There seems to be something wrong with your plotting. Your mod-file is equivalent to

[code]display(‘Inital Steady State’);

A = 1;

beta = 0.95;

delta = 0.02;

alpha = 0.25;

n = 0.0;

kss_0 = ((alpha*A)/((1/beta) - (1 - delta)))^(1/(1 - alpha))*

css_0 = A(kss_0^(alpha)) - kss_0*(n + delta)

% -------------------------------------------------------

% DECLARE ENDOGENOUS VARIABLES

% WITHOUT TIME, AS IN THE STEADY STATE

% -------------------------------------------------------

% Number of variables: 5

var k, c ;

% -------------------------------------------------------

% LIST OF PARAMETERS

% -------------------------------------------------------

parameters beta, sigma, delta, alpha, n, A;

beta = 0.95;

sigma = 1.5;

delta = 0.02;

alpha = 0.25;

n = 0.0;

A = 1.5;

% Final Steady State

kss = ((alpha*A)/((1/beta) - (1 - delta)))^(1/(1 - alpha));*

css = A(kss^(alpha)) - kss*(n + delta);

% -------------------------------------------------------

% MODEL DESCRIPTION

% -------------------------------------------------------

model;

```
% i) Resource constraint
A*(k(-1)^(alpha)) = k*(1 + n) - (1 - delta)*k(-1) + c;
% ii) Euler equation
# aux = 1 - delta + alpha*A*(k^(alpha - 1));
# u_1 = 1/c^(sigma);
# u_2 = 1/c(+1)^(sigma);
u_1 = beta*u_2*aux;
```

end;

% -------------------------------------------------------

% COMPUTING THE STEADY STATE

% -------------------------------------------------------

initval;

k = kss;

c = css;

end;

steady (solve_algo = 0);

check;

% -------------------------------------------------------

% COMPUTING THE DYNAMICS

% -------------------------------------------------------

```
initval;
Initial Steady state
k = ((alpha*1)/((1/beta) - (1 - delta)))^(1/(1 - alpha));
end;
```

simul (stack_solve_algo=0, periods = 90);

rplot c k;[/code]

which delivers nice graphs for c and k.