No: 9602

DYNARE: A program for the resolution and
simulation of dynamic models with forward
variables through the use of a relaxation al-
gorithm.

Michel Juillard®

1Email: juillard@cepremap.cnrs.fr

DYNARE: un programme pour la résolution et la simulation
de modéles dynamiques avec variables avancées a I’aide d’un
algorithme de relaxation

RESUME: Le papier présente une généralisation de l’algorithme de Laffargue
pour la simulation de modéles & anticipations avec des avances ou des retards
sur plusieurs périodes et son implémentation dans le logiciel DYNARE.

DYNARE: A program for the resolution and simulation
of dynamic models with forward variables through the
use of a relaxation algorithm.

ABSTRACT: This paper presents a generalization of Laffargue’s algorithm for
simulating rational expectation models with several leads and lags and its im-
plementation in a Gauss program, DYNARE.

Mots clés: anticipations rationnelles, modéles non—linéaires, simulations.

Keywords: rational expectations, non—linear models, simulations.

J.E.L. classification system: C63, C88, E17

Since expectations, and particularly rational expectations, have become an
important issue in macroeconomics, models including advanced values of depen-
dent variables have started to appear. These models raise specific computational
problems which have been dealt with in various manners: shooting methods,
Gauss—Seidel and Gauss—Raphson type of algorithms. The program presented
in this paper uses the last one. It builds on previous work by Laffargue (1990)
and Boucekkine (1995).

The Gauss-Raphson algorithm suggests to stack up the equations of the
models for all the periods in the simulation and to solve in block the resulting
system. For medium to large models it requires solving a very large linear
problem. Laffargue (1990) has shown that for models with one lag and one
lead the problem can be reduced to manageable proportions by exploiting the
special structure of the Jacobian matrix. The present paper extends Laffargue’s
algorithm for model with an arbitrary number of leads and lags. It is well known
that a model with several leads and lags can be transformed through the use of
auxiliary variables into an equivalent model with one lead and one lag, but, as
will be argued in the following sections, the direct method is computationally
faster than solving for the larger transformed model. In addition, we use in
this paper a matrix—block presentation which let us then take advantage of a
matrix—oriented programming language such as Gauss.

The algorithm presented in this paper is implemented in DYNARE, a pro-
gram written in Gauss. In addition to the actual computation of the simulations,
DYNARE provides the user with parsing tools so that the model can be written
in an understandable manner with meaningful names for the variables and sim-
ple expression for leads and lags. The program creates automatically relevant
matrices for the solving of the system. It also includes reporting and ploting
routines.

In order to test the performance of the program, we have used as an example
the German part of MULTIMOD, a interregional model developed at the I.M.F.
(see Masson, Symansky and Meredith, 1990, and I.M.F., 1991). The model used
here has 46 dependent variables, with lags ranging from 1 to 3 periods and leads
from 1 to 5 periods. The simulation consisted in evaluating the consequences
of an increase by about 30% of government expenditures in period 5. The
simulation carries over 20 periods.

The first section of the paper details the problem to be solved and establishes

notation. In the second section, we develop the solving algorithm for one lead
and one lag. Then, we present the extension to several leads and lags. In the
third section, we describe additional details to take advantage of known zero
columns in the Jacobian.

1 Non-linear models with forward-looking vari-
ables

We consider non-linear models with n dependent variables, y;;, ¢ =1,...,n, m
independent or exogenous variables, z;;, j = 1,...,m, and p parameters, 6y,
k=1,...,p. We use the notation y; for the vector of dependent variables at
time t, x¢, the vector of exogenous variables, and 6, the vector of parameters.

The model is such that the n current values of y; depends on previous and
future values of the dependent variables, the exogenous variables and the pa-
rameters. Exogenous variables may appear themselves with leads or lags, but
this will not change the nature of the problem to be solved. For simplicity, we
can consider only current exogenous variables without affecting the generality
of the discussion.

For the current values of the dependent variables to be determined, there
must be n equations, that we will express in homogenous form:

gl(ytfr;---:yt:---:yt+s;$t;9) = 0

gn(yt—T7-'-7yt7-'-7yt+samt76) =0

In the above system, we consider a maximum of r lags and s leads. In most
problems, not all of the n dependent variables appear at each of the s +r + 1
leads or lags. A basic identification condition requires however that they all
appear as current variable. The absence of variables as some lead or lag can be
exploited by the algorithm. It is a point on which we will return in section 3.

To a given sequence of exogenous variables, z;, t = 1,...,T, and given 0, will
correspond a trajectory for the time span 1 to 7. A particular trajectory will
correspond to particular initial conditions yi_,,...,ys and particular terminal
conditions Y7, ,. .. ,y}+s2. Conditions for the existence of a single trajectory
are discussed in Boucekkine (1995).

The system to be solved is as follows:

Yi—r = Yi—r
Yo = Yo
gl(yl—’r‘a"'7y17"'5y1+87m176) =0

20ne can also consider other terminal conditions. See for example Boucekkine, Juillard
and Malgrange (1994).

gn(yl—’r‘a"'7y17""y1+87m176) =0

gl(nyra-">yT>"'7yT+symT>9) =0

gn(yT*T)'")yT)"'vyTJrs;mT)a) =0
Yyr+i1 = y?+1
YT+s = y}+s
As, for a particular simulation, the exogenous variables z;, t = 1,...,T and

the parameters 6 are given, one can rewrite the equations of the model making
appear only the dependent variables and using a more compact writing;:

gl(yt—Ta s Uty - '7yt+87mtae)
fe(ze) = : t=1,...,T
gn(yt—r; sy Yty '7yt+s;xt>9)

where z; = [yi_, ... Ui ... Ui,]I. For the initial and terminal condi-
tions, we write:

hrir) = 1r—y,=0
fo(yo)- = l;lo —Y =0

frei(yr+1) = yre1—yre =0

fres(Wres) = Yr4s —Yris =0

Finally, we can build Y, the vector of the values of the dependent variables

for all the periods piled—up.

Yi1—r
Yo
Y1

yr
Yr+1

L YT+s |

The entire system with (T + r + s) x n equations can be written as

i flfr(ylfr) i

fr(er)

fri1(yr+1)

| Fraures)

2 Solving the system with the Newton—Raphson
method

At first glance, the method is quite simple: the system F(Y) = 0 is ap-
proximated iteratively. At each step, the vector Y is modified by an amount
AY = — [2E]7 F(Y).

The difficulty with this approach resides with the size of the Jacobian ng/y) ,
which is a matrix of dimension [n X (T +r + s)] X [n X (T +r + s)]. In our
example, for a 46 equation model simulated over 20 periods, it is a 1288 by 1288
matrix. However, as is shown in Laffargue (1990), the structure of this matrix
is such that its triangularization can be handled recursively and that there is no
need to store the entire Jacobian matrix at any time. In fact, as we will show
below, only a matrix 920 by 14 needs to be stored in our example.

The triangularization could be programmed element by element, but experi-
ence as shown us that, when we use a matrix oriented language such as Gauss,
there are gains both in program simplicity and in execution time if we handle
the problem by block corresponding to one period. In the next section, we
present the algorithm when there are only one lead and one lag. Then, we show
the extensions necessary to handle an arbitrary number of leads and lags.

2.1 The algorithm for one lead and one lag

In this case, the system is:

fr(er)

frea(yrsr)

where z; simplifies to [Yi—1 Yt Y1]I.

The equation for the computation of the improvement of Newton—Raphson
can be written in a way which puts in evidence the particular structure of the
Jacobian:

I 0
Si,—1 Si0 Sia fi(z1)
Se,—1 Sto Sta AY = —| filz)
Sr—1 Sto Sra fr(zr)
I I | L 0]
where S; 1, K = —1,0, 1, are the partial Jacobians:
Ofi(2t)
S, 1=
bt Oyt—1
Ofi(2t)
S, n=
t,0 9y
0
Six fi(zt)
ayt+1

As already mentioned, the partial Jacobians S; _1 and S;; have many empty
columns and we can take advantage of this characteristics. However, we will
leave aside this aspect for now and return to it in section 4.

The triangularization aims at eliminating the elements below the main diag-
onal and can proceed recursively from the top®. The handling of the first period
is particular because of the initial conditions. We have the equation:

S1,-1Ay0 + S1,0Ay1 + S1,1Ay2 = —fi(z1)
The initial conditions give us Ayo = 0 and we can solve the linear problem* for
Ayy:
Ay, + Sfésl,lAyz = _S;éfl(zl)

3Invertly, we could as well eliminate the elements above the main diagonal and start at the
bottom of the system.

4In practice, languages such as Gauss provide a primitive which computes the solution of
a linear problem without computing the inverse.

After this first step, the system looks like:

I 0
I Cl dl
52,—1 51,0 51,1 —f2(2’2)
. .) AY = .
St—1 Sto Sta —fr(zr)
L I - L 0 -

For the second period, and all the following ones, the basic equation is:
St—1AYt—1 + St oAy + St 1Ay = —fi(ze)
We retrieve the value of Ay, ; from the equation for the previous period:
Ay 1 +Ci 1Ay = di
By substitution and eliminating the term S; 1 Ay;—_1, we obtain
(S0 — St,-1C—1) Ay + St 1 Ayprr = —fi(z) — St,—1di—

Then, solving for Ay,
Ayr + (St — St,flctfl)ilst,lAyt+1 = —(Sto— St,flctfl)il(ft(zt) + St _1di1)

After triangularization, the system looks like:

I 0
I 01 dl
AY = :
I CT dT
I 0

where Cy = (Sg0 — St,—1C—1) "' Se,1 and dy = — (S0 — St,—1Ci—1) 7' (fe(ze) +
S¢—1di—1). The value of AY are then easily obtained through backward sub-
stitution:

Ayt = dt_CtAyt+1

Using this approach, the only blocks requiring storage are Cy and d;, t =
1,...,T. As already mentioned, further reduction in storage is obtained by
taking into account the empty columns of the partial Jacobians.

2.2 The triangularization algorithm with several leads and
lags

With r lags and s leads, the system used for the determination of AY has
essentially the same structure, but with more blocks under and above the main

diagonal:

-] o
S, Sio ... Sis fl(:zl)
Sty Sio Si.s AY = - ft(:zt)

Sr—y St Sra fT(:zT)

_ I o]

The consequences of initialization carries over for the first r periods. For the
first period, because Ay, =0, for k=1 —r,...,0, we have simply
I

I 0171 Cl,s dl
52,711 cee 52,71 52,0 52,1 cee St,s —f2(22)
.)) AY = .

Sr.—r ... St-1 Sto Sta ... St —fr(zr)
I 0

where Cy = S;5S1k, k=1,...,s and dy = —=Si g fi(z1).

For period t = 2,...,r, the previous values of Ay are partly set to zero by
initial conditions, partly determined by previous computations. The recurrence
is as follows:

Qo = Sti—t
min(i,t—1)
Q: = St,i+17t — Z Qj,le,iH,j 1=1,...,s+t—2
j=max(1,i—t+2)
Cip = Qt_,lth+k71 k=1,...,s—1
Ct73 = Q;_11St,s
t—1
d = —Q. 1\ (filz) + Z d;
j=1

From period r + 1, the previous values of Ay are entirely determined by
previous computations and the recurrence is:

QO = St,—r

min(z,s)

Qi = Stir— Z Qt—rtj-1Ct—rijiv1—j ti=1,...,r+s
j=max(1,i—r+1)
Cire = Q'Qryr k=1,...,5—1
Ct,s = Q;lst,s
d = —Q7'(felz) + Z Qr—jdi—j
=1

Once the Jacobian matrix is entirely triangularized, the backward substitu-
tion takes the form:

Ay = dy — Z CtiAytyi

i=1

In the case with several leads or lags, we have to store the blocks C}y,
t=1,....T, k=1,...,s and d;.

3 Using the sparsity of the Jacobian blocks

Usually, not all variables of the model are present at each lead or lag. This
implies that several columns of the Jacobian blocks are empty and those are
known before starting the computation. One can take advantage of this feature
in the following ways.

For one period, the argument of the function f;() needs only the subvector
of z; containing lagged and leading variables actually used in the model. Note
that for the coherence of the model, all the variables must appear at the current
period.

If the function fi() is redefined in this manner, its corresponding Jacobian
will necessarily contain the non—empty columns of S;, k = —r,...,s.

The following rules must be observed for the triangularization algorithm:

1. The variables present in block C;, i = 1,...,s—1 are equal to the union of
the variables of the block Sy ; and of the blocks C},, k£ > i. The consequence
is that the C; blocks will always be non—empty, even if no variables are
present at certain leads.

2. The variables present in block (); are equal to the union of the block
St,—ry; and of the blocks C, k =1,...,min(i,r).

3. For periods 1 to » — 1, the variables present in the @; are different from
the general case and special care must be taken for the lags containing no
variable at all.

Often the gain of taking into account empty columns can be quite substan-
tial. In the example used for this paper, there are 46 variables. The maximum
lead is 5 and the maximum lag, 3. In the absence of special treatment, the

10

Jacobian for one period would have 9 x 46 = 414 columns and we would have
to store C' blocks with 5 % 46 = 230 columns. Taking into account the empty
columns reduces the size of the Jacobian to 86 columns and the matrix necessary
for storing the C blocks has only 13 columns.

Furthermore there exists a possible choice between speed and storage. If the
number of leading variables is smaller than the number of lagging ones, we will
minimize storage by eliminating the lower submatrix in the triangularization.
On the contrary, we will minimize computation and improve speed by eliminat-
ing the upper submatrix. The reverse applies if the number of leading variables
is greater than the number of lagging ones. The effective importance of this
feature of the algorithm has not yet been tested.

4 Adding auxiliary variables or using the direct
algorithm?

As we mentioned earlier, any model with several leads and lags can be trans-
formed into a one-lead one-lag model through the use of auxiliary variables.
We can now consider which of this transformation or of the direct algorithm
presented above is the most efficient to handle general models.

To eliminate a variable at lag or lead £ > 1, one needs k — 1 auxiliary
variables. Therefore, the number of columns necessary for the storage of the
C blocks will be identical in both approaches. However, using auxiliary vari-
ables will also add to the number of lines of the matrices used in each period.
That doesn’t happen with the direct algorithm. In term of storage, the direct
algorithm is clearly superior.

On the speed side, the direct algorithm requires additional computations
to eliminate several blocks under (or above the main diagonal of the Jacobian
matrix). On the other hand, the transformation approach needs solving a larger
linear problem. For practical implementation, the comparison is made more
difficult by the fact that one uses a Gauss language primitive to solve the linear
problems when the direct algorithm requires loops coded in Gauss language
which is slower. Obviously, the larger the model, the more costly it will be to
add additional variables.

For example, on the example used through out this paper, one iteration of the
Newton—Raphson algorithm for a simulation of 20 periods takes 23.1 seconds
on a Pentium at 75 MHz when we transform the model by adding auxiliary
variables and 19.7 seconds when we use the direct approach detailed here. The
improvement in speed is therefore of about 15%.

5 Conclusion
This paper detailed the algorithm used in DYNARE to simulate dynamic mod-

els with forward-looking variables. It is an application the Newton—Raphson
algorithm which takes into consideration the special structure of the Jacobian

11

matrix in such models. We also show that direct treatment of several leads or
lags models improves storage and speed requirement over the transformation of
the model through adding auxiliary variables.

It remains however that an important part of computation time is taken by
the numerical evaluation of the Jacobians in each period. A most noticeable
speed improvement would be brought by the use instead of symbolic differenti-
ation. It will be one of the directions pursued in this research.

12

References

Boucekkine, R. (1995) “An alternative methodology for solving nonlinear forward-
looking models,” Journal of Economic Dynamics and Control, forthcom-
ing.

Boucekkine, R., M. Juillard & P. Malgrange (1994) “Precision performances
of terminal conditions for short time horizons forward-looking systems,”
paper presented at the IFAC Conference, June 1994, Amsterdam.

LM.F. (1991) “Changes to Multimod since the July 1990 Occasional Paper No.
71. Current model: Multiap” Washington, DC: I.M.F.

Juillard, M. (1995) “DYNARE, a program for the resolution of non-linear
models with forward-looking variables. Release 1.3” Paris: CEPREMAP.

Laffargue, J.—P. (1990) “Résolution d’un modéle macroéconomique avec antic-
ipations rationnelles,” Annales d’Economie et Statistique, 17, 97-119.

Masson, P., S. Symansky & G. Meredith (1990) “Multimod Mark II: A revised
and extended model” I.M.F. Occasional Paper No. 71, July.

13

