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1 Introduction

These notes introduce and discuss modern theories of firm investment. While much of this is done

as a decision rule problem of the firm, it is easily incorporated into a general equilibrium structure.

2 Tobin’s Q

Jim Tobin (1969) developed an intuitive and celebrated theory of investment. He reasoned that if

the market value of physical capital of a firm exceeded its replacement cost, then capital has more

value “in the firm” (the numerator) than outside the firm (the denominator). Formally, Tobin’s Q

is defined as:

Q =
Market Value of Firm Capital

Replacement Cost of Capital
(1)

Tobin reasoned that firms should accumulate more capital when Q > 1 and should draw down their

capital stock when Q < 1. That is, net investment in physical capital should depend on where Q

is in relation to one.

How would one measure Q in the data? Typically this is done by using the value of the stock

market in the numerator and data on corporate net worth in the denominator – here net worth

is defined as the replacement cost of capital goods. For example, suppose that a company is in

the business of bulldozing. It owns a bunch of bulldozers. Suppose that it owns 100 bulldozers,

which cost 100 each to replace. This means its replacement cost is 10, 000. Suppose it has 1000

outstanding shares of stock, valued at 15 per share. The market value of the firm is thus 15, 000

and the replacement cost is 10, 000, so Tobin’s Q is 1.5. Since bulldozers are worth more in the

firm than outside the firm (the market evidently values each unit of capital inside the firm at 1.5

times its market value), the firm should evidently buy more bulldozers.

One might be able to immediately point out an issue with this logic. Economic decisions should

be made at the margin – the firm should buy another bulldozer if the marginal value of the bulldozer
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in the firm exceeds the amount it costs to buy it. Tobin’s Q is an average value – it is the average

value of capital inside the firm relative to capital on the outside – e.g. normalizing the price of

the capital good to be one, it is V
k , where V is total firm value. What really ought to matter for

investing decisions is ∂V
∂k – i.e. marginal Q, not average Q.

3 Convex Adjustment Costs: Partial Equilibrium

Consider the problem of a firm that owns its capital stock. The real interest rate is fixed at r, and

firms discount future profits by 1
1+r . The firm produces output using capital and labor according

to a constant returns to scale Cobb-Douglas production function. It takes the real wage as given.

The firm owns its capital stock. The problem is:

max
nt,It,kt+1

V0 = E0

∞∑
t=0

(
1

1 + r

)t
(atf(kt, nt)− wtnt − It)

s.t.

kt+1 = It + (1− δ)kt

Rather than substituting out the constraint, let’s set up the problem as a Lagrangian, with

multiplier qt. The interpretation of the multiplier will be the extra value to the firm of an additional

unit of new productive capital, kt+1. In other words, qt = ∂Vt
∂kt+1

, and therefore has the interpretation

as the price of new capital in terms of goods (which is what the value of the firm in this set up is

measured as). The current value Lagrangian is:

L = E0

∞∑
t=0

(
1

1 + r

)t
(atf(kt, nt)− wtnt − It + qt (It + (1− δ)kt − kt+1))

The first order conditions are:

∂L
∂nt

= 0⇔ atfn(nt, kt) = wt (2)

∂L
∂It

= 0⇔ qt = 1 (3)

∂L
∂kt+1

= 0⇔ qt =
1

1 + r
Et (at+1fk(nt+1, kt+1) + (1− δ)qt+1) (4)

We can solve the last condition forward to get:

qt =
1

1− δ
Et

∞∑
j=1

(
1− δ
1 + r

)j
at+jfk(kt+j , nt+j) (5)

This says that the price of new capital should be equal to the present discounted value of

marginal products, where there is now some discounting by the depreciation rate as well as the
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interest rate. This makes good intuitive sense. The benefit of an additional unit of new capital

is the present discounted stream of extra profits (marginal products). The benefit must equal the

cost, qt. But the second condition says that qt = 1 at all times. This means that the price of capital

(in terms of consumption goods, the numeraire) is one. The intuition for this is pretty simple as

well. If you gave the firm an extra unit of new capital, kt+1, it could reduce current investment by

one, which would increase current profits by one without affecting future profits. With qt = 1 at

all times, we can also simplify the last condition to get the “Jorgensonian user cost” expression:

rt + δ = Etat+1fk(kt+1, nt+1)

The problem with this set up is that the price of capital never changes, which does not seem to

be the case in the real world. To get the price of capital to move around some we need to add some

additional costs of investment. Aside from the foregone profits of 1 (the relative price of investment

is 1), there is potentially an additional cost of (net) investment, given by the following function:

C(It, kt)

The idea here is that there are “installation costs” of new investment (in the form of foregone

profits). The function C(·) can have pretty general properties. For reasons that we’ll see later, we’re

going to require that it be homogeneous of degree one – if you double both capital and investment,

you double installation costs. Also, we assume that C(δkt, kt) = 0 and CI(δkt, kt) = 0. Finally, we

want it to be decreasing in kt. Effectively this means that if you have lots of capital, the installation

costs of putting in new capital are relatively low (think: it causes fewer disruption). A popular

functional form that satisfies all this is quadratic:

C(It, kt) =
φ

2

(
It
kt
− δ
)2

kt

This is nice because it nests the “standard” setup without adjustment costs when φ = 0. It is

straightforward to verify that this is homogeneous of degree one and is convex in investment.

With this formulation the firm’s problem can be written:

max
It,kt+1,nt

V0 = E0

∞∑
t=0

(
1

1 + r

)
(atf(kt, nt)− wtnt − It − C(It, kt)

s.t.

kt+1 = It + (1− δ)kt

Set up a Lagrangian. Denote the multiplier on the constraint by qt.

L = E0

∞∑
t=0

(
1

1 + r

)
(atf(kt, nt)− wtnt − It − C(It, kt) + qt(It + (1− δ)kt − kt+1))
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The first order conditions are:

∂L
∂nt

= 0⇔ atfn(kt, nt) = wt (6)

∂L
∂It

= 0⇔ qt = 1 + CI(It, kt) (7)

∂L
∂kt+1

= 0⇔ qt =
1

1 + r
Et (at+1fk(kt+1, nt+1)− Ck(It+1, kt+1) + (1− δ)qt+1) (8)

TV : lim
T→∞

(
1

1 + r

)T
Etqt+Tkt+T+1 = 0 (9)

Now, let’s think through what exactly qt measures when we have these installation costs? It is

the “shadow value” of the constraint, it is how much the firm would value having the constraint

relaxed. Suppose that the firm has optimally chosen kt+1 given the state variables. Having the

constraint relaxed means having one more unit of installed capital, or one more unit of kt+1. Since

this doesn’t affect the optimal choice of kt+1 since the firm has already optimized, this means

the firm will simply reduce current investment by 1 (this is an envelope type argument). This is

valuable to the firm for two reasons. First, it means the firm has to do one fewer unit of investment

today, which directly increases current profits by 1. Secondly, doing one fewer unit of investment

reduces costs associated with adjustment by CI(·), which also raises current profits. The total value

in terms of current profits of having an extra unit of kt+1 is thus given by (7). In other words,

qt = ∂Vt
∂kt+1

along an optimal path – i.e. the marginal value of an additional unit of capital. The

transversality condition says that the present value of any capital “left over at the end of time” is

equal to zero.

Just as we did before, we can iterate (8) gives another expression for q which is very intuitive.

This can be solved forward using the transversality condition to get:

qt = Et
1

1− δ

∞∑
j=1

(
1− δ
1 + r

)j
(at+jfk(kt+j , nt+j)− Ck(It+j , kt+j))

This says that current q must also equal the present discounted value of the marginal profits

of having an extra unit of kt+1. The effective discount rate is by both the depreciation rate and r

because the extra unit of kt+1 depreciates through time. The direct benefit of an extra unit of kt+1

is to have (1 − δ)j−1at+jfk(kt+j , nt+j) extra units of revenue at time t + j – you have (1 − δ)j−1

extra units of capital at time t+ j, which yields marginal product at+jfk(kt+j , nt+j). There is also

an indirect effect - having more kt+1 reduces the installation costs. Having (1 − δ)j−1 extra units

of capital at time t + j reduces installation costs by Ck(It+j , kt+j). Hence, qt is also the present

discounted value of having an extra unit of capital, measured in terms of future marginal products

and reductions in installation costs.
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3.1 q and Investment

The first order condition (7) above implicitly defines an investment demand function relating net

investment to qt. If qt > 1, then Ci(·) > 0, which requires It > δkt. Suppose that we have the

following functional form of the adjustment cost function given above. Take the derivative and

plug into (7):

qt = 1 + φ

(
It
kt
− δ
)

Now solve for It
kt

:

It
kt

=
1

φ
(qt − 1) + δ (10)

This says that net investment will be positive if and only if qt ≥ 1. φ governs how sensitive

investment is to qt. Put differently, a firm’s investment as a fraction of its size (where size is

measured in terms of capital stock) should only be a function of qt and parameters. In other words,

qt should be a sufficient statistic for investment.

3.2 Tobin’s Q, q, and the Hayashi Theorem

Recall from above that Tobin’sQ is the ratio of the market value of a firm divided by the replacement

cost of its capital – i.e. V0
k , the average value of a unit of capital. This is observable – you can get

the value of the firm from the stock market capitalization (i.e. market share price times number of

shares) and the replacement cost of the firm’s capital goods. The theory laid out above, which is

explicitly based on optimization, says that investment should depend on q, which is ∂V0
∂k – i.e. the

marginal value of a unit of capital. This is in general not observable. Or is it?

Hayashi (1982) laid out conditions under which marginal q and average Q are one in the same.

In particular, he showed that (i) the production function being homogeneous of degree one and (ii)

the adjustment cost function being homogeneous of degree one then average and marginal are one

in the same.

I eschew a formal proof. But intuitively this result can be seen as follows. Under a Cobb-

Douglas production technology, the first order condition for the choice of labor, given the capital

stock, wage rate, and level of TFP, is:

nt =

(
(1− α)at

wt

) 1
α

kt (11)

This means that n is proportional to k, holding everything else fixed. Put differently, if the

firm has twice as much capital, it will want twice as much labor. From the first order condition for

investment using our functional form:

qt = 1 + φ

(
It
kt
− δ
)

(12)
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What this says is that, for a given qt, if you double k, you also want to double I. Hence, if you

give the firm twice as much initial capital, it will double both investment and labor input. Now go

the expression for within period profits:

Πt = atf(kt, nt)− wtnt − It − C(It, kt) (13)

If k doubles, and hence by the arguments above both n and I double, then every term in this

doubles. This means that current cash flows are proportional to current k. Intuitively, this means

that the value of the firm is therefore proportional to k:

V0 = ϕk (14)

Since value is linear in k, then marginal and average are the same thing. This means that

the q that should affect investment is the same thing as Tobin’s Q. This has important empirical

content, as it means that q is observable and the theory can be tested. Unfortunately, as with

most theories, this theory can be rejected in the data. The theory suggests that, once measured,

qt should be a sufficient statistic for investment. This means that, for example, in regressions

of investment on measured qt, the coefficients on anything else should be zero. This is similar

to tests of the random walk hypothesis for consumption – consumption should be a sufficient

statistic for future consumption. People will typically find that things like current cash flow has a

significant coefficient when it shouldn’t. This is somewhat akin to the “excess sensitivity” finds in

the consumption literature that consumption is too sensitive to current income.

3.3 The Phase Diagram

Now let’s think about analyzing this in terms of a phase diagram. Let qt be the jump variable

(the variable on the vertical axis) and kt be the state variable (the variable on the horizontal axis).

We want to find two isoclines: one were qt+1 − qt = 0 and one where kt+1 − kt = 0. Given the

accumulation equation, kt+1−kt = 0⇔ It
kt

= δ, which means that CI(δkt, kt) = 0 and hence qt = 1.

Hence the, kt+1 − kt = 0 isocline is a horizontal line at qt = 1.

qt = 1 (15)

The qt+1− qt isocline is a little tougher to figure out. Begin my multiplying both sides by 1 + r:

qt + rqt = Etat+1fk(kt+1, nt+1)− EtCk(It+1, kt+1) + (1− δ)qt+1

Simplify:

qt = Etqt+1 = 0⇔ rqt = Etat+1fk(kt+1, nt+1)− EtCk(It+1, kt+1)− δEtqt+1

Now, so as to make the phase diagram in discrete time more natural, we engage in the abuse

of termingology that we’ve used before, and assume that qt ≈ qt+1 and the same for nt, It, and kt.
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we can then write the qt+1 − qt = 0 isocline as:

qt =
1

r + δ
(atfk(kt, nt)− Ck(It, kt)) (16)

This is the qt+1 − qt isocline. What does it look like (qt, kt) space? Let’s take the derivative

with respect to kt:

dqt
dkt

=
1

r + δ
(atfkk(kt, nt − Ckk(It, kt))

We need to know Ckk(·). Use our baseline functional form:

Ck(·) =
φ

2

(
It
kt
− δ
)2

− φ
(
It
kt
− δ
)
It
kt

Ckk(·) = φ
I2t
k3t
≥ 0

Since Ckk(·) ≥ 0 and fkk(·) ≤ 0, this derivative must therefore be negative – dqt
dkt
≤ 0. In other

words, the qt+1 − qt = 0 isocline slopes down.

The steady state occurs where these two cross. Above the kt+1 − kt locus, qt > 1, and hence

capital is growing, so arrows point right. The reverse is true below the kt+1 − kt = 0 locus, where

the arrows point left. To the right of the qt+1 − qt = 0 isocline, kt is “too big”. This means that

the current marginal product of capital is small, which means that qt+1 > qt, so the arrows point

up. To the left of the qt+1 − qt = 0 locus the arrows point down. We can see that the saddle path

must be downward sloping and flatter than the qt+1 − qt = 0 locus. The system is saddle point

stable. The phase diagram is shown below.
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Consider an unexpected, permanent increase in a. This does not affect the kt+1 − kt = 0 locus,

which is still horizontal at qt = 1, but it shifts the qt+1 − qt = 0 isocline to the right. The new

steady state occurs at the same q∗, but a higher k∗. qt must immediately jump up to the new saddle

path, and then ride the dynamics into the new steady state. qt jumping means that investment

will be abnormally high, which is necessary to get to the new steady state. The phase diagram and

impulse responses are shown below:

3.4 What if there are no adjustment costs?

Use our basic specification. The first order condition implicitly determining investment demand

It
kt

=
1

φ
(qt − 1) + δ

If there are no adjustment costs, the φ = 0 and the sensitivity of investment to qt is infinite.

This means that the “investment demand curve” is perfectly elastic at qt = 1 (in terms of the phase

diagram the saddle path is flat at qt = 1).

In a sense then, investment is “residually determined” in a model without adjustment costs.

With perfectly elastic demand (in terms of qt), the quantity of investment in equilibrium is com-

pletely determined by saving supply, which comes from the household side of the model (and which

we haven’t yet modeled).
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4 Convex Adjustment Costs: General Equilibrium

Now let’s consider the role of adjustment costs in general equilibrium. There are multiple ownership

structures to consider but let’s suppose that firms own the capital stock (so that there is a well-

defined concept of “value of the firm”). The household problem is:

max
ct,nt,bt+1

E0

∞∑
t=0

βt (u(ct) + v(1− nt))

s.t.

ct + bt+1 ≤ wtnt + (1 + rt)bt + Πt

kt+1 = It + (1− δ)kt

Basically this says that the household can consume or accumulate riskless bonds, and it earns

income from its labor and from dividends distributed from firms. Let’s set this up as a current

value Lagrangian:

Basically what this says is that the household can consume, accumulate new capital, accumulate

new bonds, and pay adjustment costs associated with adjusting its capital stock with its income,

which comes from labor, renting capital, interest income on bonds, and distributed profits. Let’s

set this up as a current value Lagrangian, with two separate constraints:

L = E0

∞∑
t=0

βt (u(ct) + v(1− nt) + λt (wtnt + (1 + rt)bt + Πt − ct − bt+1))

∂L
∂ct

= 0⇔ u′(ct) = λt (17)

∂L
∂nt

= 0⇔ v′(1− nt) = u′(ct)wt (18)

∂L
∂bt+1

= 0⇔ λt = βEtλt+1(1 + rt+1) (19)

These are entirely standard first order conditions. Now let’s think about the value of the firm.

I have previously written the problem out where the value of the firm is measured in utils – units

of utility. The value of the firm in that set up is given by:
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V U0 = M0Π0 +M1Π1 + · · ·+MtΠtΠt =

∞∑
j=0

MjΠj

Πt = atf(kt, nt)− wtnt − It − C(It, kt)

Mt = βtλt

λt is the current value marginal utility of consumption at time t; Mt is the stochastic discount

factor that brings this back to the beginning of time, time t = 0. The units of Mt are “utils/goods”,

while the units of Πt are “goods”. Multiplying profits/dividends at time t by Mt puts the units

into utils – MtΠt is how the household values dividends at time t from the perspective of time 0

utils.

It is perhaps more common to express the value of the firm in units of goods. To do this, define

Vt = V Ut/λt. Then we have:

V0 = Π0 + M̃1Π1 + · · ·+ M̃tΠt + . . .

M̃t =
Mt

M0
= β

λt
λ0

M̃t is the more conventional representation of the stochastic discount factor – using it puts the

value of the firm in terms of units of goods as opposed to units of utility. The value of the firm can

then be written recursively:

V0 = E0

∞∑
t=0

M̃tΠt = Vt = Πt + βEt
λt+1

λt
Vt+1

Here M̃0 = λ0/λ0 = 1. Using this version of the stochastic discount factor we can write out the

firm’s problem as:

max
nt,kt+1,It

E0

∞∑
t=0

M̃t (atf(kt, nt)− wtnt − It − C(It, kt))

s.t.

kt+1 = It + (1− δ)kt

Form a Lagrangian, and use qt as the multiplier on the constraint:

L = E0

∞∑
t=0

M̃t (atf(kt, nt)− wtnt − It − C(It, kt) + qt (It + (1− δ)kt − kt+1))

The first order conditions are:
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∂L
∂nt

= 0⇔ atfn(kt, nt) = wt (20)

∂L
∂It

= 0⇔ qt = 1 + CI(It, kt) (21)

∂L
∂kt+1

= 0⇔ qt = βEt
λt+1

λt
(at+1fk(kt+1, nt+1)− Ck(It+1, kt+1) + (1− δ)qt+1) (22)

These are exactly the same first order conditions we in the partial equilibrium problem, except

we discount now by the stochastic discount factor instead of a fixed interest rate.

If we use our normal preference specification and the continued functional form of the adjustment

cost function, the first order conditions characterizing the equilibrium of the model become:

θ

1− nt
=

1

ct
wt (23)

qt = 1 + φ

(
It
kt
− δ
)

(24)

1

ct
= βEt

(
1

ct+1
(1 + rt+1)

)
(25)

qt = Et

(
β
ct
ct+1

((
αat+1k

α−1
t+1 n

1−α
t − φ

2

(
It+1

kt+1
− δ
)2

+ φ

(
It+1

kt+1
− δ
)
It+1

kt+1

)
+ (1− δ)qt+1

))
(26)

wt = at(1− α)kαt n
−α
t (27)

kt+1 = It + (1− δ)kt (28)

yt = ct + It +
φ

2

(
It
kt
− δ
)2

kt (29)

yt = atk
α
t n

1−α
t (30)

ln at = ρ ln at−1 + εt (31)

The aggregate accounting identity looks a little different than normal because the adjustment

cost essentially shows up as a resource cost. It can be derived by combining the firm definition

of profits/dividends with the household budget constraint, imposing the market-clearing condition

that bt = 0 at all times:

ct = wtnt + Πt

ct = wtnt + atk
α
t n

1−α
t − wtnt − It −

φ

2

(
It
kt
− δ
)2

kt

yt = ct + It +
φ

2

(
It
kt
− δ
)2

t
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You can think about the investment that shows up in a normal accounting identity as being inclusive

of the adjustment costs if you like.

Now, what is the value of the firm? From the above discussion, because the Hayashi sufficiency

conditions are satisfied, we know that q = Q = V
k . This suggests that we could measure the value

of the firm as qtkt. In continuous time, this would be correct. A slight complication arises because

of discrete time. Recall that qt = ∂Vt
kt+1

, hence value of the firm is actually equal to Vt = qtkt+1.

We also need to slightly re-write the way we recursively express value to take account of this. In

particular, the recursive formulation of the value of the firm needs to be:

Vt = βEt

(
ct
ct+1

)(
at+1k

α
t+1n

1−α
t+1 − wt+1nt+1 − It+1 + Vt+1

)
= βEt

(
ct
ct+1

)
(Πt+1 + Vt+1) (32)

In other words, we write the value of the firm at time t as tomorrow’s dividends and continuation

value, both discounted by the stochastic discount factor between time t and t + 1. Why? The

timing of the model is as follows. At the “beginning” of time t, all production, consumption, and

saving/investment decisions take place. After all this is finished, how would the household value

the firm? From the perspective of time t, the household will get dividends tomorrow (it has already

received today’s dividends) and the continuation value, both of which it needs to discount. Hence,

the value of the firm at time t is the value at time t after time t dividends have been paid out.

You can verify that the value of Vt you get from this recursive formulation is equal to qtkt+1. This

makes sense if you think about it. What is a firm in this set up? It is just a collection of capital.

After production and investment decisions have been made at time t, the firm has kt+1 units of

capital which it will take into the next period (note that depreciation has already taken place in

this formulation). That capital has a price of qt, measured in consumption units. The household

could just eat the capital (this is always an option), or it could leave it in the firm to produce. In

equilibrium the household must be indifferent between these two options – hence the value of the

firm must be qtkt+1. In the long run qt = 1 and the capital stock is constant. So the value of the

firm (measured in units of goods, not utils) is just the capital stock.

Below are impulse responses to a technology shock in this model. The parameterization is our

standard RBC paramaterization, with three different values of φ: 0, 1, 3, and 8. The case of

φ = 0 corresponds with the case of the standard RBC model without adjustment costs. The other

parameters are standard.
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As adjustment costs get more important, the response of the economy (measured in terms

of output, hours, and investment) to a productivity shock becomes dampened. The intuition is

reasonably straightforward – if it is very costly to change the capital stock, people will respond by

increasing consumption more and increasing labor less. This is in fact what you see. As φ gets

bigger the jump in qt, the price of capital, gets bigger. Consequently the immediately jump in the

value of the firm gets bigger. But after a while qt gets back close to one and the value of the firm

is essentially just its capital stock. Overall, for relatively low values of φ, these responses really

aren’t all that different from the responses in a standard RBC case, save for the time-varying price

of capital and the fact that the value of the firm jumps more. There is one reasonably important

difference, though. We see that as adjustment costs get bigger, the risk-free real rate rises by less.

This is a good thing from the perspective of getting a RBC model to match the data; in the data

real interest rates are not strongly correlated with output, but in a standard productivity shock

driven model this correlation is very high. And it’s not hard to see why – if there are no adjustment

costs, the Jorgensonian user cost implies that (approximately due to the stochastic discounting)

that rt ≈ Etat+1fk(kt+1, nt+1) − δ. In other words, the risk free real rate is tied to the marginal

product of capital – when the marginal product is high (or expected to be high), the real rate is

high. Productivity shocks raise the marginal product and hence the real rate. But the addition of

adjustment costs dampens this response significantly, as we can see in the figure.
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5 Non-Convex Adjustment Costs

The theory of investment studied above (based on quadratic adjustment costs or no adjustment

costs at all) has the testable prediction that firms should continuously adjust their capital stock in

response to new conditions. Put differently, the theory predicts that investment should be small

and continuous.

This is squarely at odds with the micro data, where investment is typically lumpy in the sense

that there is no investment in most periods with sporadic periods of large adjustment. The theory

of non-convex adjustment costs is built to match this feature of the firm-level data. We consider

two sources of non-convexity: either fixed costs or kinked costs.

5.1 Fixed Costs

Here we will use the dynamic programming notation that a variable without a superscript denotes

a current value, while a variable with a ′ denotes the next period’s value.

Consider the partial equilibrium problem of a firm which discounts future profits by 1
1+r . For

simplicity, abstract from the labor choice decision. Output/revenue is given by y = af(k), where

f ′(k) > 0 and f ′′(k) < 0. The relative price of investment is 1, and the capital accumulation

equation is k′ = I + (1 − δ)k. In addition to paying the direct price of investment (i.e. one unit

of investment reduces current profits by 1), the firm must pay a fixed cost of investment, F ≥ 0, if

I 6= 0. This means that the firm will either earn current profits: Π = af(k)− (k′− (1− δ)k)−F if

k′ 6= (1− δ)k or Π = af(k) if k′ = (1− δ)k.

The firm faces two decisions: the binary choice of whether to invest or not and the continuous

choice of how much to invest if they choose to invest. The state variables are the current capital

stock and a. The Bellman equation is given by:

V (a, k) = max

{
max
k′

af(k)− (k′ − (1− δ)k)− F +
1

1 + r
EV (a′, k′), af(k) +

1

1 + r
EV (a′, (1− δ)k)

}
We can think about the policy function for this problem by essentially working backwards.

First, suppose that the firm chooses to adjust, so that k′ 6= (1 − δ)k. If it adjusts, its choice of k′

is independent of k. Let’s call this k∗: the optimal reset capital stock if you will.

Now that we know what the firm will do if it adjusts/does investment, let’s now look at the

binary choice of whether it will invest. If will choose to invest if the value for doing so (the first

part of the Bellman equation evaluated at the optimum choice k∗ – i.e. this “takes care of” the

max operator), is greater than or equal to the value of doing nothing. Put differently, the firm will

invest if:

af(k)− (k∗ − (1− δ)k)− F +
1

1 + r
EV (a′, k∗) ≥ af(k) +

1

1 + r
EV (a′, (1− δ)k)

This can be simplified to:
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1

1 + r

(
EV (a′, k∗)− EV (a′, (1− δ)k)

)
≥ k∗ − (1− δ)k + F (33)

This simply says that the firm will invest if the benefit exceeds the cost. The presence of the

fixed cost will mean that the firm may choose to do nothing at all. In particular, if k∗ is not “too

different” from (1−δ)k, then the benefit will be small (this also depends on the amount of curvature

in the value function), and the benefit is unlikely to exceed F . We can see that this will result in

inaction as follows. Suppose that (1− δ)k ≈ k∗. Then the right hand side will be close to F , and

the left hand side will be close to zero, and the condition for adjustment will not be satisfied.

Let’s think about this result graphically. First, assume that the value function is (i) increasing

and (ii) concave, with “Inada” type conditions that the slope of the value function starts out at

infinity and ends up at zero. Since k∗ is taken to be a constant independent of k, the left hand

side of (37) will be decreasing and convex, and will start with a very steep negative slope and will

asymptote to a slope of zero. The right hand side is linear in k, with slope (1− δ) < 1. At k = k∗

1−δ
it will be equal to F , and equal to zero at k∗+F

1−δ . At k = k∗

1−δ , the left hand side must be equal to

zero. We can plot each side of (37) against k as follows:

Given the assumed Inada type conditions, we can see that the left hand side will cross the right

hand side twice – once somewhere below k∗

1−δ , and once somewhere above k∗

1−δ . Call these two points

(s, S), with s < S. Above or below each of these crossing points, the left hand side of (37) is bigger

than the right hand side, so the firm will adjust to k∗. Within those two bounds, however, the

firm prefers in action. We call this an (s, S) policy because there is a region of inaction but large

adjustment beyond the trigger points defining the region of inaction.

Suppose that there were no adjustment costs (i.e. F = 0). The left hand side would still cross

the horizontal axis at k∗

1−δ . But with no adjustment costs, we actually know what the slope of the

left hand side is. The first order condition of the smooth problem is: 1 + r = ∂V (a′,k′)
∂k′ . Thus,

if we evaluate the slope of the left hand side at k∗ = (1 − δ)k, we see that the slope is equal to
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(1 − δ). This means that the straight line and the curve just “kiss” at this point – at every other

point the left hand side is above the right hand side. This means without a fixed cost there is a

point of inaction if it so happens that the current capital stock will yield the desired capital stock

tomorrow, but at every other point there will be adjustment.

It is straightforward to see how the fixed cost will affect the region of inaction. If F goes up,

the straight line shifts up, and the region of inaction gets bigger.

5.2 Kinked Adjustment Costs

Here we assume a different kind of non-convexity – a non-symmetric price of capital. In particular,

assume that the relative price (in terms of consumption) of accumulating new capital (i.e. I =

k′ − (1 − δ)k > 0) is 1, but that the relative price of selling capital (i.e. I = k′ − (1 − δ)k < 0) is

equal to b < 1. We can kind of appeal to this on the basis of adverse selection motivation. You

can sell your capital for less than you can buy new capital – not because there is any functional

difference in the capital (both are equally productive), but because the market worries that you

may be selling a “lemon” – think about the market for used cars.

This introduces a “kink” in the adjustment cost function; in particular, the adjustment cost

function is non-differentiable at I = 0. This means that we can’t use something like a Lagrangian

to solve the firm’s problem. Let’s instead set the problem up as a dynamic programming problem.

The firm enters the period with capital stock k and takes the level of technology, a, as given. It

can do three things: accumulate more capital (price 1), sell some of its capital (at price b < 1), or

do nothing. The Bellman equation can be written:

V (a, k) = max
{
V 1(a, k), V 2(a, k), V 3(a, k)

}
V 1(a, k) = max

k′
af(k)− (k′ − (1− δ)k) +

1

1 + r
EV (a′, k′)

V 2(a, k) = max
k′

af(k)− b(k′ − (1− δ)k) +
1

1 + r
EV (a′, k′)

V 3(a, k) = af(k) +
1

1 + r
EV (a′, (1− δ)k)

The first Bellman equation is the value of doing positive investment; the second is the value of

doing negative investment; and the third is the value of doing nothing.

We can characterize the policy function for this specification intuitively. Let k∗ denote the k′

the firm would choose if there was no kink in the adjustment cost function. Suppose that the firm

has an initial capital stock that is well below k∗. It will want to increase its capital stock, but it

will not go all the way to k∗. Why is this? Because there is essentially an “option value” to have

a smaller capital stock – getting stuck with a capital stock that is too large is costly because b < 1

and that capital can only be sold off at a loss. Put differently, the firm will “under-adjust” if it has

too little capital relative to its frictionless optimum because the downside risk of getting stuck with
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too much capital is high. In contrast, suppose that the firm starts with too much capital relative to

its frictionless optimum. It would want to get rid of some capital, but again this is costly because

the sell price of capital is less than the buy price. The firm could get rid of some of that capital over

time by letting it depreciate away instead. Hence, the firm will also “under-adjust on the upper

end as well.

The policy function will be as follows. If k is sufficiently far below k∗, the firm will adjust to

kL ≤ k∗. If k is sufficiently far above k∗, the firm will adjust to kH ≥ k∗. Hence, kH ≥ kL. This

will be a strong inequality so long as b < 1. Hence, just as in the fixed cost case, there will be a

region of inaction. For values of the current capital stock that will yield next period capital stock’s

between those two regions – i.e. as long as kL

1−δ ≤ k ≤ kH

1−δ , the firm will choose no investment

and will thus set k′ = (1− δ)k. Above either of those triggers, the firm will adjust. Hence, this is

kind of like the (s, S) policy described for the fixed cost case. What is different here, however, is

that the firm will adjust to the triggers – not to the center of the triggers as in the fixed cost case.

Regardless, however, there will be a large region of inaction and resulting lumpiness. See the figure

below for a description of the policy function:

These kinked adjustment costs are a kind of irreversibility. The extreme case of pure irreversibil-

ity occurs when b = 0. If you can’t sell capital for any positive price, the choice to accumulate new

capital is effectively irreversible – you can’t get rid of it for any positive price. This is going to

induce cautious behavior on the part of firms – they will under-invest when they are below their

frictionless optimal level of capital and will also under-adjust when they have too much capital,

instead just letting their existing capital depreciate. This “cautiousness” leads to the region of

inaction and lumpiness.
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5.3 Reprisal

While it is definitely clear that lumpiness is an important feature of the micro data on investment,

it is not clear how important it is at an aggregate level. Non-convexities in terms of adjustment

costs significantly complicate solving problems once general equilibrium considerations are taken

into account – there you have to keep track of the capital stock for every firm, which means you

quickly run into the curse of dimensionality.

There are a number of papers which essentially argue that models based on convex adjustment

costs (i.e. q theory) are sufficient for understanding aggregate investment behavior. This means that

ignoring this micro feature is okay from the perspective of understanding aggregate investment (see,

for example, Thomas (2002) or House (2009)). To do policy analysis and counterfactuals, however,

one needs to know the structural parameters of the model. Even if the convex adjustment costs

describe aggregate data well, the parameters of that specification (e.g. φ), are reduced form, and

policy analysis based on that may be flawed.
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