debt. The

parameter φ controls the sensitivity to the borrowing constraint in the modified

utility function and it is set to φ = 0.05. This ensures that no agent violates the
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borrowing constraint.

[Table 3 about here.]

9 Results

The selected quantitative results will focus on the dynamics of aggregate capital

for studying model properties. Our comparison exercise has been done in various

dimensions.

Simulation vs. explicit aggregation We first used linear approximation meth-

ods to solve the model. For this, we used four alternative algorithms obtained

from the combination perturbation/projection and simulation-based/explicit aggre-

gation. The number of iterations needed to reach convergence is the same for both

the simulation-based algorithm or the explicit aggregation algorithm. The conver-

gence path for the coefficients of the aggregate law of motion is given in Figure 2.

However, each single iteration can be very slow in the simulation-based algorithm.

This is obviously due to the time-consuming simulation of the economy composed of

N agents and T time periods. We found that the values for T and N need to be rela-

tively large in order to get accurate approximations of the stationary cross-sectional

distribution. Another finding is that as we increase the number of agents and the

length of the time period, the coefficients of the aggregate law of motion from the

simulation-based method converges to those obtained from the explicit aggregation

algorithm7. The results are presented in the first two columns in Table 5.

7In practice we find that the algorithm which uses explicit aggregation is much faster and
requires a very small amount of RAM.
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Global vs. local approximation When comparing the projection method to the

perturbation method (Table 1), the results diverge as soon as we make the house-

holds more risk-averse and include additional idiosyncratic uncertainty. This is not

surprising, given that the projection method approximates the model over a larger

portion of the state space, while the perturbation methods use local approximations

around a single point, which is the deterministic steady state. In this case, a high

value for the risk aversion parameter and a larger deviation from the steady state

may be ill-suited for the perturbation method.

The role of second order effects In this economy, there are two important

reasons for going beyond a first order approximation of the decision rules. First,

the presence of a borrowing constraint will add significant nonlinearities to the

decision rules, and simple linear approximation of the model may in that case distort

the dynamics of the economy. The second reason is related to the presence of

idiosyncratic shocks and incomplete markets. In this economy, households cannot

borrow and the only way to insure against a strain of bad employment status shocks

is to accumulate assets. By holding a higher amount of capital than in the complete

market setup, households will be able to smooth out consumption in case they are hit

by bad idiosyncratic shocks. This means that households have to take uncertainty

into account when shaping their decisions. Since first order approximations are

subject to the certainty equivalence principle, uncertainty will not play any role. In

order to include uncertainty into the households’ decision rules, we have to use at

least second order approximations of the model. In order to capture nonlinearities

and to study the impact of uncertainty on aggregate wealth, we solve the model

using second order perturbation methods and compute the aggregate capital of the
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economy. In Table 8 we compare the results from a first order solution to those of a

second order solution. Clearly by taking into account second order effects (column

4 and 8), the aggregate level of asset holdings will increase, which is not the case

for first order approximations where uncertainty is ignored (column 2 and 6).

[Table 4 about here.]

Conclusion

This paper presents a simple and fast algorithm that allows us to solve heterogeneous

agent models with aggregate uncertainty and incomplete markets. We present and

justify the modifications that have to be made to the original model in order to be

able to use our algorithm.

Next, we compared various versions of the approximations in order to test the ro-

bustness and accuracy of our algorithm. Compared to global solutions, we find that

local solution methods perform relatively well, as long as the idiosyncratic shocks

that hit the households are not too large. Secondly, comparing first and second or-

der approximations allows us to highlight the significance of second order effects and

precautionary savings motives in this type of model. Finally, comparing simulation-

based and explicit-aggregation algorithms highlights the speed and accuracy of the

explicit aggregation algorithm.

As mentioned earlier, the basic properties (i.e., precautionary savings) of the orig-

inal model are preserved in our approximation. One key component of the method

described here is the specification of the borrowing constraint. The sensitivity of

the solution to the choice of this specification is an important issue that will be the

focus of the next chapter.
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Dynamic Accuracy Test

9.0.1 Accuracy test for the individual policy rules

This test consists of two parts, one dealing with the individual policy rules

1. Simulate the aggregate variables {kt}T
t=1 and {zt}T

t=1

2. Simulate the employment status {et}T
t=1 for one agent

3. Simulate the individual asset holding {at}T
t=1 for one agent using the policy

function P(at, et, zt, kt). This part does not involve the numerical approxima-

tion of the integral associated with the expectation. Here we only use the

policy function to simulate the individual time series

4. Simulate an alternative individual asset holding {ãt}T
t=1 based on the same

{zt}T
t=1, {kt}T

t=1, {et}T
t=1 and e0

(a) Start by setting, ã0 = a0

(b) Compute ãtemp = P(ãt, et, zt, kt). This ãtemp will only be used to compute

the expectation. Since we have already simulated {kt}T
t=1 and {zt}T

t=1, we

can compute {rt}T
t=1 and {wt}T

t=1. Using the budget constraint, we get

c′ = r′ãtemp + w′e′ + (1 − δ)ãtemp − P(ãtemp, e
′, z′, k′)

c
−γ
t = βEt

[

c′−γ(r′ + 1 − δ) + P(ãtemp)
]

ct =

(

β

J1
∑

j1=1

J2
∑

j2=1

[

c′−γ(r′ + 1 − δ) + P(ãtemp)
] ω1,j1√

π

ω1,j1√
π

)− 1

γ
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Using the budget constraint we compute ãT
t=1 and throw away ãtemp

ãt+1 = rtãt + wtet + (1 − δ)ãt − ct

5. Once we have simulated {at}T
t=1 and {ãt}T

t=1, we plot and compare the two

series. This will give us an idea on the regions (that do matter) where the

accuracy is low

9.0.2 Accuracy test for the aggregate policy rules

This test assumes that the individual policy rule is accurate and we are going to

test the accuracy of the aggregate law of motion.

1. Simulate {kt}T
t=1 and {zt}T

t=1 using the aggregate law of motion and the ex-

ogenous law of motion for z

2. At each period, we simulate a large number of individuals and we use the

individual asset holdings for computing

k̃t =
∑

i

ai

3. For next period, kt+1, we use the policy function

at+1 = P(at, et, zt, kt)

and

k̃t+1 =
∑

i

at+1
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4. Compare {kt}T
t=1 and {k̃t}T

t=1
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Matlab and Dynare Code

The Matlab code:

for idxIter = 1:iIter

% Solve the model for given coeffs. of the aggregate law of motion (vZetaOld)

dynare Dimension4PF noclearall ;

vZetaNew(1) = vTheta(1) + vTheta(3);

vZetaNew(2) = vTheta(2) + vTheta(5);

vZetaNew(3) = vTheta(4);

% Check convergence of coefficients

dConv = fnConvergence(vZetaNew,vZetaOld,iTol);

if dConv == 1

break;

end

vZetaOld = dLambda * vZetaNew + (1-dLambda) * vZetaOld;

pZeta0 = vZetaOld(1);

pZeta1 = vZetaOld(2);

pZeta2 = vZetaOld(3);

delete InitParams.mat;

save InitParams.mat pZeta0 pZeta1 pZeta2;

end

The Dynare mod-file:

var ... ; // declare endogeneous variables

varexo ...; // declare exogeneous variables

parameters ... ; // declare parameters

load InitParams; // load coefficients for ALM

set_param_value(’pZeta0’,pZeta0);

set_param_value(’pZeta1’,pZeta1);

set_param_value(’pZeta2’,pZeta2);

load StructParams; // load structural parameters (sensitivity analysis)

set_param_value(’pGamma’,pGamma);

set_param_value(’pSigmae’,pSigmae);

model; ... end; // model block

initval; ... end; // initial values for solver

shocks; ... end; // declare shocks
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stoch_simul(order=1,nocorr,noprint,nomoments,IRF=0);

// Collecting parameters

mPolicy = [oo_.dr.ys’; oo_.dr.ghx’; oo_.dr.ghu’]; // read coefficients of policy

// functions

mPolA = mPolicy(:,2);

// Rearrange parameters

dTheta0 = mPolA(1)-mPolA(2)*mPolA(1)-mPolA(6)-mPolA(7)-mPolA(5)*mPolicy(1,5);

dTheta1 = mPolA(2);

dTheta2 = mPolA(6);

dTheta3 = mPolA(7);

dTheta4 = mPolA(5);

vTheta = [dTheta0 dTheta1 dTheta2 dTheta3 dTheta4];
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Table 1: Approximating Functions: Family of Monomials (2nd order projection method)

cst a e z Ma Mae Ma2

cst cst a e z Ma Mae Ma2

a a a2 ae az aMa aMae aMa2

e e ea e2 ez eMa eMae eMa2

z z za ze z2 zMa zMae zMa2

Ma Ma Maa Mae Maz M2
a MaMae MaMa2

Mae Mae Maea Maee Maez MaeMa MaeMae MaeMa2

Ma2 Ma2 Ma2a Ma2e Ma2z Ma2Ma Ma2Mae M2
a2
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Table 2: Approximating Functions: Family of Monomials (2nd order perturbation method)

cst a e−1 z−1 Ma Mae Ma2 εe εz

cst cst a e−1 z−1 Ma Mae Ma2 εe εz

a a a2 ae−1 az−1 aMa aMae aMa2 aεe aεz

e−1 e−1 e−1a e2
−1 e−1z−1 e−1k e−1Mae e−1Ma2 e−1ε

e e−1ε
z

z−1 z−1 z−1a z−1e−1 z2
−1 z−1Ma z−1Mae z−1Ma2 z−1ε

e z−1ε
z

Ma Ma Maa Mae−1 Maz−1 M2
a MaMae MaMa2 Maε

e Maε
z

Mae Mae Maea Maee−1 Maez−1 MaeMa MaeMae MaeMa2 Maeε
e Maeε

z

Ma2 Ma2 Ma2a Ma2e−1 Ma2z−1 Ma2Ma Ma2Mae M2
a2 Ma2εe Ma2εz

εe εe εea εee−1 εez−1 εeMa εeMae εeMa2 εeεe εeεz

εz εz εza εze−1 εzz−1 εzMa εzMae εzMa2 εzεe εzεz
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Figure 1: Aggregate law of motion for capital, Ma, approximated with perturbation method (first row) and
projection method (second row) with σe = 0.005. First order approximations are represented through continuous
line, while second order approximations are plotted in dashed line.
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Table 3: Aggregate law of motion for capital, Ma, approximated with first order perturbation method (continuous

line) and second order perturbation method (dashed line)
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Table 4: Results from First Order Approximation for γ = 1.0, γ = 1.5, and γ = 2.0

Method for ALM Individual Policy Function Coefficients for the ALM
θ0 θ1 θ2 θ3 θ4 ζ0 ζ1 ζ2

γ σe const a e z k const k z

1.0 0.005 Xpa Perturbation -0.67961 0.91636 0.37787 1.03877 -0.05953 -0.30175 0.85683 1.03878
Projection -0.69772 0.91869 0.38446 1.04509 -0.06091 -0.31062 0.85763 1.04315

0.05 Perturbation -0.67961 0.91636 0.37787 1.03877 -0.05953 -0.30175 0.85683 1.03878
Projection -0.69612 0.91897 0.37788 1.05298 -0.06040 -0.31850 0.85868 1.05269

0.1 Perturbation -0.67961 0.91636 0.37787 1.03877 -0.05953 -0.30175 0.85683 1.03878
Projection -0.68900 0.92054 0.34559 1.08491 -0.05836 -0.34479 0.86245 1.08491

1.5 0.005 Xpa Perturbation -0.81449 0.92867 0.41797 1.01229 -0.04829 -0.39652 0.88038 1.01230
Projection -0.81655 0.93019 0.42395 1.00935 -0.05019 -0.40450 0.88102 1.01602

0.05 Perturbation -0.81449 0.92867 0.41797 1.01229 -0.04829 -0.39652 0.88038 1.01230
Projection -0.84207 0.93202 0.41792 1.03330 -0.04865 -0.41798 0.88267 1.03070

0.1 Perturbation -0.81449 0.92867 0.41797 1.01229 -0.04829 -0.39652 0.88038 1.01230
Projection -0.82472 0.93437 0.37466 1.07504 -0.04675 -0.46713 0.88910 1.08486

2.0 0.005 Xpa Perturbation -0.90545 0.93550 0.44355 1.00573 -0.04114 -0.46190 0.89436 1.00574
Projection -0.90958 0.93672 0.44777 1.00413 -0.04236 -0.46848 0.89480 1.00850

0.05 Perturbation -0.90545 0.93550 0.44355 1.00573 -0.04114 -0.46190 0.89436 1.00574
Projection -0.93137 0.93873 0.44007 1.03040 -0.04133 -0.48934 0.89719 1.02956

0.1 Perturbation -0.90545 0.93550 0.44355 1.00573 -0.04114 -0.46190 0.89436 1.00574
Projection -0.94895 0.94498 0.39268 1.10484 -0.03896 -0.57097 0.90732 1.11321
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Figure 2: Convergence of the ALM coefficients during the updating process (γ =
1.00).
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Figure 3: Approximation Aggregation - Second Order Approximation

Initialize aggregate law of motion and 2nd order moments:
M ′

a = g2(Ma, z, Mae, Ma2 ; ζ0)
M ′

a2
= g2(Ma, z, Mae, Ma2 ; ζ̄0)

M ′

ae = g2(Ma, z, Mae, Ma2 , M ′

a; ζ̃0)

1. Solve for individual policy rule using
perturbation or projection method

a′ = P2(a, e, z, Ma, Mae, Ma2 ; θ)
a′2 = P2(a, e, z, Ma, Mae, Ma2 ; θ̄)

a′e = P2(a, e, z, Ma, Mae, Ma2 ; θ̃)

2. Update aggregate law of motion and 2nd order moments
M ′

a =
R

P2(a, e, z, Ma, Mae, Ma2 ; θ)di

M ′

a2
=

R

P2(a, e, z, Ma, Mae, Ma2 ; θ̄)di

M ′

ae = (1 − ρe)M ′

a + ρe

R

P2(a, e, z, Ma, Mae, Ma2 ; θ̃)di

3. If ζi − ζi+1 < tol

End

Yes

No
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Table 5: Coefficients of the aggregate law of motion after convergence

Simulation Xpa
Perturbation Projection Perturbation Projection

ζ0 -0.30165 -0.30813 -0.30175 -0.31326
ζ1 0.85681 0.85735 0.85683 0.85777
ζ2 1.03873 1.04214 1.03878 1.04510

Iteration - - - -
Dampening λ 0.5 0.5 0.5 0.5

T periods 21000 21000 - -
Burn-in 10000 10000 - -
N agents 10000 10000 - -

tol 10−5 10−5 10−5 10−5
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Table 6: log Euler equation errors

First Order Approximation
Projection Perturbation

γ σe ||E||∞ ||E||1 ||E||∞ ||E||1
1.0 0.005 -5.2119 -7.1647 -5.2734 -7.5850

0.050 -5.1441 -7.1013 -4.9779 -6.6844
0.100 -4.8109 -6.0265 -4.4006 -5.1563

1.5 0.005 -5.2679 -7.4768 -5.3530 -7.6463
0.050 -5.3538 -7.1730 -4.9949 -6.5249
0.100 -4.7907 -5.7823 -4.2882 -4.9477

2.0 0.005 -5.2555 -7.5171 -5.3215 -7.6430
0.050 -5.1424 -7.0488 -4.9148 -6.3372
0.100 -4.5529 -5.6149 -4.0674 -4.7447
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Table 7: Parameterization of the Benchmark Economy

Parameter α β δ γ µe ρe σe µz ρz σz l̄ η0 η1 η2

.33 .99 .1 1 1 .95 .005 1 .9 .01 1 .1 .1 0
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Table 8: Sample mean and standard deviation for aggregate capital (T = 400)

Method Perturbation Projection
Order 1 2 1 2

γ Mean Std.dev. Mean Std.dev. Mean Std.dev. Mean Std.dev.

1.00 5.1283 0.1330 5.1284 0.1337 5.1244 0.1340 5.1339 0.1333
1.50 5.1255 0.1496 5.1256 0.1506 5.1154 0.1505 5.1260 0.1501
2.00 5.1231 0.1638 5.1236 0.1652 5.1062 0.1645 5.0732 0.1643
2.50 5.1209 0.1759 5.1218 0.1779 5.0973 0.1762 5.0271 0.1762
3.00 5.1190 0.1862 5.1204 0.1888 5.0889 0.1859 5.0455 0.1877
3.50 5.1174 0.1950 5.1191 0.1983 5.0811 0.1938 4.9366 0.1937
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