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Abstract

In this paper we question the ability of New Keynesian models to reproduce the
behavior of the nominal interest rate. In particular, we wonder if the model is able
to reproduce infrequent but long ZLB spells as observed in the data. Starting from
the canonical model, we compare alternative specifications like exogenous and endoge-
nous time-varying parameters. We solve the different models with global approxima-
tion methods and estimate them using the simulated method of moments. While the
canonical model fails to reproduce typical ZLB spells, the endogenous time-varying
parameters specification seems to be a promising avenue for research. We draw the
implications of the alternative model’s specifications for the understanding of the mon-
etary policy during ZLB episodes.

Keywords: New Keynesian model, ZLB, Time-varying parameters, Method of
moments.

JEL Classification: E3, J6

1 Introduction

Following the Great Recession, several central banks slashed interest rates
close to zero like the FED, the European Central Bank, the Bank of Canada,
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the Bank of England, etc (see Figure 1). Despite little experiences with liquid-
ity traps, it is fairly easy to see that ZLB episodes (1) have occurred relatively
few in the past and (2) may have long durations1. These two moments are
difficult to reproduce in new Keynesian models with a Taylor rule. The major
reason is that having a model able to reproduce the inflation and the output
dynamics - the two major inputs in the Taylor rule - implies relatively short
ZLB spells. Huge demand shocks or a long sequence of bad shocks are re-
quired to produce long ZLB spells but at the expense of a dramatic fall in out-
put and inflation that are inconsistent with the data. The US nominal interest
rate under the unconventional monetary policy is one of the recent examples.
To circumvent the disconnection between the observed rate and the outcome
of the Taylor rule, many alternative specification have been proposed in past
research but most of them concern periods where the nominal interest rate was
not binding.
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Figure 1: Nominal interest rate. Canada: BOC key interest rate, US: 3-month
treasury bill, Euro: ECB refinancing rate, Sweden: Riksbank reposits rate, UK: BoE
Official Bank Rate, Japan: BoJ overnight call rate, Switzerland: 3 month LIBOR rate
CHF, Denmark: Nationalbanken lending rate.

1See also Hamilton et al. (2015) for a discussion on the interest rate in OECD countries since
the 19th century.
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The novelty of this paper is to question whether the invariant structure of
parameters in the new Keynesian model, and particularly those belonging to
the feedback interest rate rule, is responsible for the models’ inability to re-
produce infrequent but long ZLB spells. We wonder how important are the
time varying parameters when we fit the model to the data. Do time varying
parameters matter for explaining the cyclical behavior of the nominal interest
rate when it binds occasionally? To answer these questions, we consider the
canonical New Keynesian model with the ZLB constraint on the nominal inter-
est rate and introduce several alternative specifications: exogenous (drifting)
and endogenous time-varying parameters. We solve the nonlinear model with
global approximation methods and estimate parameters using the simulated
method of moments over a sample covering the ZLB episode in the thirties
and/or the one starting in 2008Q. We target a broad range of moments (57
moments) including moments up to order four, cross-lagged correlation and
specific moments characterizing the ZLB.

Our major results are the following. The canonical New Keynesian model
is able to reproduce several moments, including the proportion over time the
nominal interest rate is stuck at the ZLB. However, the model fails to match
the average duration of a ZLB spell, even if some spells last more than 20
quarters. We embed exogenous drifting parameters on inflation target and the
response of the interest rate to inflation and output growth. We show that
while it increase the duration of ZLB spells, it does perform way better than
the canonical version. Thereafter, we consider endogenous time-varying pa-
rameters according. ZLB episodes are longer and less frequent in line with the
empirical counterparts. It performs better in matching the data and, contrary
to the other models, it is able to forecast the US prolonged ZLB spells from the
middle 2009 to 2015.

Related literature

Several papers document the time-variant structure of the Taylor rule and
models’ parameters. Fernández-Villaverde & Rubio-Ramírez (2008) and
Fernández-Villaverde et al. (2010) questioned the fit of the new Keynesian model
under time-invariant parameters. They show that there is overwhelming evi-
dence of changes in monetary policy during the last decades and that stochas-
tic volatility matters for explaining variation in aggregate volatility. Liu et al.
(2011) and Bianchi (2013) consider a DSGE model where parameters evolve
according to a markov-switching process. They show that a framework that
incorporates regime-switching in shock variances and in the inflation target
fits better the U.S. time-series data. More recently, Canova & Ferroni (2015)
investigate the impact of parameter variations on the decision rules of an es-
timated DSGE model. By comparing time-invariant structures to a structure
allowing for variations in exogenous and endogenous parameters they find
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that the latter may have a strong influence on the dynamics in response to a
structural shock. Furthermore, they highlight the important misspecifications
of time-invariant structures when estimating the structural model.

The burgeoning literature on volatility shocks known as risk shocks or un-
certainty shocks reflects the crucial role of drifting parameter in explaining busi-
ness cycle dynamics. As documented in Blanchard & Simon (2001), Stock & Watson
(2003), Sims & Zha (2006), Justiniano & Primiceri (2008), Bloom (2009), Fernandez-Villaverde et al.
(2011) and many others, the volatility of employment growth, consumption
growth and output of the U.S. economy from 1984 to 2007 has evidently de-
clined by one third compared to their values during the 1970s and early 1980s.
Nominal volatilities also have declined by more than half. This period of
volatility reduction in aggregate time series, often labeled as the Great Modera-
tion, motivates the study of its causes. The literature thus far offers three main
ways of modeling, and therefore analyzing this volatility shift: i) stochastic
volatility, i.e., model the volatility of the exogenous processes under investiga-
tion as an autoregressive process, or ii) a GARCH process, or iii) the volatility
switches between two (or more) states, i.e., Markov regime switching mod-
els. As pointed out by Fernandez-Villaverde et al. (2011), stochastic volatility
can capture many important features of the empirical volatility shift and dif-
ferentiates the special effect of volatility from others. This approach has been
adopted in many studies.

However, despite considerable efforts on the study of time varying struc-
tures, most of the studies have not considered the presence of the ZLB while it
can fundamentally affect the way parameters vary over the cycle and therefore
the propagation mechanism. In a pioneering paper Krugman (1998) reexam-
ine the theory of liquidity traps in light of the Japanese slump. He shows that
such a situation lead to unconventional conclusion in macroeconomic models.
Eggertsson & Woodford (2003) argue that the zero bound can be a significant
constraint on the ability of a central bank to combat deflation and therefore on
the optimal monetary policy.

Three papers are very closely related to our study. Gust et al. (2012) use
Bayesian techniques to estimate the non-linear version of the new Keynesian
model with ZLB in order to quantify the lower bound’s role in exacerbating the
Great Recession. While they rely on nonlinear procedure to solve and estimate
the model, they do not consider time varying parameters at all. Aruoba et al.
(2013) do consider regime-switching in the Central Bank inflation target but do
not estimate the model on a period where the nominal interest rate was stuck
at the ZLB. We aim instead at understanding how the ZLB affects structural pa-
rameters and their time-varying properties. Furthermore, we consider alterna-
tive time-varying parameters than the inflation target. In line with Chung et al.
(2012), we tackle the underestimation of the probability to hit the ZLB for the
ability of New Keynesian models to forecast the recent events. While they
point out the role of uncertainty about models’ parameters and latent vari-
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ables, they do not provide a clear solution for DSGE models to produce long
ZLB spells. In addition we consider endogenous time-varying parameters in
which parameters depend on the state variables.

The literature on time-varying parameters and the ZLB are naturally con-
nected. Our study goes one step further by bridging the gap between the re-
cent behavior of the nominal interest rate in modern economies and the ability
of the new Keynesian model to reproduce the dynamics of key macroeconomic
variables. We consider alternative specifications and show how they affect the
analysis of monetary policy and the forecast power of new Keynesian models.

The rest of the paper is organized as follows. Section 2 is devoted to the
presentation of the New Keynesian DSGE model. Section 3 addresses the so-
lution and estimation method. Estimation results are presented in Section 4.
Simulations and counterfactual experiments are provided in Section 5. Sec-
tion 6 concludes. We provide a separate appendix describing the model, the
solution and the estimation method in more detail.

2 The model

We build a standard New Keynesian DSGE model with Rotemberg sticky prices,
monopolistic competition and a Taylor rule on the nominal interest rate. In
the baseline model (Model A), we consider three alternative source of dis-
turbances: a discount factor shock, an output growth shock and a monetary
policy shock. In model B and C, we allow for exogenous and endogenous
time-varying parameters respectively.

2.1 The representative household

Households intertemporal utility is defined by:

max
ct,dt,nt

E0

∞

∑
t=0

(
t

∏
k=0

βk

)
[log(ct)− ℓnt] (1)

where ct is aggregate consumption and nt is the level of employment supplied
by households. σ denotes the risk aversion coefficient. βt represents a dis-
count factor shock that we interpret as a preference shock. The representative
household takes as given {pt, wt, it}∞

t=0 and the initial wealth (d0) in order to
maximize equation (1) subject to the budget constraint:

ptct + dt = dt−1(1 + it−1) + wtnt + Πt − Tt (2)
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where Πt are the firms’ profits, dt bonds, pt the aggregate price and Tt is a
lump-sum tax. Optimality conditions are given by the following equations
(with πt = pt/pt−1 and wR

t = wt/pt):

λt = c−1
t (3)

λt = (1 + it)Etβt+1
λt+1

πt+1
(4)

wR
t = ℓct (5)

2.2 Firms

The final good producer operates in a perfectly competitive market. He pro-
duces a good yt using intermediate goods yjt. The demand for the intermediate
good j writes:

yjt =

(
pjt

pt

)−ϵ

yt (6)

where ϵ is the elasticity of substitution between goods. The nominal price

index is defined by pt =
[∫ 1

0 p1−ϵ
jt dj

] 1
1−ϵ . There is a continuum of monopolis-

tically competitive producers indexed by j using labor njt to produce and sell
output yjt to final good producers:

yjt = atnjt (7)

where at is the total factor productivity evolving in the following manner:

at = Gat−1zt (8)

and zt is an aggregate shock. Firm j maximizes its intertemporal profit (9)
taking {pt, wt}∞

t=0 as given, subject to (6) and (7):

max
pjt,njt

E0

∞

∑
t=0

(
t

∏
k=0

βk

)
λt

λ0

 pjt

pt
yjt −

wt

pt
njt − yt

ψ

2

(
pjt

πpjt−1
− 1

)2
 (9)

The price adjustment cost—governed by ψ—is proportional to output and π
is the steady state gross inflation rate. Dropping subscript j by symmetry, the
optimality conditions are:

6



mct = wR
t (10)

0 = (1 − ϵ) + ϵmct − ψ
πt

π

(πt

π
− 1
)

+ Etβt+1
λt+1

λt
ψ

πt+1

π

(πt+1

π
− 1
) yt+1

yt
(11)

where mct is the Lagrange multiplier associated with (7). Equation (11) is the
forward-looking New Keynesian Phillips Curve.

2.3 Monetary and fiscal authorities

We assume that the central bank adjusts the nominal interest rate following a
Taylor rule (bounded by the ZLB) in response to deviations of inflation and
output from their steady-state values:

1 + i∗t = (1 + i∗t−1)
ρi

[
π∗G

β

( πt

π∗

)ρπ
(

yt

y

)ρy]1−ρi

(12)

it = max(i∗t , 0) (13)

where π∗ is the inflation target. In the benchmark model (Model A) π∗ = π.

2.4 Market clearing

The aggregation of individual profits Πt is given by: Πt = ptyt − ntwt −
ptytΓπ

t .

yt

[
1 − ψ

2

(πt

π
− 1
)2
]
= ct (14)

Since zt evolves according to a random walk, we define the stationary vari-
ables as: ỹt = yt/zt, c̃t = ct/zt and λ̃t = λtzt. After rearrangement, the
equilibrium conditions write:

λ̃t = (1 + it)Etβt+1
λ̃t+1

Gzt+1πt+1
(15)

0 = (1 − ϵ) + ϵ
ℓ

λ̃t
− ψ

πt

π

(πt

π
− 1
)

+ Etβt+1
λ̃t+1

λ̃t
ψ

πt+1

π

(πt+1

π
− 1
) ỹt+1

ỹt
(16)

λ̃−1
t = ỹt

[
1 − ψ

2

(πt

π
− 1
)2
]

(17)

7



2.5 Aggregate shock

The aggregate shocks considered in the benchmark model follow an autore-
gressive process2:

βt = β
ρβ

t−1β̄1−ρβ exp(σβεβ,t) with εβ,t ∼ N (0, 1)
mt = mρm

t−1 exp(σmεm,t) with εm,t ∼ N (0, 1)
zt = zρz

t−1 exp(σzεz,t) with εz,t ∼ N (0, 1)
(18)

2.6 Time-varying parameters

We consider two cases: exogenous and endogenous time varying-parameters.
In the first case (Model B), the drift is conducted by a two-states markov pro-
cess. Let st = 1, 2 define the regime. State 1 corresponds to the normal time
monetary policy and state 2 corresponds to the unconventional monetary pol-
icy. The parameters may then take two values:

θ(st) =

{
θ(1) if st = 1
θ(2) if st = 2 (19)

P a transition matrix defining the probability to switch between the two states:

P =

[
p1 1 − p2

1 − p1 p2

]
(20)

and pj is the transition probability P[st = j|st−1 = j]. The state st then evolves
exogenously according to the transition matrix P .

In the second case (Model C), we consider that st has still two states but
evolves endogenously. In particular we assume that the switch from state i
to state j is triggered by the endogenous state variable of the model i.e. the
nominal interest rate it. Formally, we consider the following representation:

st =

{
1 if i∗t > ij

2 if i∗t ≤ ij (21)

where j = 1, 2 is such that the previous state st−1 = j. For instance, start-
ing from an initial state s0 = 1, the monetary policy parameters change if the
nominal interest rate falls below a threshold i1. If that is the case, s1 = 2 and
parameters revert back to their state 1 value if the nominal interest rate be-
comes higher than i2 (which can be different from i1). The above specification

2The monetary shock is defined as an AR(1) process since it is how we write it in the Matlab
program. However, we impose zero persistence during estimation.
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is fairly flexible and captures the potential non linear behavior of the nominal
interest rate. The intuition is that a low interest rate can be reached when the
desired rate i∗t falls dramatically. The decision to switch back to the normal
monetary policy rule may occur not necessarily at the same threshold, reflect-
ing a prudential behavior of the central bank.

3 Solution and estimation method

3.1 Solution method

Several papers document the importance of global solution methods for solv-
ing models with occasionally binding constraints. Braun et al. (2012) find that
local approximation methods involves spurious approximation that have cru-
cial implications for the size of the fiscal multiplier. In this line of research,
Carlstrom et al. (2014) show that the errors from a linear approximation can
be huge when the model allows for a stochastic exit of the fiscal expansion.
Hirose & Inoue (2013) highlight that the estimates of structural parameters can
be biased in an estimated DSGE model where the existence of the ZLB is omit-
ted in the estimation process. The ZLB can not be accurately studied using
linear-approximation methods. We use instead a Parameterized Expectation
Algorithm (PEA) to approximate the solution. It consists in approximating the
conditional expectations of the system using Chebyshev polynomials. These
parametric functions display suitable orthogonality and convergence proper-
ties to minimize the error distance approximation. We consider a third-order
Chebyshev polynomial over a simulated grid. In addition, we use a Cheby-
shev interpolation when considering the Markov-Switching representation for
time-varying parameters. A full description of the algorithm is provided in
the appendix, section A.1.

3.2 Estimation method

We calibrate the elasticity of substitution between goods to 6 which gives a
gross markup 1.2. ℓ is pinned down from Equations (5) and (10) given that
c = y = n = 1 at the steady state and mc = (ϵ − 1)/ϵ from Equation (11). We
estimate the rest of the parameters. In Model A:

ΘA = {ρi, ρπ, ρy, ψ, β̄, π, ρβ, ρm, ρz, σβ, σm, σz}

which amount to 13 parameters. In Model B we have:

ΘB = {ΘA, ρ
i
, ρ

π
, ρ

y
, π∗, p1, p2}
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In Model C, the set of parameters is given by :

ΘC = {ΘA, ρ
i
, ρ

π
, ρ

y
, π∗, i1, i2}

We use the simulated method of moments (hereafter SMM) to estimate the
model’s parameters.

3.2.1 Data

We consider three time series from the US economy: (1) the 3-month treasury
bill, (2) the implicit GDP deflator and (3) the real GDP. The first one is taken
in level. We apply log difference to the second and to the third to get the
inflation rate and the output growth rate. The sample covers the period 1920
Q1 - 2015 Q1. By taking into consideration this long time series we benefit from
further information on the behavior of the nominal interest rate at ZLB to make
comparisons. Figure 2 depicts contour plots of the ergodic distributions of the
interest rate and inflation on the left panel and the interest rate and output
growth on the right panel. We can see that the points are located around the
steady state value and low interest rate episodes are fairly uncommon.
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Figure 2: Data points. Period 1920Q1 - 2015Q1.

3.2.2 Simulated method of moments

The general idea is to find a set of parameter values that minimize the dis-
tance between the unconditional moments of simulated series and the uncon-
ditional moments of the data. This method is particularly suitable for several
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reasons. First, it is fairly easy to implement regarding the non-linear nature of
the problem. Likelihood based-methods (Maximum likelihood and Bayesian
techniques) require specific filters like the particle filter to generate artificial
series for unobservable variables (see Fernández-Villaverde & Rubio-Ramírez
(2008)) and evaluate the likelihood. Such a filter is computationally intensive
because it requires to solve the model a huge number of times. Secondly, mo-
ments matching is relevant in light of the question at hand: is a simple New
Keynesian model able to reproduce infrequent but long ZLB spells? Hence, we add
to our targets a specific set of moments characterizing the ZLB. Thirdly, the
SMM does not requires an identical number of exogenous shocks and endoge-
nous variables as in the likelihood based-methods. As shown by Karamé et al.
(2008), the SMM has fewer requirements and may target a large set of mo-
ments. Ruge-Murcia (2012), show that SMM is computationally efficient and
delivers accurate estimates, even when the simulated series are relatively short.

We target the following moments: (a) the means, (b) the standard devia-
tions, (c) the skewness, (d) the kurtosis, (e) up to fourth-order autocorrelation
and (f) the cross-(lagged) correlations of the three variables. Furthermore, the
behavior of the economy at the ZLB is characterized by (g) the probabilities to
enter and to exit the ZLB, (h) the proportion over time the economy hits the
ZLB and (i) the average duration of the ZLB spells. Therefore, we gauge the
ability of the model to match 57 moments, a difficult task to achieve regarding
the simplicity of the canonical model.

Consider the set of q parameters Θ and a set of p moments Mi, i = d for
observed moments coming from the data and i = s for simulated moments
from the model. The idea is to find the value for the q structural parameters
that minimizes the distance between the set of p moments from the data and
from the model. The problem writes:

Θ̂ = arg min
Θ

f (Θ)′W f (Θ) (22)

where W stands for the weighting matrix and f (.) a function providing the
difference between simulated and empirical moments.

Our estimation strategy differs from Aruoba et al. (2013) and Gust et al.
(2012) in several dimensions. Indeed, the first ones estimate the structural pa-
rameters of the NK model on Japanese and US data over the pre-ZLB period
i.e. until 1994Q4 for Japan and 2007Q4 for the US. For that purpose, they use
the perturbation method and the Bayesian techniques, applying the particle
filter (see Fernández-Villaverde & Rubio-Ramírez (2007)). Contrary to them,
we rely on a full nonlinear procedure and include the ZLB spell which starts
in 2008Q4 in the US. Our objective is to take into account the role of the ZLB
on the estimated value of the structural parameters and the regime-switching.
The second study uses global approximation and applies Bayesian methods.
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They use a surrogate algorithm which nests in the standard linear procedure
(Kalman filter) to evaluate the likelihood function and to pre-estimate the set
of admissible parameters. Thereafter, the proposed parameters are considered
for solving the nonlinear model and for estimation which relies on the particle
filter to evaluate the likelihood function.

4 Results

4.1 Estimated parameters

The values of the parameters are given in Table 1. The first striking result
is that Model A and B have roughly the same parameters3. Our results con-
trast with Bianchi (2013) or Liu et al. (2011) who found - albeit in a different
model - a large gap between the values of monetary policy parameters in the
two regimes. One of the potential explanation is that our estimation proce-
dure relies on the simulated method of moments which target unconditional
moments and include the ZLB episodes. Therefore, having an additional in-
dependent and exogenous shock for the regime switching process does not
help much more because regime shift are triggered randomly over the cycle. If
we think that the regime switching are rather endogenously determined and
triggered when the nominal interest rate falls dramatically, then switching to
a regime during economic bursts lowers the ability of the model to match the
ZLB moments. We come back later on this result.

The estimated value of the discount factor is relatively high in the three
cases and the steady state inflation and output growth point toward a mild
1.5-2 percent value at annual rate. In the three models, the estimation im-
plies a very low price rigidity, less than 40. For instance, in the log-linearized
Phillips curve, the value ψp = 90 corresponds to the traditional Calvo param-
eter of 0.75 when ε = 6. The standard deviation of the shocks are in line with
standard values in the literature. The volatility of the demand shock is found
to be around 0.005 in model A and B and equal to 0.006 in model C. While
the standard deviation of output growth shock is as high as the discount fac-
tor in model A and B, it is half the size in model C. Similarly, the endogenous
time-varying parameter model seems to require less volatility in the monetary
shock. The estimation also implies a strong persistence of the discount factor
shock as compared to the other shocks but the output growth shock is shown
to be more persistent in the model C.

3Our initial guest for Model B parameters in the estimation algorithm was the estimated
value of Model A. Nonetheless the algorithm explore different values and we also use different
values to initialize the parameters.
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Variables Symbol
Model Model Model

A B C
Discount factor β 0.999 0.999 0.998
Steady inflation π 1.004 1.004 1.005
Steady output Growth G 1.004 1.004 1.004
Price rigidity ψp 35.90 36.08 40.005
Std discount shock σβ 0.005 0.005 0.006
Std ouptut growth shock σz 0.005 0.005 0.003
Std monetary shock σm 0.002 0.003 0.001
AC(1) discount shock ρβ 0.850 0.850 0.820
AC(1) output growth shock ρz 0.083 0.084 0.501
AC(1) monetary shock ρm 0.100 0.100 0.098
Interest rate persistence ρi 0.516 0.519 0.199
Response to inflation ρπ 1.458 1.460 1.401
Response to output ρy 0.207 0.209 0.250
Interest rate persistence 2 ρ

i
- 0.520 0.980

Response to inflation 2 ρ
π

- 1.460 1.503
Response to output 2 ρ

y
- 0.210 0.249

Target inflation 2 π∗ - 1.0044 1.020
Prob(st = 1|st−1 = 1) p1 - 0.552 -
Prob(st = 2|st−1 = 2) p2 - 0.446 -
Threshold in state 1 i1 - - 0.000
Threshold in state 2 i2 - - 0.001

Table 1: Estimated structural parameters. Model A: benchmark model, Model B:
exogenous time-varying parameters, Model C: endogenous time-varying parameters.
The targeted inflation in regime 1 is the steady state inflation π

Last but not least, the monetary and the regime switching parameters differ
substantially in the three models. While the interest rate persistence is at the
middle of standard values in calibration exercises in Model A and B, it is found
to be very low in regime of Model C. However, in the latter, the persistence
increases up to 0.98 in regime 2, leading to an average balanced value. The
response to inflation and output deviation are similar among the three models
and do not exhibit a significant change between regime one and two. On the
other side the inflation target is the same among the regimes in model B while
it strongly differs in model C. Its value is found to be way higher4 than in
regime 1. This result push in favor of an endogenous time-varying inflation
target and not only a time-varying response of the interest rate to inflation
and output as in Bianchi (2013). The Model B implies a slight difference in
the transition probabilities with regime 1 being more likely than regime 2. In

4Since the inflation target appears two times in the Taylor rule, the overall coefficient is
1/π∗ρπ−1 which is a decreasing function of π∗. Therefore, when π∗ is high the inflation target
is low since ρπ > 1.
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model C the interest rate thresholds are centered around the ZLB. The switch
from regime one to regime two is at the ZLB while the threshold is a bit higher
in the opposite direction. This last result implies a small prudential policy
characterized by the will to keep low interest rate for a prolonged period of
time when the regime two is visited.

4.2 Moments comparisons

We now discuss the model’s ability in reproducing key moments of macroe-
conomic variables. Results are shown in Table 4.2, Figure 3 and 4 and Table
3. Since Model A and B are strongly similar, we only present and discuss the
simulations from Model A and C and report in the separate appendix the sim-
ulations form Model B.

The models matches well the observed behavior of the nominal interest
rate in terms of mean and volatility. The skewness is of the right sign and the
kurtosis is fairly close in the short sample. The confidence interval of the kur-
tosis does not encompasses the observed value for the long sample but is not
completely away from the observed value. On the other side, the persistence
is not as high as in the data either in Model A or Model C.

The model has more difficulties to reproduce the cyclical behavior of in-
flation and output growth. The model assign zero probabilities in capturing
the observed mean of πt and ∆yt albeit the confident interval are not so far in
model C. The volatility of inflation implied by the model is almost five time
lower than the observed one over the sample. This is not surprising regarding
the record of huge inflation during the fifties and, to some extent, during the
seventies. The data are more stable since the eighties, easing the model to gen-
erate sufficient volatility of inflation. On the other side, the volatility of output
growth is more easily reproduced, especially in model A.

The skewness is shown to be of the right sign for inflation in Model A while
Model C assign more probability to a positive skewness. Model A and C assign
both a positive skewness for output but the credible set does not rule out a
negative one. The tail of the distribution shows that inflation is widely spread
in the data, a target that is difficult to match in the model. The models slightly
underpredicts the kurtosis of output growth.

Interestingly, the correlations are not so bad regarding the simplicity of the
models. Model A did a good job in reproduction the cross-lagged correlation
between inflation and output growth as well as the correlation between inter-
est rate and output growth. The correlation between interest rate and inflation
has the good shape but is too strong when compared to the data. In Model C,
the three types of correlations are well reproduced. Last but not least the per-
sistence are well reproduced except for the output growth. One of the reason is
that the model does not have any mechanism that cause sluggish adjustments
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of output like habits in consumption.

Variables
Data Model Model Model

1921Q1-2015Q1 A B C
MEAN

it 3.48 3.11 3.10 3.51
[ 2.46, 4.13] [ 2.45, 4.14 ] [ 2.34, 4.78 ]

πt 2.61 1.20 1.19 2.20
[ 0.79, 1.70] [ 0.77, 1.70 ] [ 1.94, 2.45 ]

∆yt 3.44 1.92 1.93 1.70
[ 1.70, 2.15] [ 1.72, 2.17 ] [ 1.46, 1.96 ]

STANDARD DEVIATION

it 3.02 2.60 2.62 2.96
[ 2.16, 3.03] [ 2.17, 3.06 ] [ 2.41, 3.40 ]

πt 5.16 1.48 1.50 0.97
[ 1.06, 1.87] [ 1.07, 1.89 ] [ 0.76, 1.22 ]

∆yt 2.03 1.73 1.76 1.30
[ 1.49, 2.00] [ 1.51, 2.04 ] [ 1.13, 1.51 ]

SKEWNESS

it 1.02 0.53 0.55 0.41
[ 0.09, 0.96] [ 0.10, 0.96 ] [ -0.07, 1.07 ]

πt -0.55 -1.21 -1.22 0.27
[ -1.90, -0.36] [ -1.91, -0.37] [ -0.48, 1.00 ]

∆yt -0.73 0.07 0.07 0.11
[ -0.27, 0.45] [ -0.27, 0.45 ] [ -0.15 0.39 ]

KURTOSIS

it 4.24 2.61 2.61 2.31
[ 1.87, 3.63] [ 1.88, 3.64 ] [ 1.84, 3.35 ]

πt 13.74 6.01 6.00 4.13
[ 3.04, 9.94] [ 3.04, 9.95 ] [ 2.84, 5.75]

∆yt 6.68 4.20 4.21 3.53
[ 3.07, 5.58] [ 3.08, 5.61 ] [ 2.90, 4.34]

F 143.433 142.376 130.282
dist 0.555 0.553 0.529

Table 2: First to fourth-order moments After estimating, the model is simulated 10000
times over N = 376 quarters horizon. N being the number of observations. We keep 95% of
the moments computed on each bootstrap simulations to build confident intervals (in brackets).
F stands for the F-value obtained in the estimation. It is equal to F = f (Θ)′W f (Θ). dist =
||ms − md||/||md|| stands for the relative difference between simulated moments (ms) and
data moments (md).
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Figure 3: Correlations and autocorrelation. Model A vs data.
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Figure 4: Correlations and autocorrelation. Model C vs data.
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We now investigate the model’s ability to reproduce the spells and the fre-
quency of ZLB episodes. Our first target is the ratio of the average time spent
at the ZLB over the total observation length. The data is characterized by two
major ZLB spells that are fairly distant from one another, leading to a ratio
of 15%. This ratio is well reproduced by the model and even overestimated.
The confident interval is wide and admits values that range from 5% to more
than 30% in Model A and to more than 40% in Model C. The second target, the
mean duration of a ZLB spell is 11.6 quarters in the data. It should be noted
that the longest ZLB spell is about 25 quarters (Great Recession5). This target is
far from being satisfied in Model A. Indeed, the model only generates a mod-
est value of 4 quarters. In Model A, the maximum duration we obtain in our
simulations lasts 28 quarters but this even is extremely unlikely as shown by
the confidence interval. Model C reproduce fairly well a typical ZLB duration.
The key mechanism is that the regime switching leads to a brutal decline in
the inflation target together with a very persistent nominal interest rate. Dur-
ing a demand driven recession, the desired interest rate falls strongly thanks
to the low interest rate persistence in regime 1. The regime then switches to a
more prudential case (regime 2), leading to a desired interest rate below zero
for a prolonged period of time. It follows that the probability to leave the zero
lower bound P(it > 0|it−1 = 0) is very unlikely as in the data. In Model A and
B, this statistic is around 0.23 while in the data it is estimated around 0.07. The
fall in the desired interest rate below zero only lasts for a few period until the
next trend reversal.

The probability to leave the ZLB is crucial for the policy analysis in DSGE
models because underestimating the duration of the ZLB may lead to spurious
conclusions about the conduct of monetary policy. This result echoes the study
of Chung et al. (2012). They tackle the underestimation of the probability to
hit the ZLB for models’ ability to forecast the nominal interest rate during the
Great Recession. However, from a pure frequentist perspective, this probabil-
ity defined as P(it = 0|it−1 > 0), is shown to lie between one and two percent
at quarterly frequencies in the data. Despite having a fairly long sample for
the nominal interest rate that includes the last recession, ZLB episodes are ob-
viously infrequent. Hamilton et al. (2015) survey the behavior of the nominal
interest rate in many OECD economies back to the 19th century to 2014. Ex-
cept for the US economy - which experienced a low interest rate during the late
thirties - the liquidity trap is a relatively new situation. Indeed, apart from the
US, none of the countries they presented hit the ZLB before the Japan economy
at the end of the nineties.

The canonical New Keynesian model does a decent job in matching the

5Our data set stops in 2015 Q1 but at the time we write these lines (January 2016) the
nominal interest rate seems to leave the zero floor, implying a ZLB spell of 28 quarters. This
does not imply strong difference.
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probability of entering a liquidity trap situation. It even predicts a value slightly
above the observed one. Then, why should we be concerned about this statis-
tic? We argue that the focus should be placed on the exit rate of the liquidity
trap, not only the entry rate. Indeed, the simulated probability of leaving the
liquidity trap in the canonical New Keynesian model is way higher than what
is observed in the data, leading to short ZLB spells. To overcome this issue the
proposed endogenous time-varying parameters specification did a very good
job in capturing the essential feature of the ZLB.

Variables
Data Model Model Model

1921Q1-2015Q1 A B C
Proportion ZLB 0.15 0.21 0.22 0.24

[ 0.08, 0.32] [ 0.09, 0.33 ] [ 0.06 , 0.47 ]

Mean ZLB duration 11.60 4.29 4.34 11.02
[ 2.56, 7.08] [ 2.57, 7.13 ] [ 4.09, 27.00 ]

P(it > 0|it−1 > 0) 0.98 0.94 0.94 0.97
[ 0.90, 0.97] [ 0.90, 0.97] [ 0.94, 0.99]

P(it = 0|it−1 > 0) 0.02 0.06 0.06 0.03
[ 0.03, 0.10] [ 0.03, 0.10] [ 0.01, 0.06]

P(it > 0|it−1 = 0) 0.07 0.23 0.23 0.09
[ 0.15, 0.40] [ 0.14, 0.39 ] [ 0.04, 0.22]

P(it = 0|it−1 = 0) 0.93 0.77 0.77 0.91
[ 0.60, 0.85] [ 0.61, 0.86 ] [ 0.78, 0.96]

Table 3: ZLB moments. After estimating, the model is simulated 10000 times over N = 376
quarters horizon.N being the number of observations. We keep 95% of the moments computed
on each bootstrap simulations to build confident intervals (in brackets).

Last but not least, we report two statistics that are useful for models’ com-
parison (see the last two lines of Table ). The first statistic labeled F is at the core
of estimation procedure and the algorithm consists in minimizing it. Then the
lower, the better. The second one is a summary of the distance between mo-
ments from the data and from the model. It is slightly different from the first
one as it does not use any weighting matrix. Not surprisingly, Model A and B
are fairly similar in terms of performance. Model C however seems to be more
consistent with the data and provides a better data generating process.

4.3 Fore/past-casting

As mentioned previously, the occurrence of a liquidity trap is a rare event.
The use of past values to forecast the nominal interest rate makes the probabil-
ity to enter and to leave the ZLB extremely unlikely, especially if the data set
only covers the Great moderation. As shown by Chung et al. (2012), the diffi-
culties encountered by central bankers and professional forecasters lies in the
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duration of the ZLB spells. Most of the scenarios during 2009 and 2010 point
toward an exit from the ZLB in the near future.

An alternative way of assessing the model’s performance is to look how
good it predicts the path of the variables. In particular we wonder if the model
would have been able to predict the prolonged ZLB episode during the Great
Recession. In order to investigate this issue, we simulate the model using the
smoothed shock series until the beginning of the Great Recession. Thereafter
we use a bootstrap procedure to generate potential trajectories and compare
it to the observed ones. To be consistent with other studies, we start our fore-
cast in 2009Q3. It should be noted that we use estimated parameters for this
exercise. At a first glance this strategy may seem inappropriate since we use
parameters estimated on a sample covering the Great Recession in order to
forecast exactly the Great Recession. However, by doing so we provide the
model the best information available to generate a consistent nominal interest
rate trajectory. If the model is not able to make it, there is no reason to believe
that without such information the model will do better. In that case, we can
reject the structural model. Otherwise, it does not necessarily mean that the
model is a good data generating process but it has the potential and additional
tests are required.
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Figure 5: Model projections 2009Q3 - Model A. The smoothed shock series
is used until 2009Q3 to simulate the model. Thereafter, we perform a forecast from
2009Q3 to 2015Q1 using stochastic simulations in order to generate future path for
the variables. We use 10000 bootstraps simulations. The light gray shaded area corre-
sponds to the 80% confident interval and the dark gray shaded area to 50% confident
interval.
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Figure 6: Model projections 2009Q3 - Model B. The smoothed shock series is
used until 2009Q3 to simulate the model. Thereafter, we perform a forecast from
2009Q3 to 2015Q1 using stochastic simulations in order to generate future path for
the variables. We use 10000 bootstraps simulations. The light gray shaded area corre-
sponds to the 80% confident interval and the dark gray shaded area to 50% confident
interval.

Results are reported in Figures 5 and 6. It is shown that a prolonged period
of low interest rate is rather unlikely in the canonical New Keynesian model.
The simulations show that the most likely scenario in 2009Q3 is a rapid takeoff
of the interest rate. A three years period of low interest rate is not ruled out
with 50% chance. Due to the high standard deviation of the shocks the credi-
ble set is fairly large and allows for the scenario, albeit extremely unlikely, of
a ZLB spell until 2015Q1. The projection does encompass most of the realiza-
tions of inflation at 80% chance but the most likely scenario underestimate the
observed path of inflation. The same is true for output growth which returns
to its normal level very quickly. On the other side, Model C predict with 100
percent chance a ZLB episode from 2009Q3 to 2012Q1. The most likely sce-
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nario is the one we observed i.e. a ZLB episode that lasts until 2015Q1. The
regime shift is detected exactly in 2009Q3. Furthermore, Model C better pre-
dicts the subsequent rise in inflation in 2012 but overestimates it for the very
end of the sample.

4.4 Driving forces behind business cycle fluctuations

In this section we investigate the respective role of shocks, the ZLB and the
regime switching in explaining the fluctuations of macroeconomics variables.
To do that we perform several counterfactual exercises.

4.4.1 Shock decomposition

Which shock better explains the path of aggregate variables? For this exercise
we first extract the smoothed shock series given the observable variables. The
computation is fairly straightforward because we have three shocks and three
observable variables. However, since the model in highly non linear one has to
rely on a Newton algorithm instead of the popular Kalman filter. As shown in
Figure 7 the model has no difficulties in reproducing the exact path of the vari-
ables since 1921Q1 despite the huge volatility in inflation and output growth
during the 30s and 40s.
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Figure 7: Time series.

Let’s first analyze the behavior of the shocks. In the spirit of Fernández-Villaverde et al.
(2015), the smoothed shock series we obtain from model A are depicted (see
Figure 8) against the different periods at the Federal Reserve. While our model
is different from their, we find similar salient features concerning the monetary
shock. In particular we observe a fall in the monetary shock at the beginning
of the Burns’ period (70-79) and a rapid upward adjustment during the 80s
and consistent with the Volcker disinflation period. We also find a more stable
period during the Greenspan tenure without any major policy change. The
Bernanke tenure is characterized by a drop in the monetary policy shock dur-
ing the year 2008 and the subsequent periods, explaining a part of the decline
in the interest rate and it’s prolonged period at the ZLB. The remaining part
that explains the low the interest rate lies in the rise in the discount factor shock
until the Yellen tenure.

In Model C (see Figure 19) we observe a similar pattern in the shock series
until the Bernanke period. The major difference is that the monetary shock
is completely shut down when the interest rate reached the ZLB. In fact, the
regime switching detected in 2009Q3 involves sufficient propagation mecha-
nisms to keep the nominal interest rate at a the ZLB until 2015Q1. The model
therefore need less adverse demand shocks to reproduce the nominal interest
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rate path, which is more consistent with the US recovery since 2010.
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Figure 8: Smoothed shocks. Model A
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Figure 9: Smoothed shocks. Model C

Which shock better explains the recent macroeconomic fluctuations? To
address this question, we simulate the model using the smoothed shocks pre-
viously calculated. To disentangle the contribution of each shock we simulate
three alternative trajectories corresponding to a single shock. Figure 10 and 11
shows that the discount shock plays a major role in explaining inflation vari-
ations, especially the mild deflation observed in 2009. The monetary shock
seems to account for a small share while the output growth shock has virtu-
ally no impact on inflation. The same is true for the nominal interest rate where
the path implied by the discount factor shock is close to the observed one. The
monetary shock tends to reduce the nominal interest rate slightly during the
ZLB spell. Finally, it seems that the output growth shock and the discount
shock plays in opposite direction to produce the observed variation in output.
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Figure 10: Decomposition of shocks to the variations of the endogenous
variables. Model A
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Figure 11: Decomposition of shocks to the variations of the endogenous
variables. Model C

4.4.2 The importance of the ZLB and regime switching

To what extent does the ZLB explain the deepness of a recession? To answer
this question, we simulate the model using the smoothed shock series pre-
viously obtained but we drop the ZLB constraint. In other words we show
what would have been the path of the variable if the effective rate was the de-
sired rate. Results are reported in Figure 12 and in Figure 13. In model A and
C, it seems that the ZLB does not have a strong impact on output nor on infla-
tion. The nominal interest rate would have remained slightly below the ZLB in
the two models. This results echoes to a companion paper Albertini & Poirier
(2015) where we find that while the unemployment rate is strongly affected by
the ZLB, the inflation rate is not impacted so much.
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Figure 12: Counterfactual analysis. Model A

Last but not least, we wonder what is the impact of the regime switching
in Model C. To investigate this issue, we perform two counterfactual analysis.
In the first one we wonder what would have been the path of the variable in
the absence of the time-varying parameters. In Model C we force the model to
remain in the same regime, i.e. regime 1. The second case raises the question:
how would have behave the variables if the regime 2 was triggered earlier?
We force the model to triggered regime 2 at the very beginning of the crisis, i.e.
in 2008 Q1.

The results presented in Figure 13 shows that a not having changing the
monetary policy rule in 2009Q3 would have implied an economic relapse char-
acterized by lower inflation and a deflation in 2011Q4 similar in magnitude to
the one in 2009 Q2. The impact on output growth is more ambiguous. It would
have been lower on average until 2011Q4 and spikes in 2012Q1. The nominal
interest rate would have been about 2 pp on average and seems to fall to the
ZLB at the very end of the sample.

The last case - an earlier switch to regime 2 - have opposite effects on infla-
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tion. It would have generated much more inflation that the observed on but
the resulting output growth would have been similar on average. The nominal
interest rate would have hitting the ZLB earlier and would have remained low
until 2015. We conclude that if goal was to avoid an economic relapse caused
by a fall in inflation the monetary policy did a good job in keeping low inter-
est rate. However, a policy reducing the interest rate to the ZLB earlier would
even have been better in terms of higher inflation.
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Figure 13: Counterfactual analysis. Model C

5 Conclusion

The novelty of the present paper is to investigate if the New Keynesian model
is able to generate infrequent and long ZLB spells. While the canonical model
fails to generate these two crucial statistics, a model that embed endogenous
time-varying parameters performs very well. It is more able to match the data
and to predict a prolonged ZLB spells that the US economy experienced fol-

29



lowing the Great Recession. The key point is that the regime switching of the
monetary policy rule is not triggered randomly but is triggered when the econ-
omy is in a special state. This state is characterized by a low interest rate. The
monetary policy switches to a regime where the target inflation is lower and
the interest rate extremely persistent. This state lasts until the nominal inter-
est rate is slightly above zero. Our counterfactual analysis suggests that such
policy is prudential and have avoid an economic relapse with deflation.

The model is of course too stylized to characterized the behavior of the
nominal interest rate. For now, what we think it is missing is the behavior of
the labor market. For instance, the 30th January 2013 in the FOMC, Janet Yellen
declare “the Committee decided to keep the target range for the federal funds rate at 0
to 1/4 percent and currently anticipates that this exceptionally low range for the fed-
eral funds rate will be appropriate at least as long as the unemployment rate remains
above 6-1/2 percent, [...]”. More recently, she states “To support continued progress
toward maximum employment and price stability, the Committee today reaffirmed its
view that the current 0 to 1/4 percent target range for the federal funds rate remains
appropriate.”. The labor market seems to be important in determining the path
of the interest rate, especially because of it’s non linear behavior. There is cer-
tainly a regime switching behind the monetary policy but this one may also
strongly depend on the interest rate. This is in our agenda for future research.
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A Data

Variables Type Source Code

Nominal interest rate

Rate, 3 month Federal Reserve

TB3MStreasury bill, Bank of St. Louis
Monthly, Not s.a (FRED)
1934M1 - 2015M12

Nominal interest rate

U.S. Yields On Short-Term NBER

m13029aStates Securities historical data
3-Month Treasury
1920M1 - 1934M3

Output
Quantities, s.a, Bureau of Economic Table 1.1.3Index numbers, 2005 $ Analysis (BEA)
1947Q1 - 2015Q4

Output
Quantities, s.a, Gordon (1986) RGNP72

Index numbers, 1972 $
1920Q1 - 1946Q4

Gross inflation rate

Rate, GDP: Implicit Price Federal Reserve

GDPDEFDeflator, Quarterly. s.a Bank of St. Louis
Index 2005=100, Growth (FRED)
1947Q1 - 2015Q4

Gross inflation rate

Rate, GNP: Implicit Price NBER q04216aDeflator, Quarterly. s.a historical data
Index 1972=100, Growth Gordon (1986) GNPD721920Q1 - 1946Q4

Table 4: Data source and definitions. When merging data from FRED and from NBER
we re-scale NBER data so as to get a consistent series.

B Model equations

B.1 Full set of equations

• Euler equations:
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λt =
1
ct

(23)

λt = (1 + it)Etβt+1
λt+1

πt+1Gzt+1
(24)

• Output:

yt = nt (25)

• Marginal cost:

mct = wt (26)

• Real wage:

wt = ℓct (27)

• New Keynesian Phillips Curve (NKPC):

0 = (1 − ϵ) + ϵmct − ψ
πt

π

(πt

π
− 1
)

+ Etβt+1
λt+1

λt
ψ

πt+1

π

(πt+1

π
− 1
) yt+1

yt
(28)

• Taylor rule:

1 + i∗t = (1 + i∗t−1)
ρi

(
Gπ

β

(πt

π̄

)ρπ
(

yt

y

)ρy)1−ρi

mt (29)

it = max(i∗t , 0)

• Market clearing:

yt

[
1 − ψ

2

(πt

π
− 1
)2
]
= ct (30)

• Shocks:

βt = β
ρβ

t−1β̄1−ρβ exp(σβεβ,t) with εβ,t ∼ N (0, 1) (31)

zt = zρz
t−1 exp(σzεz,t) with εz,t ∼ N (0, 1) (32)

mt = mρm
t−1 exp(σmεm,t) with εm,t ∼ N (0, 1) (33)
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B.2 Compact form

Let define the expectation functions:

Φ1
t = Etβt+1

λt+1

πt+1zt+1
(34)

Φ2
t = Etβt+1λt+1ψ

πt+1

π

(πt+1

π
− 1
)

yt+1 (35)

Combining Equations (26), (27) and (30) gives:

mct = ℓyt

[
1 − ψ

2

(πt

π
− 1
)2
]

(36)

Combining Equations (23) and (30) gives:

λt =
1

yt

[
1 − ψ

2

(πt
π − 1

)2
] (37)

Plugging Equations (36) and (37) in (28):

0 = (1 − ϵ) + ϵmct − ψ
πt

π

(πt

π
− 1
)

+ Etβt+1λt+1yt

[
1 − ψ

2

(πt

π
− 1
)2
]

ψ
πt+1

π

(πt+1

π
− 1
) yt+1

yt

which gives after some rearrangement:

yt =
1
ϵℓ

[
ϵ − 1 + ψ πt

π

(πt
π − 1

)
1 − ψ

2

(πt
π − 1

)2 − Φ2
t

]
(38)

Plugging Equations (30) in (24) leads:

(1 + it)Φ1
t =

G

yt

[
1 − ψ

2

(πt
π − 1

)2
] (39)

For a given vector of state variable and expectation functions, the model can be
summaries by a single equation whose unknown is πt by plugging the nomi-
nal interest rate rule (Equations (29)), the output definition (Equation (38)) in
(39):
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• Unconstrained case

(1 + i∗t−1)
ρi

(
Gπ

β

(πt

π̄

)ρπ
(

yt

y
zt

)ρy)1−ρi

mtΦ1
t

=
ϵℓG

ϵ − 1 + ψ πt
π

(πt
π − 1

)
− Φ2

t

[
1 − ψ

2

(πt
π − 1

)2
] (40)

• Constrained case

Φ1
t =

ϵℓG

ϵ − 1 + ψ πt
π

(πt
π − 1

)
− Φ2

t

[
1 − ψ

2

(πt
π − 1

)2
] (41)

C Solution method

In order to explicitly take into account the non-linearity induced by the ZLB,
we use a projection method: Parameterized Expectation Algorithm (PEA). It
consists of approximating the conditional expectations of the system previ-
ously described using Chebyshev polynomials. These parametric functions
display suitable orthogonality and convergence properties to minimize the er-
ror distance approximation. We consider a third-order Chebyshev polynomial
over a fixe complete grid. Our strategies is accurate because we use a Newton
Algorithm checking for the ZLB. Then, one can approximate kinks in all de-
cision rules accurately. We first present some numerical technics that will be
helpful for the understanding of the general algorithm6.

C.1 Some useful notations and operators

Throughout the algorithm we will use the following notations and operators.

• In is a n x 1 column vector whose elements (cells) are each equal to one.

• 1{cond} is an indicator variable taking the value 1 if the condition is satis-
fied and zero otherwise.

• ⊗ stands for the Kronecker product.

• ◦ stands for the Hadamar product (or Schur product). It is an element by
element product. If A and B are two matrices of the same dimension with aij

6This appendix does not intend to be a mathematical note on the algorithm but a general
description on the way the model is solved using Matlab. For this reason, many variables will
be treated as vectors or matrices, as it is the case in Matlab.
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and bij being the elements of A and B respectively and i = 1, ..., I, j = 1, ..., J,
the Hadamar product of A and B is equal to:

A ◦ B =


a11b11 a12b12 . . . a1Jb1J
a21b21 a22b22 . . . a2Jb2J

...
... . . . ...

aI1bI1 aI2bI2 . . . aI JbI J


• D is the approximation order of the Chebyshev polynomial.

• K is the number of state variables.

• Kx is the number of exogenous state variables.

• Kn is the number of endogenous state variables.

• C is the number of control variables.

C.2 Preliminary results on Chebyshev functions

To approximate the unknown functions, the expectations and the policy rules,
we use Chebyshev polynomials. The domain of Chebyshev polynomials is the
interval [-1, 1]. We will see later on how to manage an [a, b] interval. Let D be
the approximation order of the Chebyshev polynomial. With one state variable
x, the Chebyshev polynomials of order d is built according to the following
recursion:

Td+1(x) = 2x Td(x)− Td−1(x)

with T0(x) = 1 and T1(x) = x. Applying the trigonometric identities Td(cos(x)) =
cos(nx) where cos(nx) is an orthogonal sequence on [0, 2π], the d-th member
of the polynomial is

Td(x) = cos(d arccos(x))

The complete Chebyshev polynomial of a variable x writes:

Φ(φ(x), θ) =
D

∑
d=0

ϕdTd(x)

where
φ(x) = 2

x − a
b − a

− 1

a and b are the minimum and the maximum bounds of the ergodic distribution
of the variable x respectively. Then, φ(x) maps x in the interval [-1,1]. ϕd are
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the parameters that we have to determine to find the policy rules. When the
number of state variables is higher than one, we have to build a multidimen-
sional Chebysev polynomial. In the complete base approach, the product of
polynomial terms must have an order not higher than D. Let K be the number
of state variables such that x = {x1, x2, ..., xK}. The multidimensional Cheby-
shev polynomial writes:

Φ(φ(x), ϕ) =
D

∑
d1=0

...
D

∑
dK=0

ϕd1...dk
1{∑K

s=1 ds≤D}

K

∏
k=1

Tdk
(φ(xk))

Where 1 is a variable taking the value 1 if the product of the {d1, ..., dD}-
th member of the polynomial has a total order ∑K

s=1 ds not higher than D and
0 otherwise. For instance, in our model we assume third-order Chebyshev
polynomials with four state variables. For each control variable ȷ = 1, ..., C the
policy rule writes7:

Φȷ(φ(∆t), ϕ) = ϕ
ȷ
1 + ϕ

ȷ
2 φ(it−1) + ϕ

ȷ
3 cos(2 arccos(φ(it−1)))

+ ϕ
ȷ
4 cos(3 arccos(φ(it−1))) + ϕ

ȷ
5 φ(nt−1)

+ ϕ
ȷ
6 φ(nt−1) cos(2 arccos(φ(it−1))) + ...

The Chebyshev polynomial has ∑D
d1=0 ... ∑D

dK=0 1{∑K
s=1 ds≤D} elements. It should

be noted that the Chebyshev polynomial obeys the continuous orthogonality
relationship: ∫ 1

−1
Ti(x)Tj(x)

√
(1 − x2)dx = 0, for all i ̸= j

This property states that the Chebyshev polynomials are orthogonal on [-1,1]
with respect to the inner product defined by the weighting function:

√
(1 − x2).

C.3 Grid of the state variables

After describing the polynomials basis, one has to build the grid on which the
polynomials will be projected. There are many different methods encompass-
ing different sub-routines for that. Two major strategies have emerged in the
PEA literature: (1) fix grid methods and (2) simulated grid methods. While
both are very accurate and have good convergence properties, the first one has
the disadvantage of being cumbersome when the number of state variables is
high. Indeed, the fix grid methods consist in building a multidimensional grid
of the state variables mapping all the different combinations. The size of the

7For the sake of clarity, we normalized the subscript of coefficient θ.
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grid increases exponentially with the number of state variables, leading the
the popular curse of dimensionality problem. Alternative fix grid method like
the Smolyak collocation method (see Judd (1998), Malin et al. (2011)) improves
the speed of resolution because the size of the grid only increase polynomially
with the number of state variables. However, it makes the convergence more
difficult in a model characterized by occasionally binding constraints. With
several state variables, we rely on the simulation based-methods. The idea is
to use simulations to approximate the ergodic measure of the solution. We
cover the support of the constructed ergodic measure with a simulated grid.
Because the simulation points will be use as a grid for evaluating the polyno-
mials, we only consider area of the state-space that are visited in equilibrium
and disregard the area that are never visited. This methods is borrowed from
Judd et al. (2012) and is referred as time iteration method.

Let defined a sequence for the exogenous shocks by {ε j}T
t=0, j = 1, ..., Kx.

Given autocorrelation coefficients and standard deviations, the stochastic pro-
cesses are built using the recursive structure:

xj,t = x
ρj
j,t−1x

1−ρj
j exp(σjε j) j = 1, ..., Kx

The difficult task is to get a sequence of the endogenous state variable: it in
our model. Since it depends on inflation (in the compact model), one has to
solve at each time for inflation given an initial guess for expectations, an initial
value of the endogenous state variable it−1 and the value of the shocks at time
t.

C.4 General algorithm (Model A)

Step 1 Choose the order of the Chebyshev polynomial D and build the multidimen-
sional Chebyshev polynomials using:

Tn(x) = cos(n arccos(x))

Step 2 Get a sequence of shock {ε j}T
t=0 and build the stochastic processes {jt}T

t=0,
j = β, m, z

Step 3 Initialize the sequence of the nominal interest rate using its deterministic
steady state value. We therefore have a matrix of state variables St with T lines and K
columns.

Step 3 Initialize the expectations function coefficients Θ. In our case, we only set
the coefficients associated to the constants to be equal to their deterministic steady
state8. The rest being equal to zero.

8It is possible to use a log-linear or a perturbation method to initialize the coefficients. But
the algorithm converges anyway.
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Step 4: Iteration: For t = 2 : T,
a) Given Θ, compute the expectation functions Φ(φ(St); Θ), φ(.) maps the state vari-
ables in a [−1; 1] interval.
b) Given Φ(φ(St); Θ), i∗t−1 and the stochastic processes at time t, compute inflation πt
from Equation (40) using a Newton algorithm with a convergence criterion 10e − 10.
c) Given πt, compute output from Equation (38) and the nominal interest rate from
the Taylor rule.
d) Check if the nominal interest rate falls below the ZLB. If not, keep πt previously
calculated. Otherwise, re-calculate9 πt according to Equation (41) as well as yt, ct
and λt.

Step 5 Given the sequence of endogenous state variables {St}T
t=0 and control vari-

ables {Ct}T
t=0, compute the sequence of expectation terms:

Φ1
t = βt+1

λt+1

πt+1zt+1

Φ2
t = βt+1λt+1ψ

πt+1

π

(πt+1

π
− 1
)

yt+1

Step 6 Given the sequence of state variable {St}T
t=0 we can compute the sequence of

polynomial basis {Xt}T
t=0 = {φ(St)}T

t=0 and use ordinary least squares to calculate
the new coefficients Θ′:

Θ′ = (X′
tXt)

−1(X′
tΦt)

Step 7 Check if the coefficients are the same using an Euclidian norm and a conver-
gence criterion (10−8 in our algorithm). Formally, it writes

|Θ′ − Θ|
|Θ| ≤ 10−8

Otherwise, defined Θ = Θ′ and return to step 4. Repeat this procedure until conver-
gence.

C.5 General algorithm (Model B)

When some parameters follow a markov process we need to compute two
policy rules and combine them to calculate the expectation functions. Recall

9For this step, it should be noted that we don’t have to use a Newton algorithm since we
face a quadratic equation that have two solutions. A standard solution of low inflation and
another solution implying a deflationary trap (see Schmitt-Grohé & Uribe (2009). However,
the algorithm never falls in the deflationary trap which calls for about minus 100% inflation, a
highly implausible value.
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however that we only have one expectation function for each forward equa-
tion. The switch from state 1 to state 2 is compute using a uniform shock εs

t ∼
U(0, 1) and the transition matrix P to check whether the draw is lower than the
corresponding probability given in P . The following step are added/modified
in the general algorithm of Model A:

Step 3b: Initialize the state s0 = 1,

Step 4: Iteration: For t = 2 : T,
a) Compute the next period state st given st−1 using the shock εs

t and the matrix of
coefficient P .
b) Given Θ, compute Φ(φ(St); Θ).
c) Given Φ(φ(St); Θ), i∗t−1 and the stochastic processes at time t, compute inflation
πt(st) from Equation (40) using a Newton algorithm with a convergence criterion
10e − 10. πt(st) is calculated in the two regimes st = 1, 2.
d) Given πt(st), compute output from Equation (38) and the nominal interest rate
i∗t (st) from the Taylor rule.
d) Check if the nominal interest rate falls below the ZLB. If not, keep πt(st) previ-
ously calculated. Otherwise, re-calculate πt(st) according to Equation (41) as well as
yt(st), ct(st) and λt(st).

Step 5 Given the sequence of endogenous state variables {St}T
t=0 and control vari-

ables {Ct(st)}T
t=0, compute the sequence of expectation terms:

Φ1
t (st) = βt+1

λt+1(st+1)

πt+1(st+1)zt+1

Φ2
t (st) = βt+1λt+1(st+1)ψ

πt+1(st+1)

π

(
πt+1(st+1)

π
− 1
)

yt+1(st+1)

and

Φ1
t = P(st, 1)Φ1

t (1) + P(st, 2)Φ1
t (2)

Φ2
t = P(st, 1)Φ2

t (1) + P(st, 2)Φ2
t (2)

C.6 General algorithm (Model C)

We now describe the algorithm when the monetary policy rule parameters de-
pend on the value of the desired nominal interest rate. Step 4 is modified as
follow:

Step 4: Iteration: For t = 2 : T,
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a) Compute the next period state st given st−1 and conditional on whether i∗t > ist or
not.
b) Given Θ, compute Φ(φ(St); Θ).
c) Given Φ(φ(St); Θ), i∗t−1 and the stochastic processes at time t, compute inflation
πt(st) from Equation (40) using a Newton algorithm with a convergence criterion
10e − 10. πt(st) is calculated in the two regimes st = 1, 2.
d) Given πt(st), compute output from Equation (38) and the nominal interest rate
i∗t (st) from the Taylor rule.
d) Check if the nominal interest rate falls below the ZLB. If not, keep πt(st) previ-
ously calculated. Otherwise, re-calculate πt(st) according to Equation (41) as well as
yt(st), ct(st) and λt(st).

Step 5 Given the sequence of endogenous state variables {St}T
t=0 and control vari-

ables {Ct(st)}T
t=0, compute the sequence of expectation terms:

Φ1
t (st) = βt+1

λt+1(st+1)

πt+1(st+1)zt+1

Φ2
t (st) = βt+1λt+1(st+1)ψ

πt+1(st+1)

π

(
πt+1(st+1)

π
− 1
)

yt+1(st+1)

and

Φ1
t = F (st, 1)Φ1

t (1) +F (st, 2)Φ1
t (2)

Φ2
t = F (st, 1)Φ2

t (1) +F (st, 2)Φ2
t (2)

with transition matrix F equal to

F =

[
f1 1 − f2

1 − f1 f2

]
(42)

Note that f1 and f2 are endogenously determined and are calculated at each loop of the
algorithm. The calculation of the transition probabilities is described in Section D.

D Simulations

D.1 ZLB moments

D.1.1 Transition probabilities

To estimate the probability of moving from one state to another we use the
Maximum likelihood function. Assuming ĩ corresponds to the case where it is
above the ZLB, the states of the Markovian matrix are : {0, ĩ}. We denote by p
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the transition matrix with no restriction and pij the probability of moving from
state i to state j. It is defined by

pij = Pr(it+1 = j|it = i)

Defining the transition counts Kij as the number of times the state i is followed
by j, the log-likelihood function can be written in the following manner:

L(p) = ∑
i,j

kij log pij with kij = logKij

The estimation procedure consists of choosing the value of pij that maximizes
the log-likelihood function subject to:

∑
j

pij = 1

With m = 2 states, the above optimization problem is characterized by 2 La-
grange multipliers (λi) and takes the following form:

p̂ij = arg max
pij

L(p)−
j

∑
i=1

λi

(
∑

j
pij − 1

)

The first-order conditions with respect to pij are:

0 =
kij

p̂ij
− λi ⇐⇒ p̂ij =

kij

λi

Using the constraint we have λi = ∑m
j=1 kij. By replacing it in the first-order

conditions we obtain the maximum likelihood estimator of the transition prob-
ability p̂ij from state i to state j:

p̂ij =
kij

∑m
j=1 kij

D.1.2 ZLB duration

In order to characterize ZLB durations we sum transition counts when the
economy hit the ZLB until it takes the liquidity trap off. Let Dn be the n-th ZLB
spell of a simulated time series of length T expressed in quarters, n = 1, ...N. N
being the total number of ZLB spells that is endogenous. Formally, Dn writes:

Dn = ∑
j

k jj
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The average ZLB spells is computed as follow:

Et(Dn) =
1
N ∑

n
Dn

The average occurrence of ZLB spells i.e. the proportion of time the economy
is stuck at the ZLB, Pz, is defined as:

Pz =
1
T ∑

n
Dn

E Accuracy and computing time of the algorithm

E.1 The Zero lower bound

We consider a 0.03 point shocks to the discount factor and a 0.01 point shock
to the monetary policy and output growth to shed light the intuition. A one-
period shock to the discount factor drives the nominal interest rate at the ZLB
during nine quarters in Model A and B. It leads to a deflation of about 3 pp.
and a fall in output growth rate by 7 pp. The shock to monetary policy rule
lowers the interest rate which remains stuck at the ZLB only for 2 quarters and
implies a rise in inflation of around 3 pp. on an annual basis. Despite having
the same magnitude, the output growth shock does not drive the nominal in-
terest rate to the ZLB but induces a fall in inflation of 1.6 pp on an annual basis
and a fall in output growth rate of about 6 pp.

Now consider the cases without ZLB. The ZLB affects the propagation of
shocks though two channels. The first one corresponds to the direct impact of
the “non-decline” in the nominal interest rate in the Euler equation (Equation
(4)). The second effect comes from the expectation functions that takes into ac-
count the regime switching from the ZLB. In the first case (case b) we assume
that the policy rules remains the same but we simply allow the nominal inter-
est rate to fall below zero. In the second case (case c) we recompute the policy
rule and the corresponding expectation terms when the nominal interest rate
is allowed to fall below zero. The difference between the two highlights the
role of the ZLB in agents expectations.

In case b, the desired interest rate (the one that would have been effective
in the absence of the ZLB) is around minus 0.025 following a discount factor
shock and a monetary policy shock. The difference between case a and b shows
that the path of inflation and output growth is roughly unchanged following
a shock to the discount factor or to the output growth rate. Inflation and out-
put growth raise more following monetary shock. In case c, following a shock
to the discount factor, the decline in the interest rate, inflation and the output
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growth rate is dampening by a factor 2. The intuition is that agents, by ex-
pecting that the interest rate will always adjust, do not expect a situation char-
acterized by a strong deflation and a dramatic contraction in output. When
the real interest rate is prevented from rising too much because the Taylor rule
is always effective, it involves a higher output growth and a lower decline in
inflation. The intuition is similar for the output growth shock except that the
simulation does not involve a ZLB periods. Following a monetary shock, the
downward adjustment of the nominal interest rate involves stronger inflation
expectations. The initial increase in the monetary shock and the sluggish re-
sponse of inflation caused by price rigidities lead to an initial rise in output
followed by a sharp contraction below its initial level.

The important message here is that the impact of the ZLB on agents expec-
tations is huge. Linearization techniques or monetary shocks as a mechanism
to make binding interest rate may lead to spurious conclusions. The reason is
that in such cases agents do not internalize in their expectations the probabil-
ity to hit and to leave the ZLB while it has non-trivial effects on the macroe-
conomic variables. The canonical model implies that when the monetary au-
thority losses traction, a recession can be fairly costly in terms of inflation and
output.
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Figure 14: Impulse response functions. Model A, recessionary unexpected shock
of 0.04 in absolute term. Quarters are displayed on the x axis. The impulse responses
are expressed in level, quarterly rate for the nominal interest rate, quarterly gross rate
for inflation and quarterly rate in percentage for output growth.
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Figure 15: Impulse response functions. Model B, recessionary unexpected shock
of 0.04 in absolute term. Quarters are displayed on the x axis. The impulse responses
are expressed in level, quarterly rate for the nominal interest rate, quarterly gross rate
for inflation and quarterly rate in percentage for output growth.
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Figure 16: Impulse response functions. Model C, recessionary unexpected shock
of 0.04 in absolute term. Quarters are displayed on the x axis. The impulse responses
are expressed in level, quarterly rate for the nominal interest rate, quarterly gross rate
for inflation and quarterly rate in percentage for output growth.

E.2 Residuals in equilibrium equations

Den Haan & Marcet (1990), Den Haan & Marcet (1994) and Judd (1998) use a
simple and powerful algorithm to evaluate the accuracy of dynamic models.
They compute the residuals of the Euler equations by simulating the model.
We perform a similar exercise using the log10 of all residuals in absolute value.
In our simulation, the residual are all way lower than -3 in log 10 basis.

E.3 Coverage of the grid points

One source of inaccuracy arises from the coverage of the grid points. If simu-
lated points from the historical decompositions are fairly outside the coverage
implied by simulated points used when solving and estimating the model, it
means that the model is not solved on points that are visited in equilibrium.
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This may involve potential spurious approximations even if the residuals are
low. Indeed, some points not visited during estimation would have probably
affected the policy rules if they was. For this purpose, we check if the ergodic
distributions of states variables are most of them included in the ergodic distri-
bution of the initial simulated grid. By most of, we mean that the grid covers at
least 95% of the simulated series of the state variables (which is the case in our
simulations ≃ 99%).

E.4 Computing time

Solving a model with global approximation methods and estimating it is chal-
lenging. However, the method we use involves decent computing time on
a standard computer i.e. not a supercomputer. All the programs are run on
Matlab R2015b. This last version is faster than previous ones due to the C++
pre-computing and the automatic parallelization. The computer used is a lap-
top but fairly powerful (at that time) with processor i7-4790K (4Ghz multi-
threading and 4.4Ghz in turbo mode on a single core), 32Gb RAM 1866Mhz,
GeForce GTX 980m graphic card (1536 CUDA cores) and SSD Samsung 850
pro SATA III (Sequential Read: Max. 550 MB/s Sequential Write: Max. 520
MB/s).

Model
Number of

Time
parameters

Model A 13 2h 10m 48s

Model B 19 0h 24m 06s

Model C 19 0h 16m 18s

Table 5: Computing times. Times include the resolution and the estimation, not the simu-
lations that produce impulse response or bootstrap moments. The model is solved many times
during estimation. However, each time the model is solved we record the solution and use it as
initial guess to solve the model for the new set of parameter that are often ε-different from the
previous ones, leading to a more rapid convergence. Furthermore, we use a standard calibra-
tion to initialize the parameters in the Model A for the estimation. The estimated parameters
are used in Model B as initial values. Model C also use the estimated value from Model B to
initialize the parameters prior to estimation. It explains the faster computing time in the more
complex models.
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F Supplementary figures
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Figure 17: Correlations and autocorrelation. Model B vs data.
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Figure 18: Model projections 2009Q3 - Model B. The smoothed shock series
is used until 2009Q3 to simulate the model. Thereafter, we perform a forecast from
2009Q3 to 2015Q1 using stochastic simulations in order to generate future path for
the variables. We use 10000 bootstraps simulations. The light gray shaded area corre-
sponds to the 80% confident interval and the dark gray shaded area to 50% confident
interval.
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Figure 19: Smoothed shocks. Model B
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Figure 20: Decomposition of shocks to the variations of the endogenous
variables. Model A

53



2007 2008 2009 2010 2011 2012 2013 2014 2015
-2

-1

0

1

2

3

4

5

A
n

n
u

a
l p

e
rc

e
n

t

Nominal interest rate

2007 2008 2009 2010 2011 2012 2013 2014 2015

0

1

2

3

4

A
n

n
u

a
l p

e
rc

e
n

t

Inflation

2008 2009 2010 2011 2012 2013 2014 2015

-2

-1.5

-1

-0.5

0

0.5

1

Q
u

a
rt

e
rl
y 

p
e

rc
e

n
t

Output Growth

No ZLB
Data

Figure 21: Counterfactual analysis. Model B
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