The Log-linearization problem of 
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We have in log-deviation form: 
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        (2)
Since in steady state, 
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Plugging (3) into (2), we have:
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where lower-case letters denote log deviations of a variable from its steady state value.
The above results can also be illustrated by the following numerical example:
To satisfy 
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, we may have the following matrix (just for example)
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	Note: suppose that the steady state value of each variable is given by their historical average value, thus the steady state value of 
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 is given by 3 while the steady state value of 
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 is given by -3.
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What happens if we express the relationship of 
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 in log-linear form?
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Which simply leads to 
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 not 
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