

 1

Dirección General del Servicio de Estudios

11.02.2008

Accelerating Dynare, up to 10x, with SilverBullet

Samuel Hurtado

Departamento de Coyuntura y Previsión Económica

1 Introduction

Dynare is an amazing tool for setting up and estimating dynamic stochastic general equilibrium

models (DSGEs). However, when the model to be used is relatively big, some of the processes

done by Dynare can take a lot of time. This is the case, for example, of BEMOD1. The estimation of

that model, including a million iterations of the Metropolis-Hastings algorithm, is taking more than

two months on the fastest standard PC available today2. An even bigger problem is that just a test

estimation also takes quite a lot of time: nearly a day for the initial optimization, plus another four

days for a tentative block of 50000 iterations of the Metropolis-Hastings algorithm, just enough to

give a somewhat useful (though potentially inaccurate) idea of what the posterior distributions of

the estimated parameters look like. These computation times make the process of estimating such

a model a pretty unpleasant one.

In this note I present a pretty straightforward modification of the codes of Dynare that can reduce

estimation times by a factor of up to 10, while providing numerically identical results.

2 The problem

If we launch an estimation of BEMOD on Dynare while recording all the details of the process with

the Matlab profiler, we get results that look roughly like this:

m-file calls total time self time
dynare_estim 1 100% 0%
metropolis 1 100% 0%
DsgeLikelihood 5K 100% 0%
dynare_resolve 5K 89% 0%
resol 5K 89% 0%
dr1 5K 89% 0%
jacob_a 5K 88% 0%
ff1_ 3.8M 88% 1%
MyModel_ff 3.8M 87% 87%

The estimation is done in the dynare_estim.m process, which calls the metropolis.m process,

which calls the DsgeLikelihood.m process, which calls the dynare_resolve.m process, which calls

the resol.m process, which calls the dr1.m process.

This dr1.m process has to calculate the jacobian of the function that evaluates the state-space

representation of the model. For that, it calls the jacob_a.m process.

1

 See J. Andrés, P. Burriel, A. Estrada (2006): “BEMOD: A DSGE model for the Spanish economy and the rest of the Euro area”, Bank of

Spain Working Paper no. 0631.
2

 Using server or workstation hardware based on any number of x86 processors will not reduce that time.

2

The jacob_a.m process has this structure:

 Evaluate function.m at given point xdh
 For n = 1 to the size of xdh (383 in BEMOD)
 xdh1 = a bit to the left of xdh in the n-th dimenion
 xdh2 = a bit to the right of xdh in the n-th dimension
 Coordinate n of jacobian = ((function.m at xdh1)-(function.m at xdh2))/h
 End for

Its target function is residing in a different m-file, which in our case is ff1_.m, so we see jacob_a.m

calling ff1_.m more than 700 times to calculate its jacobian just once.

ff1_.m is just an intermediate process that classifies the coordinates of xdh appropriately and then

calls MyModel_ff.m, which is the process that contains the state-space representation of the

model.

This MyModel_ff.m file is where most of the estimation time is spent. It contains something like this:

 Declaration of a lot of global variables, corresponding to the parameters of the model
 z(1) = function of the parameters of the model and the point at which it is being evaluated
 z(2) = function of the parameters of the model and the point at which it is being evaluated
 etc

So, in essence, what jacob_a.m is doing is to call once and again for the evaluation of a function.

And it is doing it in this fashion: “take this vector, look up some parameters that are stored in

memory, and make some calculations”.

If we look at the profiler information for MyModel_ff.m, we’ll see exactly where the time is being

spent.

What we’ll see there is that the parts related to “take this vector” and “make some calculations” are

relatively fast and not really taking a lot of time, while it is the “look up some parameters that are

stored in memory” part which is taking nearly all the processing time necessary to estimate this

model.

This is due to the fact that global variables, while being helpful and convenient at the time of writing

a program, are a highly inefficient way of passing information around, at least in Matlab.

3 The solution (SilverBullet)

In essence, what the profiler information has shown us is that we are doing something that is

inefficient (looking up global variables stored in memory), and we are doing it over and over again

(in our case, more than 700 times each time we want to calculate a jacobian). Once we realize this,

finding a solution is relatively straightforward.

There are at least two ways around this problem. One would be to rewrite the codes so that they

no longer use global variables; this would take a very big effort, by someone with a very good

understanding of what each file in the Dynare package is doing, when it is doing it, and how it is

doing it. The other solution is much easier to implement: simply reduce the number of times that

these global variables are looked up from the memory.

We have seen that each time Dynare wants to calculate the jacobian of the MyModel_ff.m function,

the parameters of the model are looked up from memory more than 700 times, even though at this

point they are not changing at all.

A very simple solution is to modify the jacob_a.m file so that it loads those global variables only

once, and calculates the jacobian by itself, without ever calling ff1_.m or MyModel_ff.m.

The structure of this new jacob_a.m file would be something like this:

 Declaration of a lot of global variables, corresponding to the parameters of the model
 Evaluate function.m at given point xdh
 For n = 1 to the size of xdh (383 in BEMOD)
 xdh1 = a bit to the left of xdh in the n-th dimenion
 xdh2 = a bit to the right of xdh in the n-th dimension
 if function to evaluate is ff1_
 reorganize variables as done in ff1_
 z_xdh1(1) = function of xdh1 and the parameters of the model
 z_xdh1(2) = function of xdh1 and the parameters of the model
 etc
 z_xdh2(1) = function of xdh1 and the parameters of the model
 z_xdh2(2) = function of xdh2 and the parameters of the model
 etc
 Coordinate n of jacobian = (z_xdh1-z_xdh2)/h

 3

 Else
 Coordinate n of jacobian = ((function at xdh1)-(function at xdh2))/h
 End if
 End for

This jacob_a.m file calculates ff1_.m itself, without calling any other m-files, if that is the function to

be evaluated; if it is asked to calculate the jacobian of any other function, it will do it through the

standard (slower) way3.

This new jacob_a.m file will only work for a given MyModel_ff.m function, so it should reside in the

folder where our model is. Once it is there, every time Matlab looks for a process with that name

while working on that folder, it will find it right there, and so it will not look for it on the default

paths, which is where the original jacob_a.m from Dynare would be found4.

4 The results

It may look like this SilverBullet doesn’t change much, but in fact it provides an impressive

performance boost, especially with big models5:

model equations
global

parameters
task

Dynare
time (hours)

Dynare+SilverBullet
time (hours)

speed
factor

Gali and Monacelli (2005) 10 11 1M iterations of M-H 9.0 6.0 1.5x
Core BEMOD 84 102 100K iterations of M-H 22.5 2.3 9.9x

BEMOD 180 278 initial optimization 19.6 3.8 5.2x
BEMOD 180 278 10K iterations of M-H 23.0 3.0 7.6x

And it is very simple to implement: you just need to open the ff1_.m and MyModel_ff.m file, change

the names of the variables, and copy the appropriate parts of them into a new jacob_a.m file.

Better still, as these changes are always the same, they can be automated, which is what the

macro inside my SilverBullet.xls6 file does.

3

 Dynare also contains a file called fff1_.m, and creates a MyModel_fff.m, which are similar to their ff analogues, but include some additional

calculations related to irrational numbers. If your model is calling those functions, you might consider including an “if function to evaluate is

fff1_” block for them in the modified jacob_a.m file. Also, for slightly better performance, the first evaluation of the function could also be done

inside jacob_a.m instead of through a call to the respective m-file.
4

 Note that this method would preclude the coexistence of several models in a given folder, as that could lead to the jacobian of the wrong

MyModel_ff.m function to be evaluated.
5

 These tests have been conducted on a PC with an Intel Core2duo working at 2.2GHz and with 4GB of RAM.
6

 This file is freely available for those who request it at samuel.hurtado at bde.es (spam protection). Together with Dynare for Matlab v.3.065,

it is working flawlessly with all the models I have tested it on, but universal compatibility obviously cannot be guaranteed. Any users should

check that, for their particular models, results are numerically identical with or without this SilverBulet (please remember to set a seed for the

random number generators at the beginning of your code), while also understanding which changes are being made with respect to the

standard Dynare codes, and why.

