Unstable system or multiple steady states error

I have just started learning dynare. I am trying to run a simple RBC model. When I run my code (attached) I keep getting the following error

Error using print_info (line 57)
Impossible to find the steady state. Either the model doesn’t have a steady state, there
are an infinity of steady states, or the guess values are too far from the solution

Error in steady (line 92)

Error in irelandex3 (line 125)

Error in dynare (line 120)
evalin(‘base’,fname) ;

I have taken the model from an academic article and I have hence used the steady state values reported in the paper and I double-checked them in matlab. It would seem strange to me if the steady state values I have listed are wrong. I also tried writing a code for the log-linearized version of the model and it works. So I really don’t know where I am getting the model wrong.

I would appreciate any help by more expert users.
Thanks a lot!
irelandex3.mod (653 Bytes)

I am not sure where you got the steady state values, but the steady state for technology a is clearly 1 and not 6.

I copied it it from replication matlab (not dynare) code of the paper I am trying to replicate.
Actually, the original TFP process used in the paper was ln(a_t)=(1-rho)ln(abar) + rholn(a_t-1) + e_t
which in dynare I initially wrote as ln(a)=(1-rho)ln(abar)+rholn(a(-1))+e
But it wasn’t working
I just tried changing the steady state value to a=1 but it still doesn’t work
I am attaching my original code and a written down copy of the model.
If you want I can also attach a link to the paper.
Thanks for the help!
irelandex3.mod (666 Bytes)
model.pdf (16.9 KB)

Given that you changed the exogenous process, use pencil and paper to calculate the steady state values. Given the small size of the model, this should be extremely straightforward.

Hi, my apologies, there was a silly typo in the capital flow equation
I had typed and “i” instead of a 1: etak=(i-delta)k(-1)+i instead of etak=(1-delta)(k-1)+i

many thanks again for your help

If you are interested in replication, this might be of interest to you: ReplicationWiki